1
|
Lei X, Zhang Z, Zhou H, Chen L, Deng X, Liu W, Zhuang X, Wang M, Gu Y. Close atomic surface on aluminum alloy achieved by a near-neutral novel green chemical mechanical polishing method with high material removal rate. NANOSCALE 2025; 17:12684-12694. [PMID: 40279095 DOI: 10.1039/d5nr00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Scratches, embedding of abrasives, and corrosion pits easily occur on the surface of aluminum (Al) alloy during traditional mechanical and chemical mechanical polishing (CMP). To achieve a close atomic surface on Al alloy, the material removal rate (MRR) is generally extremely low. To address these challenges, a near-neutral, novel green CMP slurry with a pH value of 6 was developed for Al alloy, consisting of silica, praseodymia, hydrogen peroxide, triethanolamine, and niacin. After CMP, a close atomic surface was achieved, with a surface roughness (Sa) of 0.231 nm in a scanning area of 50 × 50 μm2, and the MRR was 12.56 μm h-1. To the best of our knowledge, this MRR is the highest reported for such a close atomic surface on Al alloys. Transmission electron microscopy confirmed that the thickness of the damage layer was 6.9 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy demonstrated that the Al alloy was oxidized by hydrogen peroxide, forming alumina and aluminum hydroxide, which dissolved into Al3+ ions and were chelated by niacin and triethanolamine. Consequently, chelating formulas were proposed. Our developed near-neutral green CMP provides a new approach to achieving a close atomic surface for soft and plastic Al alloys with a high MRR.
Collapse
Affiliation(s)
- Xiaofei Lei
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
| | - Zhenyu Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
- Institute of Atomic Level Manufacturing, Soochow University, Suzhou 215222, China
| | - Hongxiu Zhou
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Leilei Chen
- a Yangtze Power Co., Ltd, Chin, Yichang 443002, China.
| | - Xingqiao Deng
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Weiting Liu
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Shaoxing 312500, China
| | - Xuye Zhuang
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Mengyi Wang
- Zhejiang Chengben Bearing Roller Co., Ltd., Shaoxing 312500, China
| | - Yang Gu
- Department of Security, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Saenthornsin K, Hunt AJ, Limtragool OA, Noppawan P. Mesoporous SBA-16/SO 3H from waste sugarcane bagasse ash for efficient Biginelli reactions. Sci Rep 2025; 15:15738. [PMID: 40325160 PMCID: PMC12052985 DOI: 10.1038/s41598-025-99670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Sustainable, sulfonated mesoporous SBA-16 catalysts were synthesized from sugarcane bagasse ash (SCBA), an abundant agro-industrial waste from bio-energy production. SBA-16 modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation to incorporate sulfonic acid groups, significantly enhanced the textural properties, achieving a surface area of 207 m2/g, while trace impurities from SCBA may enhance Lewis acidity. Such features improved catalytic efficiency and sustainability. A green assessment of catalyst synthesis from SCBA using the DOZN™ Green Chemistry Evaluator revealed that the SCBA-based methods are more sustainable than conventional TEOS-based methods. This study represents the first application of sulfonated SBA-16 for Biginelli reactions, yielding 99% for the reaction between benzaldehyde, methyl acetoacetate, and urea (at 105 °C, 7 h, 10 wt% catalyst, in ethanol). Catalysts demonstrated exceptional durability, with negligible loss of activity (~ 98%) over five consecutive cycles, highlighting its suitability for this application. SBA-16 catalysts exhibited broad substrate compatibility, particularly with electron-withdrawing groups across various aldehydes and β-diketones. The Biginelli reactions aligned with green chemistry principles, achieving favorable values for process mass intensity (PMI: 11.86-33.32 g/g), E-factor (10.86-32.32 g/g), solvent intensity (SI: 9.69-14.50 g/g), and water intensity (WI: 3.28-9.36 g/g). The Green Motion sustainability assessment tool score was 75/100. Sulfonated SBA-16 catalysts offer a sustainable alternative to commercial silica, with superior performance, reduced catalyst loading, and minimized environmental impact, underscoring its potential for use in industrial applications.
