1
|
Shao G, Dong J, Zhang W, Sun S, Li C, Li Y. In situ bioelectrochemical remediation of contaminated soil and groundwater: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126250. [PMID: 40228729 DOI: 10.1016/j.envpol.2025.126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Contamination of the subsurface environment poses a serious hazard to the environment and human health. Recently, the bioelectrochemical system (BES) has drawn great attention in soil and groundwater remediation as it does not necessitate the addition of chemicals and exhibits minimal energy consumption to facilitate microbial degradation of pollutants. However, the complexity of the subsurface environment and the design parameters of the BES significantly affect the remediation performance and the current literature on BES primarily concentrates on its application in wastewater treatment, with a lack of summary of that in the subsurface environment. Therefore, the purpose of this review was to provide the current status, challenges, and outlooks of BES in situ treatment of pollutants from soil and groundwater. Firstly, the principles and efficacies of BES in treating the typical pollutants from the subsurface environment were discussed. Secondly, the factors that impact the BES treatment efficiencies, especially soil properties, the distinctive and pivotal factors for BES in situ application, were discussed specifically. Finally, the challenges and outlooks of BES for the in situ remediation of the contaminated soil and groundwater were addressed. BES is a green and sustainable in situ remediation technology and future advancements may necessitate the integration with complementary technologies and innovative system configurations to advance the practical implementation of BES.
Collapse
Affiliation(s)
- Guohao Shao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Weihong Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Sifan Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Chenlu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Yan Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Fang S, Geng Y, Wang L, Zeng J, Lin X, Zhang S, Wu Y. Debromination of decabromodiphenyl ether (BDE-209) and bacterial community responses in aerobic and anaerobic soil microcosms. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137339. [PMID: 39879772 DOI: 10.1016/j.jhazmat.2025.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants that may pose risks to human health and environmental biota, including soil microbial communities. These risks are further affected by a multitude of factors, including environmental conditions encountered in real-world settings. A comprehensive understanding of how PBDEs transform and microbial communities respond to the exposure under varying environmental conditions is paramount for assessing the ecological risks or identifying potential degraders. In this study, soil microcosms spiked with or without 10 mg kg-1 decabromodiphenyl ether (BDE-209) were established and incubated under either aerobic or anaerobic conditions for a duration of up to 180 days. The results demonstrated mono- to nine-brominated PBDE congeners accounted for approximately 4.03 % and 6.18 % of the initial concentration of BDE-209 added to the soil in both aerobic and anaerobic conditions, respectively. Anaerobic microcosms demonstrated faster and deeper debromination compared to the aerobic microcosms. Bacterial communities were monitored during the incubation to evaluate the community succession under the PBDE stress. Oxygen significantly shaped the richness, diversity, composition, and network complexity of soil bacterial community. BDE-209 had profound impacts on the network structure of bacterial communities. Random Forest model identified Desulfosporosinus and Polaromonas that might be related to BDE-209 debromination under anaerobic conditions. Overall, our findings shed light on the bacterial community effects of BDE-209 in aerobic or anaerobic soils, thus providing a theoretical basis for remediation of soil contaminated by PBDEs.
