1
|
Michel L, Oró-Nolla B, Dell'Omo G, Quillfeldt P, Lacorte S. Analysis of organochlorines and polycyclic aromatic hydrocarbons designed for pollutant biomonitoring in three seabird matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34174-0. [PMID: 38980477 DOI: 10.1007/s11356-024-34174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Pollutant biomonitoring demands analytical methods to cover a wide range of target compounds, work with minimal sample amounts, and apply least invasive and reproducible sampling procedures. We developed a method to analyse 68 bioaccumulative organic pollutants in three seabird matrices: plasma, liver, and stomach oil, representing different exposure phases. Extraction efficiency was assessed based on recoveries of spiked surrogate samples, then the method was applied to environmental samples collected from Scopoli's shearwater (Calonectris diomedea). Extraction was performed in an ultrasonic bath, purification with Florisil cartridges (5 g, 20 mL), and analysis by GC-Orbitrap-MS. Quality controls at 5 ng yielded satisfactory recoveries (80-120%) although signal intensification was found for some compounds. The method permitted the detection of 28 targeted pollutants in the environmental samples. The mean sum of organic pollutants was 4.25 ± 4.83 ng/g in plasma, 1634 ± 2990 ng/g in liver, and 233 ± 111 ng/g in stomach oil (all wet weight). Pollutant profiles varied among the matrices, although 4,4'-DDE was the dominant compound overall. This method is useful for pollutant biomonitoring in seabirds and discusses the interest of analysing different matrices.
Collapse
Affiliation(s)
- Lucie Michel
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany.
| | - Bernat Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | - Petra Quillfeldt
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
| | - Sílvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
2
|
Cruz-Flores M, Lemaire J, Brault-Favrou M, Christensen-Dalsgaard S, Churlaud C, Descamps S, Elliott K, Erikstad KE, Ezhov A, Gavrilo M, Grémillet D, Guillou G, Hatch S, Huffeldt NP, Kitaysky AS, Kolbeinsson Y, Krasnov Y, Langset M, Leclaire S, Linnebjerg JF, Lorentzen E, Mallory ML, Merkel FR, Montevecchi W, Mosbech A, Patterson A, Perret S, Provencher JF, Reiertsen TK, Renner H, Strøm H, Takahashi A, Thiebot JB, Thórarinsson TL, Will A, Bustamante P, Fort J. Spatial distribution of selenium-mercury in Arctic seabirds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123110. [PMID: 38086506 DOI: 10.1016/j.envpol.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.
Collapse
Affiliation(s)
- Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Jérémy Lemaire
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Maud Brault-Favrou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Carine Churlaud
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University. Ste Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | - Alexey Ezhov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya Str. 17, Murmansk, Russia
| | - Maria Gavrilo
- Arctic and Antarctic Research Institute. 199397 St. Petersburg, Russia
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Gaël Guillou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Scott Hatch
- U.S. Geological Survey, Alaska Science Center. Anchorage, AK 99508, USA
| | - Nicholas Per Huffeldt
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - Alexander S Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife. Fairbanks, AK 99775-7000, USA
| | | | - Yuri Krasnov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya Str. 17, Murmansk, Russia
| | | | - Sarah Leclaire
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, Université de Toulouse, CNRS, IRD. 31062 Toulouse, France
| | | | | | - Mark L Mallory
- Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Flemming R Merkel
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - William Montevecchi
- Memorial University of Newfoundland and Labrador. St. John's, Newfoundland A1C 3X9, Canada
| | - Anders Mosbech
- Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University. Ste Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Samuel Perret
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada, K1A 0H3
| | - Tone K Reiertsen
- Norwegian Institute for Nature Research, FRAM Centre. 9296 Tromsø, Norway
| | - Heather Renner
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre. 9296 Tromsø, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa. Tokyo 190-8518, Japan
| | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa. Tokyo 190-8518, Japan; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | | | - Alexis Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife. Fairbanks, AK 99775-7000, USA; World Wildlife Fund, US Arctic Program, 810 N Street, Suite 300, Anchorage AK 99501, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
3
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
4
|
Grunst AS, Grunst ML, Fort J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163169. [PMID: 37003321 DOI: 10.1016/j.scitotenv.2023.163169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| |
Collapse
|
5
|
Liu D, Shi Q, Liu C, Sun Q, Zeng X. Effects of Endocrine-Disrupting Heavy Metals on Human Health. TOXICS 2023; 11:toxics11040322. [PMID: 37112549 PMCID: PMC10147072 DOI: 10.3390/toxics11040322] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 06/12/2023]
Abstract
Heavy metals play an important endocrine-disrupting role in the health consequences. However, the endocrine-disrupting mechanism of heavy metals is unclear. There are long-term and low-level metal/element exposure scenes for the human body in real life. Therefore, animal models exposed to high doses of heavy metals may not provide key information to elucidate the underlying pathogeny of human diseases. This review collects current knowledge regarding the endocrine-disrupting roles of heavy metals such as lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), copper (Cu), zinc (Zn), and manganese (Mn), summarizes the possible molecular mechanisms of these endocrine-disrupting chemicals (EDCs), and briefly evaluates their endocrine toxicity on animals and humans.