Collapse
Affiliation(s)
- Kanyarat Saenthornsin
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Oue-Artorn Limtragool
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Pakin Noppawan
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
3
|
Firpo G, Vaschetti VM, González Mercado GV, Guerrero PA, Piccioni MN, Macaño HR, Dalmasso PR. A greener one-pot synthesis of nanostructured SiO 2 for the efficient emerging contaminant removal from simulated textile wastewater. ENVIRONMENTAL RESEARCH 2025; 278:121655. [PMID: 40258461 DOI: 10.1016/j.envres.2025.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Emerging contaminants are a group of chemicals that have the potential to enter the environment and cause potentially adverse effects on the ecosystems and their components. Currently, the interest in achieving the removal of emerging contaminants from water bodies and wastewater has grown considerably, which is reflected in several publications on the synthesis of nanomaterials capable of adsorbing them. Among emerging pollutants, methylene blue (MB) is a widely used model dye for the study of adsorption processes on nanomaterials. In this work, we report a facile and greener one-pot synthesis of SiO2 nanoparticles (SiO2NPs) than the classical Stöber method, involving a cheaper Si source than TEOS, only water as solvent, and shorter reaction times under neutral conditions at room temperature, i.e. a new sol-gel strategy with favorable greenness attributes. A multi-technical characterization of SiO2NPs (XRD, FTIR, UV-vis DR, TEM, SEM, EDX, Z-potential, and N2 adsorption-desorption isotherms at 77 K) confirmed the formation of spherical NPs, with amorphous and polydisperse nature, negatively charged surface, and mesoporous structure. Several batch adsorption experiments of MB were performed by varying pH, contact time, model dye concentration, and SiO2NPs dosage, and the kinetic and thermodynamic behavior of the removal reaction was elucidated. It was determined that the adsorption process followed a pseudo-second-order kinetic model and a Langmuir isotherm model. SiO2NPs showed high efficiency towards MB removal after 30 min of contact time (maximum adsorption capacity = 165.6 mg g-1) and high reusability for up to seven cycles without appreciable loss of adsorption efficiency. In addition, this work reports the first successful application of SiO2NPs as a cationic dye nanoadsorbent under simulated conditions of real textile wastewater (high pH, very high concentration of MB and dissolved salts, and high COD), proving that NPs are suitable for conditioning water resources contaminated with industrial dyes.
Collapse
Affiliation(s)
- Guadalupe Firpo
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Virginia M Vaschetti
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.
| | - Griselda V González Mercado
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Pablo A Guerrero
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Martín N Piccioni
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Héctor R Macaño
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Pablo R Dalmasso
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Kumar A, Rishabh, Singh N, Gautam YK, Priya, Malik N. Valorizing Banana Peel Waste into Mesoporous Biogenic Nanosilica and Novel Nano-biofertilizer Formulation Thereof via Nano-biopriming Inspired Tripartite Interaction Studies. ACS OMEGA 2025; 10:5537-5553. [PMID: 39989758 PMCID: PMC11840586 DOI: 10.1021/acsomega.4c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025]
Abstract
The present study attempts to valorize banana peel waste (BPW) into high-value precipitated nanosilica-based agri-input. XRD analysis revealed smaller-sized biogenic nanosilica (BNS) with an increase (without heating) or decrease (with heating) in the duration of acid pretreatment during the pre-calcination step. The highest BNS yield was recorded in post-calcinated BPW ash involving simultaneous acid and heat treatment (1 h) (SA-3). FTIR analysis displayed an intense peak at 1078.3 cm-1, indicating "Si-O-Si bond" asymmetric vibrations. FESEM-EDX micrographs revealed high-purity BNS of predominantly spheroid morphology. The BJH plot exhibited mesoporous nanosilica with a median pore diameter of ∼33.82 nm. The bipartite interaction of 0.001 g mL-1 BNS signifies growth-promoting effects on Bacillus subtilis (BS) and Raphanus sativus (RS). The nano-primed RS seeds showed higher germination indices over non-primed seeds at 0.001 g of BNS mL-1. Further, the nano-biopriming studies showed the synergistic response of BNS and BS interaction on RS seeds in terms of higher seedling growth, biomass content, and stress tolerance index. The findings open new avenues for developing nano-biofertilizer formulations that serve multifaceted functions such as waste management and biomass valorization into value-added products and fulfill sustainable development goals.