Collapse
Affiliation(s)
- Shasha Fang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yucheng Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Kaown D, Carroll KC, Mahlknecht J, Kim YJ, Shin JY, Lee SS, Lee KK. Influence of saline water and heavy rain on the fate of chlorinated ethenes in groundwater characterized by compound-specific isotope and microbial data. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137238. [PMID: 39842117 DOI: 10.1016/j.jhazmat.2025.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Chlorinated ethenes are prevalent contaminants in industrial wastewater that detrimentally affect human health. As elevated tetrachloroethene (PCE) concentrations (18.0-18.7 mg/L) have been observed in the groundwater of an industrial area near the ocean in Incheon, South Korea, effective remedies are required to degrade these contaminants. However, the effects of saline-fresh water mixing on microbial biodegradation and contaminant attenuation are not well known. To characterize the groundwater contamination and in situ biodegradation during salt water intrusion mixing dynamics, compound-specific isotope analysis (CSIA) data combined with hydrogeochemical and microbial data were employed to delineate the contaminant sources and the degradation processes of chlorinated ethenes in groundwater near the sea. The presence of degradation by-products indicated the occurrence of biodegradation. The highest PCE concentration (18.7 mg/L) and the most depleted δ13C (-28.7 ‰) and δ37Cl (-1.2 ‰) in PCE were observed in groundwater at well NDMW-13, revealing a potential source of contamination. Slightly enriched δ13C (-26.2 to -25.0 ‰) in PCE compared with that of source zone (-28.7 to -26.0 ‰) and organohalide-respiring bacteria (OHRB), as well as chlorinated ethene degraders, were observed in other wells (NDMW-9, NDMW-10, NDMW-11, and NDMW-12), providing confirmatory evidence for the biodegradation of chlorinated ethenes. The CSIA and microbial data results indicate only a minor amount of natural attenuation in the source zone area. Chlorinated ethenes in the plume boundary zone are close to the sea and affected by saline-fresh water mixing; therefore, the microbial community structures slightly differ from those in the source zone. This study suggests that CSIA microbial and groundwater age data are useful for evaluating the effects of the mixing dynamics of saline water intrusion and heavy rainfall infiltration on the dechlorination of chlorinated ethenes in groundwater.
Collapse
Affiliation(s)
- Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kenneth C Carroll
- Plant & Environmental Sciences, New Mexico State University, Las Cruces, NM 88003-8003, USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Ye Ji Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jun-Young Shin
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seong-Sun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
4
|
Aulenta F, Tucci M, Cruz Viggi C, Milia S, Hosseini S, Farru G, Sethi R, Bianco C, Tosco T, Ioannidis M, Zanaroli G, Ruffo R, Santoro C, Marzocchi U, Cassiani G, Peruzzo L. Groundwater electro-bioremediation via diffuse electro-conductive zones: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100516. [PMID: 39703569 PMCID: PMC11655697 DOI: 10.1016/j.ese.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and in situ implementation of groundwater electro-bioremediation processes.
Collapse
Affiliation(s)
- Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Stefano Milia
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Cagliari, Italy
| | - Seyedmehdi Hosseini
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Gianluigi Farru
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Rajandrea Sethi
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Carlo Bianco
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Tiziana Tosco
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Marios Ioannidis
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Riccardo Ruffo
- Department of Materials Science, University of Milano-Bicocca, Milano, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca, Milano, Italy
| | - Ugo Marzocchi
- Center for Water Technology WATEC, Department of Biology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology CEM, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Luca Peruzzo
- Department of Geosciences, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Nor NAM, Tanaka F, Yoshida N, Jaafar J, Zailani MZ, Ahmad SNA. Preliminary evaluation of electricity recovery from palm oil mill effluent by anion exchange microbial fuel cell. Bioelectrochemistry 2024; 160:108770. [PMID: 38943780 DOI: 10.1016/j.bioelechem.2024.108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
This study assessed the viability of an anion-exchange microbial fuel cell (MFC) for extracting electricity from palm oil mill effluent (POME), a major pollutant in palm-oil producing regions due to increasing demand. The MFC incorporated a tubular membrane electrode assembly (MEA) with an air core, featuring a carbon-painted carbon-cloth cathode, an anion exchange membrane (AEM), and a nonwoven graphite fabric (NWGF) anode. An additional carbon brush (CB) anode was placed adjacent to the tubular MEA. The MFC operated under semi-batch conditions with POME replacement every 7 days. Results showed superior performance of the AEM, with the highest power density (Pmax) observed in POME-treated MFCs. Current and power density increased with CB addition; the best chemical oxygen demand (COD) removal efficiency reached 73 %, decreasing from 1249 to 332 mg/L with three CBs. The Pmax was 0.18 W/m-2(-|-) with 1000 mg/L COD and three CBs, dropping to 0.0031 W/m-2(-|-) without CB and at 410 mg/L COD. Anode resistance, calculated using organic matter supplementation, COD, and anode surface area, decreased with increased COD or surface area, improving electricity production. AEM and CB compatibility synergistically enhanced MFC performance, offering potential for POME wastewater treatment and energy recovery.