Collapse
Affiliation(s)
- Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China;
| | - Qianhan Shi
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Xiang Zeng
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| |
Collapse
|
6
|
Smith RA, Fort J, Legagneux P, Chastel O, Mallory ML, Bustamante P, Danielsen J, Hanssen SA, Einar Jónsson J, Magnúsdóttir E, Moe B, Parenteau C, Parkinson KJL, Parsons GJ, Tertitski G, Love OP. Do foraging ecology and contaminants interactively predict parenting hormone levels in common eider? Gen Comp Endocrinol 2023; 337:114261. [PMID: 36907529 DOI: 10.1016/j.ygcen.2023.114261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Global climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success. However, more research is needed to investigate the relationships between these potential links. Using data collected from 106 incubating female common eiders (Somateria mollissima) at six Arctic and sub-Arctic colonies, we examined whether the relationship between individual foraging ecology (assessed using δ13C, δ15N) and total Hg (THg) exposure predicted PRL levels. We found a significant, complex interaction between δ13C, δ15N and THg on PRL, suggesting that individuals cumulatively foraging at lower trophic levels, in phytoplankton-dominant environments, and with the highest THg levels had the most constant significant relationship PRL levels. Cumulatively, these three interactive variables resulted in lowered PRL. Overall, results demonstrate the potential downstream and cumulative implications of environmentally induced changes in foraging ecology, in combination with THg exposure, on hormones known to influence reproductive success in seabirds. These findings are notable in the context of continuing environmental and food web changes in Arctic systems, which may make seabird populations more susceptible to ongoing stressors.
Collapse
Affiliation(s)
- Reyd A Smith
- University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | - Pierre Legagneux
- Université Laval, Département de Biologie and Centre d'Études Nordiques, Québec City, Québec G1V 0A6, Canada; Centre d'Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Mark L Mallory
- Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | | | - Sveinn A Hanssen
- Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway
| | - Jón Einar Jónsson
- University of Iceland's Research Centre at Snæfellsnes, Hafnargata 3, 340, Stykkishólmur, Iceland
| | - Ellen Magnúsdóttir
- University of Iceland's Research Centre at Snæfellsnes, Hafnargata 3, 340, Stykkishólmur, Iceland
| | - Børge Moe
- Norwegian Institute for Nature Research, PB 5685 Torgarden, N-7485 Trondheim, Norway
| | - Charline Parenteau
- Centre d'Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Glen J Parsons
- Nova Scotia Department of Natural Resources and Renewables, Kentville, Nova Scotia B4N 4E5, Canada
| | - Grigori Tertitski
- Institute of Geography of the Russian Academy of Sciences, Moscow 119017, Russian Federation
| | - Oliver P Love
- University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
7
|
Grunst AS, Grunst ML, Grémillet D, Kato A, Bustamante P, Albert C, Brisson-Curadeau É, Clairbaux M, Cruz-Flores M, Gentès S, Perret S, Ste-Marie E, Wojczulanis-Jakubas K, Fort J. Mercury Contamination Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2054-2063. [PMID: 36652233 DOI: 10.1021/acs.est.2c08893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - David Grémillet
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
- Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France
| | - Céline Albert
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Émile Brisson-Curadeau
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Manon Clairbaux
- School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland
- MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork P43 C573, Ireland
| | - Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Samuel Perret
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
| | - Eric Ste-Marie
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| |
Collapse
|
8
|
Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. SEPARATIONS 2023. [DOI: 10.3390/separations10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Seabirds are widely regarded as an invaluable bioindicator of environmental health. Matrices including eggs and feathers have been used as non-lethal means to assess contaminant burdens. We have developed a new approach for extraction of polycyclic aromatic compounds (PACs) from seabird plasma and serum based on automated microbead-beating homogenization and extraction. Commercially available bovine serum and plasma were purposely fortified with a suite of PACs separately at three dosing levels, placed inside a custom-made stainless-steel tube containing ceramic microbeads, and subjected to an extraction process using a Precellys tissue homogenizer. Tubes were shaken forcefully in three-dimensions, facilitating high mass-transfer of PACs from the matrix into the hexane extraction solvent. The accuracy of the method ranged from 55 to 120% and limits of detection and quantitation ranged from 0.1 to 8 and 0.2 to 27 pg/μL, respectively. The method exhibited good repeatability with both inter- and intra-day repeatability < 30%. The developed method represents an effective and efficient approach to extraction of PACs from important biological matrices.