Collapse
Affiliation(s)
- Ajay Kumar
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
- Department
of Biotechnology, Mewar University, Chittorgarh, Rajasthan 312901, India
| | - Rishabh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Neetu Singh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Yogendra K. Gautam
- Smart
Materials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University, Meerut, Uttar Pradesh 250004, India
| | - Priya
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Namrata Malik
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| |
Collapse
|
5
|
de Jesus RA, Costa IM, Eguiluz KIB, Salazar-Banda GR. The role of biosilica and its potential for sensing technologies: A review. J Biotechnol 2025; 398:158-174. [PMID: 39730022 DOI: 10.1016/j.jbiotec.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21st century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications. Additionally, the biomineralization process-biosilicification-in living organisms like diatoms offers an eco-friendly pathway for silica production. Despite the potential applications of biosilica, research on its use in sensor technology remains limited. This review aims to address this gap by covering the primary methodologies for extracting silica from biomass, discussing key techniques for its characterization, and highlighting its potential for functionalization in diverse applications. Special emphasis is given to the utility of diatom-derived biosilicas in developing sensors for detecting gaseous molecules and biomolecules.
Collapse
Affiliation(s)
- Roberta Anjos de Jesus
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.
| | - Ivani Meneses Costa
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| |
Collapse
|
6
|
Arefieva O, Vasilyeva M, Lukiyanchuk I, Korochentsev V, Opra D, Tkachev V, Shlyk D. Development of photoactive ZnS-SiO 2 composites on biogenic silica matrix for organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61612-61628. [PMID: 39433624 DOI: 10.1007/s11356-024-35357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Sulfide ZnS-SiO2 composite photocatalysts with biogenic silica matrix were prepared by sol-gel method based on wet gel and xerogel. FT-IR, SEM, XRD, EDXRF, UV-Vis, and XPS methods were systematically used to characterize the obtained materials. The use of support allowed to obtain stable porous (SBET = 79-105 m2 g-1; Vpore = 0.25-0.17 cm3·g-1) ZnS-SiO2 photocatalysts in aqueous solutions. Zn2+ content in methyl orange solution after its degradation was 0.4 MPC. ZnS-SiO2 composites had 3.68-3.70 eV band gap. The obtained materials were photoactive under different irradiation conditions (sunlight, UV-light, Xenon light, visible light) due to effective separation of charge carriers (e- and h+). Methyl orange degradation degree under UV light excitation was 35-88%, under sunlight - 11-30%. ZnS-SiO2 composite synthesized using silica xerogel showed a greater photoactivity due to a presence of cone-shaped or cylindrical pores with one open end in its structure and a higher content of ZnS photoactive component. A comparative study of photocatalytic performance of methyl orange degradation by ZnS-SiO2 under UV irradiation was investigated using radical scavengers. •O2- was main active species during MO degradation under UV irradiation, and electrons played additional role during the photocatalytic process.
Collapse
Affiliation(s)
- Olga Arefieva
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation.
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Marina Vasilyeva
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Irina Lukiyanchuk
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vladimir Korochentsev
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Denis Opra
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vladimir Tkachev
- Faculty of Material Science, MSU-BIT University, Shenzhen, China
| | - Daria Shlyk
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
7
|
Mostashari A, Sanei E, Ganjidoust H. The effect of silica-doped graphene oxide (GO-SiO 2) on persulfate activation for the removal of Acid Blue 25. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56565-56577. [PMID: 39276286 DOI: 10.1007/s11356-024-34828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.