Collapse
Affiliation(s)
- Nor Azureen Mohamad Nor
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Oil and Gas Engineering Program, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Fumichika Tanaka
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Muhamad Zulhilmi Zailani
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Siti Nur Afifi Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
6
|
Gamlin J, Caird R, Sachdeva N, Miao Y, Walecka-Hutchison C, Mahendra S, K De Long S. Developing a microbial community structure index (MCSI) as an approach to evaluate and optimize bioremediation performance. Biodegradation 2024; 35:993-1006. [PMID: 39017970 DOI: 10.1007/s10532-024-10093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Much attention is placed on organohalide-respiring bacteria (OHRB), such as Dehalococcoides, during the design and performance monitoring of chlorinated solvent bioremediation systems. However, many OHRB cannot function effectively without the support of a diverse group of other microbial community members (MCMs), who play key roles fermenting organic matter into more readily useable electron donors, producing corrinoids such as vitamin B12, or facilitating other important metabolic processes or biochemical reactions. While it is known that certain MCMs support dechlorination, a metric considering their contribution to bioremediation performance has yet to be proposed. Advances in molecular biology tools offer an opportunity to better understand the presence and activity of specific microbes, and their relation to bioremediation performance. In this paper, we test the hypothesis that a specific microbial consortium identified within 16S ribosomal ribonucleic acid (rRNA) gene next generation sequencing (NGS) data can be predictive of contaminant degradation rates. Field-based data from multiple contaminated sites indicate that increasing relative abundance of specific MCMs correlates with increasing first-order degradation rates. Based on these results, we present a framework for computing a simplified metric using NGS data, the Microbial Community Structure Index, to evaluate the adequacy of the microbial ecosystem during assessment of bioremediation performance.
Collapse
Affiliation(s)
- Jeff Gamlin
- GSI Environmental Inc, 13949 West Colfax Ave, Suite 210, Lakewood, CO, 80401, USA.
| | - Renee Caird
- Jacobs, 120 St. James Ave, Boston, MA, 02116, USA
| | - Neha Sachdeva
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| |
Collapse
|
7
|
Geng A, Zhang C, Wang J, Zhang X, Qiu W, Wang L, Xi J, Yang B. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. World J Microbiol Biotechnol 2024; 40:208. [PMID: 38767676 DOI: 10.1007/s11274-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.
Collapse
Affiliation(s)
- Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Qiu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
8
|
Zhang Z, Ali M, Tang Z, Sun Q, Wang Q, Liu X, Yin L, Yan S, Xu M, Coulon F, Song X. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134034. [PMID: 38521036 DOI: 10.1016/j.jhazmat.2024.134034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.
Collapse
Affiliation(s)
- Zhuanxia Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Liu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lipu Yin
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Song Yan
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Lee HC, Chen SC, Sheu YT, Yao CL, Lo KH, Kao CM. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123768. [PMID: 38493868 DOI: 10.1016/j.envpol.2024.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.
Collapse
Affiliation(s)
- Hsin-Chia Lee
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Yih-Terng Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Lu CW, Lo KH, Wang SC, Kao CM, Chen SC. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170885. [PMID: 38342459 DOI: 10.1016/j.scitotenv.2024.170885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 μmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 μmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 μmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sun-Chong Wang
- Systems Biology and Bioinformatics Institute, National Central University, Taoyuan 32001, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
11
|
Fang S, Geng Y, Wang L, Zeng J, Zhang S, Wu Y, Lin X. Coupling between 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) debromination and methanogenesis in anaerobic soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169831. [PMID: 38185166 DOI: 10.1016/j.scitotenv.2023.169831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent pollutants that may undergo microbial-mediated debromination in anoxic environments, where diverse anaerobic microbes such as methanogenic archaea co-exist. However, current understanding of the relations between PBDE pollution and methanogenic process is far from complete. To address this knowledge gap, a series of anaerobic soil microcosms were established. BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) was selected as a model pollutant, and electron donors were supplied to stimulate the activity of anaerobes. Debromination and methane production were monitored during the 12 weeks incubation, while obligate organohalide-respiring bacteria (OHRBs), methanogenic, and the total bacterial communities were examined at week 7 and 12. The results demonstrated slow debromination of BDE-47 in all microcosms, with considerable growth of Dehalococcoides and Dehalogenimonas over the incubation observed in most BDE-47 spiked treatments. In addition, the accumulation of intermediate metabolites positively correlated with the abundance of Dehalogenimonas at week 7, suggesting potential role of these OHRBs in debromination. Methanosarcinaceae were identified as the primary methanogenic archaea, and their abundance were correlated with the production of debrominated metabolites at week 7. Furthermore, it was observed for the first time that BDE-47 considerably enhanced methane production and increased the abundance of mcrA genes, highlighting the potential effects of PBDE pollution on climate change. This might be related to the inhibition of reductive N- and S-transforming microbes, as revealed by the quantitative microbial element cycling (QMEC) analysis. Overall, our findings shed light on the intricate interactions between PBDE and methanogenic processes, and contribute to a better understanding of the environmental fate and ecological implication of PBDE under anaerobic settings.