Collapse
|
9
|
Chai L, Zhou Y, Wang X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1616-1630. [PMID: 35770617 DOI: 10.1039/d1em00550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global warming profoundly affects not only mountainous and polar environments, but also the global and regional cycling of pollutants. Mercury (Hg) and persistent organic pollutants (POPs) have global transport capacity and are regulated by the Minamata Convention and Stockholm Convention, respectively. Since the beginning of this century, understanding of the origin and fate of Hg and POPs on the Tibetan Plateau (TP, also known as the third pole) has been deepening. In this paper, the existing literature is reviewed to comprehensively understand the atmospheric transport, atmospheric deposition, cumulative transformation and accumulation of Hg and POPs on the TP region under the background of global warming. The biogeochemical cycle of both Hg and POPs has the following environmental characteristics: (1) the Indian summer monsoon and westerly winds carry Hg and POPs inland to the TP; (2) the cold trapping effect causes Hg and POPs to be deposited on the TP by dry and wet deposition, making glaciers, permafrost, and snow the key sinks of Hg and POPs; (3) Hg and POPs can subsequently be released due to the melting of glaciers and permafrost; (4) bioaccumulation and biomagnification of Hg and POPs have been examined in the aquatic food chain; (5) ice cores and lake cores preserve the impacts of both regional emissions and glacial melting on Hg and POP migration. This implies that comprehensive models will be needed to evaluate the fate and toxicity of Hg and POPs on larger spatial and longer temporal scales to forecast their projected tendencies under diverse climate scenarios. Future policies and regulations should address the disrupted repercussions of inclusive CC such as weather extremes, floods and storms, and soil sustainable desertification on the fate of Hg and POPs. The present findings advocate the strengthening of the cross-national programs aimed at the elimination of Hg and POPs in polar (Arctic, Antarctic and TP) and certain mountainous (the Himalaya, Rocky Mountains, and Alps) ecosystems for better understanding the impacts of global warming on the accumulation of Hg/POPs in cold and remote areas.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
11
|
Choy ES, Elliott KH, Esparza I, Patterson A, Letcher RJ, Fernie KJ. Potential disruption of thyroid hormones by perfluoroalkyl acids in an Arctic seabird during reproduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119181. [PMID: 35378199 DOI: 10.1016/j.envpol.2022.119181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Arctic marine ecosystems are experiencing rapid change, such as ocean warming and enhanced pollutants. Perfluoroalkyl acids (PFAAs) arriving via long-range transport have been detected in Arctic wildlife, including seabirds which are considered sentinels of marine ecosystem health. There is evidence that PFAA exposure leads to the disruption of thyroid hormones (THs), such as thyroxine (T4) and triiodothyronine (T3), which play important roles in metabolism, incubation, and thermoregulation in seabirds. Here, we investigated relationships between PFAAs and THs [total T4 (TT4), free T4 (FT4), total T3 (TT3) and free T3 (FT3)] in blood plasma collected from 63 thick-billed murres (Uria lomvia) at a colony located in northern Hudson Bay (2016-2018). We then tested if PFAAs and TH levels were related to fitness-associated reproductive traits, such as body mass and hatch dates. PFUdA, PFOS, and PFTrDA were the dominant PFAAs in murre blood, accounting for approximately 77% of ∑PFAA. Females had higher PFAAs than males, possibly due to higher trophic feeding. While FT3 increased with PFOS, PFNA, PFDA, PFDoA, PFTeDA, ∑PFCA7, and ∑PFAA in murres, TT3 decreased with PFOS, PFDoA, and PFTeDA in males, but not females, suggesting thyroid disruption. TT3 increased with body mass, whereas several long-chain PFAAs were negatively correlated with body mass. Negative relationships between PFNA, PFDoA, PFTrDA, PFTeDA, and ∑PFAA with hatch dates may be the result of a disruption in incubation behaviour, resulting in earlier hatch dates. Consequently, TT3 concentrations were highest in males and females in 2018, a year in which PFAAs were lowest and hatch dates were delayed relative to 2017. As an Arctic seabird experiencing several indirect effects of climate change, the interaction of PFAAs on thyroid activity may cause additional stress to murres.
Collapse
Affiliation(s)
- Emily S Choy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Ilse Esparza
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Kim J Fernie
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|