Collapse
Affiliation(s)
- Amir Mostashari
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Emad Sanei
- School of Engineering & Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Elizondo-Villarreal N, Gandara-Martínez E, García-Méndez M, Gracia-Pinilla M, Guzmán-Hernández AM, Castaño VM, Gómez-Rodríguez C. Synthesis and Characterization of SiO2 Nanoparticles for Application as Nanoadsorbent to Clean Wastewater. COATINGS 2024; 14:919. [DOI: 10.3390/coatings14070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
By way of the sol–gel chemical synthesis method, it is possible to synthesize SiO2 nanoparticles with a defined specific particle size, a surface area, and a defined crystal structure that can be effectively used as a nanoadsorbent to remove various organic dyes. SiO2 nanoparticles were synthesized by the sol–gel method using sodium silicate (Na2SiO3) by a green method without using a tetraethyl orthosilicate (TEOS) precursor, which is very expensive and highly toxic. This sol–gel process involves the formation of a colloidal suspension (sol) and solid gelation to form a network in a continuous liquid phase (gel). In addition, it requires controlled atmospheres. XRD indicates the presence of an amorphous phase with a diffraction angle of 2θ = 23°, associated with SiO2. UV-Vis spectroscopy reveals an absorbance value in the region of 200 nm to 300 nm, associated with SiO2 nanoparticles. The application as a nanoadsorbent to remove dyes was measured, and it was found that the nanoparticles with the best performance were those that were synthesized with pH 7, showing a 97% removal with 20 mg of SiO2 nanoparticles in 60 min. Therefore, SiO2 nanoparticles can be used as a nanoadsorbent, using a low-cost and scalable method for application to remove methylene blue in an aqueous medium.
Collapse
Affiliation(s)
- Nora Elizondo-Villarreal
- Physical Mathematical Scientific Research Center (CICFIM), Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Eleazar Gandara-Martínez
- Physical Mathematical Scientific Research Center (CICFIM), Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Manuel García-Méndez
- Physical Mathematical Scientific Research Center (CICFIM), Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Miguel Gracia-Pinilla
- Physical Mathematical Scientific Research Center (CICFIM), Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Ana María Guzmán-Hernández
- Materials Engineering Department, Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Víctor M. Castaño
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Cristian Gómez-Rodríguez
- Faculty of Engineering, University of Veracruz (Coatzacoalcos), Av. Universidad km 7.5 Col. Santa Isabel, Coatzacoalcos 96535, Veracruz, Mexico
| |
Collapse
|
9
|
Wang CX, Wang N, Li XS, Zhang XF. Wettability behavior of DTMS modified SiO 2: Experimental and molecular dynamics study. J Mol Graph Model 2024; 130:108786. [PMID: 38710130 DOI: 10.1016/j.jmgm.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
In this research, the wetting behavior of SiO2 modified with dodecyltrimethoxysilane (DTMS) was explored using both experimental and molecular dynamics (MD) simulation approaches. The experimental results reveal that DTMS can chemically bond to the SiO2 surface, and the contact angle (CA) reaches the maximum value of 157.7° when the mass of DTMS is twice that of SiO2. The different wetting behaviors caused by DTMS grafting were analyzed by CA fitting, ionic pairs, concentration distribution, molecule orientation, and interfacial interaction energy. The results demonstrate that a 25 % DTMS grafting rate resulted in a maximum CA of 158.2°, which is ascribed to the disruption of interfacial hydrogen bonding and changes in the hydration structure caused by DTMS grafting. Moreover, the above hydrophobic SiO2 model shows a slight decrease in CA as the water temperature increases, which is consistent with the experimental findings. In contrast, an opposite change was observed for the pristine SiO2 model. Although the higher water temperature enhances the diffusion capacity of water molecules in both models, the difference in interfacial interactions is responsible for the change in CA. We hope this finding will contribute to a deeper understanding of the wetting adjustment of SiO2.