Collapse
Affiliation(s)
- Shasha Fang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yucheng Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Xie L, Tanaka F, Yagi T, Hashimoto H, Ikeru K, Igarashi T, Kobayashi H, Sakoda M, Yoshida N. Multi-anode enhanced the bioelectricity generation in air-cathode microbial fuel cells towards energy self-sustaining wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 243:117744. [PMID: 38092240 DOI: 10.1016/j.envres.2023.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Microbial fuel cells (MFCs) hold considerable promise for harnessing the substantial energy resources present in wastewater. However, their practical application in wastewater treatment is limited by inadequate removal of organic matter and inefficient power recovery. Previous studies have investigated aeration as a method to enhance the removal of organic matter, but this method is energy-intensive. To address this issue, this study proposed using MFC-recovered bioelectricity for aeration, thereby mitigating the associated expenses. An air-cathode MFC with multi-anode was constructed and optimized to maximize electricity supply for aeration. Carbon-felt anodes were chosen as the most effective anode configuration, due to the high abundance of electroactive bacteria and genes observed in the biofilm generated on their surface. By incorporating six carbon felt anodes, the MFC achieved a 1.7 and 1.1 fold enhancement in the maximum power and current density, respectively. The optimized MFC unit achieved a stable current density of 0.32 A/m2 and achieved COD removal of 60% in the long-term operation of 140 days in a 50 L reactor. In a reactor scaled up to 1600 L, 72 MFCs successfully powered a mini air pump work for 10 s after an 81-s charging period. The intermittent aeration resulted in partial increases in DO concentrations to 0.03-3.5 mg/L, which is expected to promote the removal of nitrogen compounds by the nitrification-anammox process. These groundbreaking results lay the foundation for self-sustaining wastewater treatment technologies.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan
| | - Fumichika Tanaka
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan
| | - Toshiyuki Yagi
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan
| | - Hideaki Hashimoto
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan
| | - Kyo Ikeru
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan
| | - Takashi Igarashi
- Research Center, TOYOBO Co., LTD., 2-1-1, Katata, Otsu, Shiga, Japan
| | - Hiroaki Kobayashi
- River & Water Resources Division, NIPPON KOEI Co., Ltd., 5-4 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Mitsuhiro Sakoda
- Water & Sewage Department, Tamano Consultants Co., Ltd., 2-17-14, Higashisakura, Higashi-ku, Nagoya, Aichi, Japan
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, Japan.