Collapse
Affiliation(s)
- Chen-Xiang Wang
- Transportation Institute, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment, Inner Mongolia University, Hohhot, 010021, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Ning Wang
- Transportation Institute, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment, Inner Mongolia University, Hohhot, 010021, China
| | - Xu-Sheng Li
- Transportation Institute, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment, Inner Mongolia University, Hohhot, 010021, China
| | - Xue-Fen Zhang
- Transportation Institute, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
10
|
Tien Nguyen G, Van Phuoc B, Thi Nhung T, Thi Duy Hanh L, Tuan HNA, Nhiem LT. Polyethylene Glycol/Rice Husk Ash Shape-Stabilized Phase Change Materials: Recovery of Thermal Energy Storage Efficacy via Engineering Porous Support Structure. ACS OMEGA 2024; 9:17104-17113. [PMID: 38645338 PMCID: PMC11025094 DOI: 10.1021/acsomega.3c09417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
This study focuses on modifying the porous structure of acid-treated rice husk ash (ARHA) to enhance the thermal energy storage capacity of poly(ethylene glycol) (PEG) confined within shape-stabilized phase change materials. The modification process involved a cost-effective sol-gel method in which ARHA was initially dissolved in an alkaline solution and subsequently precipitated in an acidic environment. ARHA, being a mesoporous SiO2-based material with a high surface area but low pore volume, had limited capacity to adsorb PEG (50%). Furthermore, it hindered the crystallinity of impregnated PEG by fostering abundant interfacial hydrogen bonds (H-bonds), resulting in a diminished thermal energy storage efficiency. Following modification of the porous structure, the resulting material, termed mARHA, featured a three-dimensional macroporous network, providing ample space to stabilize a significant amount of PEG (70%) without any leakage. Notably, mARHA, with a reduced surface area, effectively mitigated interfacial H-bonds, consequently enhancing the crystallinity of impregnated PEG. This modification led to the recovery of thermal energy storage efficacy from 0 J/g for PEG/ARHA to 109.3 J/g for PEG/mARHA. Additionally, the PEG/mARHA composite displayed improved thermal conductivity, reliable thermal performance, and effective thermal management when used as construction materials. This work introduces a straightforward and economical strategy for revitalizing thermal energy storage in PEG composites confined within RHA-based porous supports, offering promising prospects for large-scale applications in building energy conservation.
Collapse
Affiliation(s)
- Giang Tien Nguyen
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Bui Van Phuoc
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Nhung
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Le Thi Duy Hanh
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Ly Tan Nhiem
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
11
|
Perinbarajan GK, Sinclair BJ, Mossa AT, Ohja N, Jeelani PG. Silica/ Annona muricata nano-hybrid: Synthesis and anticancer activity against breast cancer. Heliyon 2024; 10:e25048. [PMID: 38322972 PMCID: PMC10844132 DOI: 10.1016/j.heliyon.2024.e25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Biogenically derived silica nanoparticles may serve as a well-defined target vehicle for drug delivery and have a wide range of applications in biomedicine. Silica nanoparticles are an excellent candidate as drug carriers due to their mesoporous structure, high drug loading capacity, low toxicity, environmental friendliness and low economic synthesis procedures. In this study, nano structured silica was extracted from sugarcane bagasse through an alkali leaching extraction and conjugated with A. muricata extract overcoming its poor solubility and improving its bioavailability within the host system. The Silica Nanoparticles (SNP) and Annona muricata conjugated Silica Nanoparticles (AM/SNP) were characterized using SEM, FTIR, TGA, EDAX, XRD and zeta potential. The AM/SNP was subjected to kinetic release studies and exhibited a sustained release of 64 % over the course of 12 h in contrast to extract, indicating the slow release of the drug under synthetic conditions. A. muricata pose a high affinity against tumor cells as an anti-cancer agent, and the potential of binding was testified using in-silico virtual screening against breast cancer receptors with lead acetogenins with Annomuricin (-7.4 kcal/mol) and Gigantecin (-7.4 kcal/mol) exhibiting a high binding affinity against ER and HER2+ receptors respectively. The AM/SNP conjugate exhibited high cytotoxicity against the MCF-7 breast cancer cell line with an IC50 value of 33.43 μg, indicating high potency of the conjugate at low concentrations, facilitating low systemic toxicity on administration.
Collapse
Affiliation(s)
- Gopi Krishna Perinbarajan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St ‘Ad Doqi, Dokki, Cairo Governorate, 12622, Egypt
| | - Nupur Ohja
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Peerzada Gh Jeelani
- Post Graduate and Research Department of Biotechnology & Microbiology National College (Autonomous), Tiruchirapalli, Tamilnadu, 620001, India
| |
Collapse
|
12
|
Ma Y, Yuan S, Ma Z, Hou Y, Niu S, Lekai L, Liu G, Cao F. Comparative Study of Different Pretreatment and Combustion Methods on the Grindability of Rice-Husk-Based SiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2951. [PMID: 37999305 PMCID: PMC10674930 DOI: 10.3390/nano13222951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The rice husk (RH) combustion pretreatment method plays a crucial role in the extraction of nanoscale SiO2 from RH as a silicon source. This study examined the effects of diverse pretreatment methods and combustion temperatures on the particle size distribution of nanoscale high-purity amorphous SiO2 extracted from rice husk ash (RHA) post RH combustion. The experiment was structured using the Taguchi method, employing an L9 (21 × 33) orthogonal mixing table. The median diameter (D50) served as the output response parameter, with the drying method (A), combustion temperature (B), torrefaction temperature (C), and pretreatment method (D) as the input parameters. The results showed the torrefaction temperature (C) as being the predominant factor affecting the D50, which decreased with an increasing torrefaction temperature (C). The optimal parameter combination was identified as A2B2C3D2. The verification test revealed that roasting could improve the abrasiveness of Rh-based silica and reduce the average particle size. Torrefaction at medium temperatures might narrow the size distribution range of RHA-SiO2. We discovered that the purity of silica increased with an increasing roasting temperature by evaluating the concentration of silica in the sample. The production of RHA with silica concentrations up to 92.3% was investigated. X-ray diffraction analysis affirmed that SiO2's crystal structure remained unaltered across different treatment methods, consistently presenting as amorphous. These results provide a reference for extracting high-value products through RH combustion.
Collapse
Affiliation(s)
- Yunhai Ma
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China;
| | - Shengwang Yuan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Zichao Ma
- Department of Mechanical Engineering, The Pennsylvania State University, State College, PA 16802-4400, USA;
| | - Yihao Hou
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Li Lekai
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Guoqin Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Feipeng Cao
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China;
| |
Collapse
|
13
|
Saw G, Nagdev P, Jeer M, Murali-Baskaran RK. Silica nanoparticles mediated insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105524. [PMID: 37532341 DOI: 10.1016/j.pestbp.2023.105524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Silicon is known for mitigating the biotic and abiotic stresses of crop plants. Many studies have proved beneficial effects of bulk silicon against biotic stresses in general and insect pests in particular. However, the beneficial effects of silica nanoparticles in crop plants against insect pests were barely studied and reported. By virtue of its physical and chemical nature, silica nanoparticles offer various advantages over bulk silicon sources for its applications in the field of insect pest management. Silica nanoparticles can act as insecticide for killing target insect pest or it can act as a carrier of insecticide molecule for its sustained release. Silica nanoparticles can improve plant resistance to insect pests and also aid in attracting natural enemies via enhanced volatile compounds emission. Silica nanoparticles are safe to use and eco-friendly in nature in comparison to synthetic pesticides. This review provides insights into the applications of silica nanoparticles in insect pest management along with discussion on its synthesis, side effects and future course of action.