| |
Collapse
|
13
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Asai M, Morita Y, Meng L, Miyazaki H, Yoshida N. Dehalococcoides mccartyi strain NIT01 grows more stably in vessels made of pure titanium rather than the stainless alloy SUS304. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:557-567. [PMID: 37594161 PMCID: PMC10667658 DOI: 10.1111/1758-2229.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Advances in many isolation studies have revealed that pure Dehalococcoides grow stably, although the large-scale pure cultivation of Dehalococcoides has yet to be established. In this study, 7 L-culturing of Dehalococcoides mccartyi strain NIT01 was first performed using vessels made of glass and stainless alloy SUS304. All batches cultured in the glass vessel successfully dechlorinated >95% of 1 mM trichloroethene (TCE) to ethene (ETH), whereas only 5 out of 13 batches cultured in the SUS304 vessel did the same. The difference in dechlorination efficiency suggested the possible inhibition of dechlorination by SUS304. Also, the strain NIT01 showed long delays in dechlorination with pieces of SUS316, steel, and a repeatedly used SUS304, but not with titanium. The repeatedly used SUS304 cracked and increased the Fe2+ concentration to ≥76 μM. Dechlorination by this strain was also inhibited with ≥1000 μM Fe2+ and ≥23 μM Cr3+ but not with ≤100 μM Ni2+ , suggesting that Cr3+ eluted from solid stainless alloys inhibited the dechlorination. Culturing in a titanium vessel instead of a stainless alloy showed the complete dechlorination of 1 mM TCE within 12-28 days with a growth yield of 2.7 × 107 cells/μmol-released Cl- , even after repeating use of the vessels six times.
Collapse
Affiliation(s)
- Masaki Asai
- Department of Civil EngineeringNagoya Institute of TechnologyNagoyaJapan
| | - Yuki Morita
- Department of Civil EngineeringNagoya Institute of TechnologyNagoyaJapan
| | - Lingyu Meng
- Department of Civil EngineeringNagoya Institute of TechnologyNagoyaJapan
| | - Hidetoshi Miyazaki
- Department of Physical Science and EngineeringNagoya Institute of TechnologyNagoyaJapan
| | - Naoko Yoshida
- Department of Civil EngineeringNagoya Institute of TechnologyNagoyaJapan
| |
Collapse
|
15
|
Chen SH, Li ZT, Zhao HP. Bioelectrochemical system accelerates reductive dechlorination through extracellular electron transfer networks. ENVIRONMENTAL RESEARCH 2023; 235:116645. [PMID: 37442263 DOI: 10.1016/j.envres.2023.116645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 μM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 μM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Meng L, Tomita R, Yoshida T, Yoshida N. Soil organic matter and nutrient availability affect the applicability of low-carbon energy source in Dehalococcoides-augmented soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132251. [PMID: 37591166 DOI: 10.1016/j.jhazmat.2023.132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Dehalococcoides is a functional microorganism that completely dechlorinates trichloroethene (TCE). Augmentation with pure Dehalococcoides is important for reducing environmental disturbances that accompany bioaugmentation. However, the applicability of Dehalococcoides-bioaugmentation to contaminated soils is unclear. In this study, seven low-carbon energy sources (methanol, formate, acetate, ethanol, lactate, citrate, and benzoate) were used as electron donors for Dehalococcides to evaluate its applicability in remediating TCE-contaminated soils. Soil microcosms supplemented with ethanol, formate, or lactate showed relatively high dechlorination activity within 111-180 days. The functional gene profiles predicted by PICRUSt2 from 16 S rRNA gene sequences were similar in the proportions of dehydrogenases, which initiate electron donor oxidation, in all soils and did not seem to reflect Dehalococcoides-bioaugmentation applicability. Soils with higher organic matter content (>3.2%; dry weight base) and protein concentration (>1.6 µg/mL) supported complete dechlorination. These results suggest that organic matter and nutrient availability mainly affect successful TCE dechlorination in Dehalococcoides-augmented soils. The study offers significant experimental support for comprehending the suitability of low-carbon energy sources in successful bioaugmentation, aiming to mitigate environmental disturbances associated with the process.