Collapse
Affiliation(s)
- Gouranga Saw
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Priyanka Nagdev
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Mallikarjuna Jeer
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India.
| | - R K Murali-Baskaran
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| |
Collapse
|
14
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
15
|
Sharma K, Tewatia P, Kaur M, Pathania D, Banat F, Rattan G, Singhal S, Kaushik A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161137. [PMID: 36566870 DOI: 10.1016/j.scitotenv.2022.161137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
An easily recyclable biocatalyst (Lac@CDI-MCNFs) was synthesized by immobilizing laccase on rice straw-derived carbonyldiimidazole mediated magnetized cellulose nanofibers (MCNFs). Lac@CDI-MCNFs were utilized for bioremediation of cefixime antibiotic (CT), carbofuran pesticide (CF) and safranin O dye (SO) via oxidation-reduction reactions in wastewater. MCNFs provided enhanced pH, temperature and storage stability to laccase and allowed reusability for up to 25 cycles with mere 20 % decline in efficacy. The Lac@CDI-MCNFs effectively degraded 98.2 % CT and 96.8 % CF into benign metabolites within 20 h and completely degraded SO in just 7 h. Response surface modelling (RSM) was employed based on the Box Behnken Design to evaluate the effect of various parameters i.e. pH, catalyst dosage and the pollutants concentration which was further validated with experimental studies. The degradation products were identified using LCMS, which allowed the degradation pathway of the pollutants to be determined. The degradation of all pollutants followed first- order kinetics with rate constants of 0.1775, 0.0832 and 0.958 h-1 and half-life of 3.9, 5.0 and 0.723 h for CT, CF and SO, respectively. Lac@CDI-MCNFs was demonstrated to be an effective catalyst for the degradation of multifarious pollutants.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Fawzi Banat
- Dept of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
16
|
Shukla K, Gupta R, Gupta RK, Prakash J. Highly efficient visible light active doped metal oxide photocatalyst and SERS substrate for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34054-34068. [PMID: 36508093 DOI: 10.1007/s11356-022-24639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The development of efficient nanomaterials with promising optical and surface properties for multifunctional applications has always been a subject of novel research. In this work, the study of highly efficient TiO2 nanorods (NRs) and Ta-doped TiO2 NRs (Ta-TiO2 NRs) synthesized by alkaline hydrothermal treatment followed by soaking treatment has been reported. NRs were investigated for their potential applications as recyclable/reproducible visible light active photocatalysts and surface-enhanced Raman scattering (SERS) substrates in wastewater treatment. NRs were characterized by various microscopic (scanning and transmission electron microscopy), spectroscopic (X-ray diffraction, X-ray photoelectron, UV-visible, photoluminescence, and Raman spectroscopy), and surface (Brunauer-Emmett-Teller) techniques. The NRs exhibited promising optical properties with a band gap of 2.95 eV (TiO2 NRs) and 2.58 eV (Ta-TiO2 NRs) showing excellent photo-degradation activities for methylene blue (MB) dye molecules under natural sunlight. Particularly, Ta-TiO2 NRs showed enhanced response as visible light active photocatalysts in normal sunlight and also as SERS substrate attributed to the additional defects introduced by Ta doping. It could be explained by the combined effect of doping-induced enhanced visible light absorption and charge transfer (CT) properties of Ta-TiO2 NRs. Furthermore, Ta-TiO2 NRs were investigated for their long-term stability, reproducibility of the data, and recyclability in view of their potential applications in water treatment.