Collapse
Affiliation(s)
- Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Ryuya Tomita
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Tomoki Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| |
Collapse
|
17
|
Torres-Rojas F, Muñoz D, Pía Canales C, Hevia SA, Leyton F, Veloso N, Isaacs M, Vargas IT. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. ENVIRONMENTAL RESEARCH 2023; 233:116442. [PMID: 37343755 DOI: 10.1016/j.envres.2023.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107, Reykjavík, Iceland
| | - Samuel A Hevia
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile; Instituto de Física, Pontificia Universidad Católica de, Chile
| | - Felipe Leyton
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Nicolás Veloso
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Mauricio Isaacs
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
18
|
Zhu M, He L, Liu J, Long Y, Shentu J, Lu L, Shen D. Dynamic processes in conjunction with microbial response to unveil the attenuation mechanisms of tris (2-chloroethyl) phosphate (TCEP) in non-sanitary landfill soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120666. [PMID: 36403879 DOI: 10.1016/j.envpol.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although the environmental and health risks of chlorinated organophosphate esters (OPEs-Cl) have drawn much attention, its environmental behaviors have been insufficiently characterized. As a notable sink of this emerging contaminant, non-sanitary landfills, which may decompose/accumulate OPEs-Cl, is of particular concern. In the present study, the dynamic processes of the typical OPEs-Cl, tris(2-chloroethyl) phosphate (TCEP), in non-sanitary landfill soils were analyzed under anaerobic condition, and the microbial taxa involved in these processes were explored. Our results showed that TCEP could be simultaneously reduced by abiotic and biotic processes, as it was reduced by 73.9% and 65.5% over the 120-day experiment in landfill humus and subsoil, respectively. Notably, the degradation of TCEP was significantly (p < 0.05) enhanced under the stress of a high TCEP concentration (10 μg g-1), while its ecological consequences were found insignificant regarding the microbial diversity and community structure and the typical soil redox processes, including Fe(III)/SO42- reduction and methanogenesis, in both soils. The microbial diversity of subsoil was significantly lower, and acetate was an important factor in changing microbial communities in landfill soils. The microbes in the family Nocardioidaceae and genus Pseudomonas might contribute to in the degradation of TCEP in landfill humus and subsoil, respectively. The metabolism related to sulfur and sulfate respiration were significantly (p < 0.05) correlated with TCEP reduction, and Desulfosporosinus were found as a potentially functional microbial taxon in TCEP degradation in both soils. The results could advance our understanding of the environmental behavior of OPEs-Cl in landfill-like complex environments.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310012, PR China
| | - Lisha He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Jiayi Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
19
|
Meng L, Xie L, Hirose Y, Nishiuchi T, Yoshida N. Reduced graphene oxide increases cells with enlarged outer membrane of Citrifermentans bremense and exopolysaccharides secretion. Biosens Bioelectron 2022; 218:114754. [DOI: 10.1016/j.bios.2022.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
|
20
|
Xue X, Wang L, Wang D, Yi X, Yang F, Li Y. Biocathode regulates enrofloxacin degradation by coupling with different co-metabolism conditions. ENVIRONMENTAL RESEARCH 2022; 212:113254. [PMID: 35395237 DOI: 10.1016/j.envres.2022.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In this study, biocathode system coupled with different co-metabolism conditions (NaAc, glucose and NaHCO3) were developed to degrade quinolones enrofloxacin (ENR) due to its poorly metabolization, easily accumulation and potential toxicity. Simultaneously, ENR reduction kinetic rate constant in NaAc-fed, glucose-fed and NaHCO3-fed biocathodes, and sole biocathode were increased by 343.62%, 320.46%, 189.19% and 130.88% when compared with that of abiotic cathode when the operational time and ENR concentration were set to 48 h and 25 mg/L. In addition, transformation pathways of ENR revealed pathway II were dominantly occurred in NaAc- and glucose-fed biocathode while pathway IV acting as key metabolic process were shown in NaHCO3-fed biocathode. Moreover, 16S rRNA high-throughput sequencing analysis indicated that biocathodic communities were sensitive to switch-over of carbon source, namely Delftia and Bosea as organohalide-respiring bacteria (OHRB) were abundant in NaAc- and glucose-fed biocathodes while Mesotoga and Syntrophorhabdus that responsible for benzoyl-CoA metabolic process were enriched in NaHCO3-fed biocathode. Overall, this study could unravel the underlying relationship between biocathode degradation pattern of ENR and different co-metabolism conditions, and further offer valuable scientific information on treating refractory quinolones antibiotics via green bioelectrochemical method.
Collapse
Affiliation(s)
- Xiaofang Xue
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Linli Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Fei Yang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yangyang Li
- Operation Services Division of Hospital Wastewater Treatment, General Affairs Department, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, 572000, China.
| |
Collapse
|