Collapse
Affiliation(s)
- Komal Shukla
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Rajeev Gupta
- Department of Physics, School of Engineering Studies, University of Petroleum & Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, India.
| |
Collapse
|
17
|
Mori N, Kawasaki H, Nishida E, Kanemoto Y, Miyaji H, Umeda J, Kondoh K. Rose bengal-decorated rice husk-derived silica nanoparticles enhanced singlet oxygen generation for antimicrobial photodynamic inactivation. JOURNAL OF MATERIALS SCIENCE 2023; 58:2801-2813. [PMID: 36713647 PMCID: PMC9875779 DOI: 10.1007/s10853-023-08194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Rice husks are well known for their high silica content, and the RH-derived silica nanoparticles (RH NPs) are amorphous and biocompatible; therefore, they are suitable raw materials for biomedical applications. In this study, rose bengal-impregnated rice husk nanoparticles (RB-RH NPs) were prepared for their potential photosensitization and 1O2 generation as antimicrobial photodynamic inactivation. RB is a halogen-xanthene type's photosensitizer showing high singlet oxygen efficiency, and the superior photophysical properties are desirable for RB in the antimicrobial photodynamic inactivation of bacteria. To enhance the binding of anionic RB to RH NPs, we conducted cationization for the RH NPs using polyethyleneimine (PEI). The control of the RB adsorption state on cationic PEI-modified RH NPs was essential for RB RH-NP photosensitizers to obtain efficient 1O2 generation. Minimizing RB aggregation allowed highly efficient 1O2 production from RB-RH NPs at the molar ratio of RB with the PEI, XRB/PEI. = 0.1. The RB-RH NPs have significant antimicrobial activity against Streptococcus mutans compared to free RB after white light irradiation. The RB-RH NP-based antimicrobial photodynamic inactivation can be employed effectively in treating Streptococcus mutans for dental applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-023-08194-z.
Collapse
Affiliation(s)
- Nanase Mori
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Junko Umeda
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| | - Katsuyoshi Kondoh
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| |
Collapse
|
18
|
Nayl AA, Abd-Elhamid AI, Arafa WAA, Ahmed IM, AbdEl-Rahman AME, Soliman HMA, Abdelgawad MA, Ali HM, Aly AA, Bräse S. A Novel P@SiO 2 Nano-Composite as Effective Adsorbent to Remove Methylene Blue Dye from Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:514. [PMID: 36676250 PMCID: PMC9864475 DOI: 10.3390/ma16020514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO2 nanocomposite. Using kinetic studies, methylene blue (MB) dye was selected to study the removal behavior of the P@SiO2 nanocomposite. The obtained composite was characterized using several advanced techniques. The experimental results showed rapid kinetic adsorption where the equilibrium was reached within 100 s, and the pseudo-second-order fitted well with experimental data. Moreover, according to Langmuir, one gram of P@SiO2 nanocomposite can remove 76.92 mg of the methylene blue dye. The thermodynamic studies showed that the adsorption process was spontaneous, exothermic, and ordered at the solid/solution interface. Finally, the results indicated that the presence of NaCl did not impact the adsorption behavior of MB dye. Due to the significant efficiency and promising properties of the prepared P@SiO2 nanocomposite, it could be used as an effective adsorbent material to remove various cationic forms of pollutants from aqueous solutions in future works.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Aref M. E. AbdEl-Rahman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
20
|
Sharma P, Prakash J, Palai T, Kaushal R. Surface functionalization of bamboo leave mediated synthesized SiO 2 nanoparticles: Study of adsorption mechanism, isotherms and enhanced adsorption capacity for removal of Cr (VI) from aqueous solution. ENVIRONMENTAL RESEARCH 2022; 214:113761. [PMID: 35793724 DOI: 10.1016/j.envres.2022.113761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Green synthesis of nanoparticles (NPs) provides economic and environmental benefits as an alternative to chemical or physical methods. Furthermore, the surface properties of such NPs can be modulated by means of the functionalization with different groups making them suitable for various advanced functional applications including water pollutants removal using adsorption technique. In the present work, an eco-friendly synthesis route for nano-adsorbent SiO2 NPs and subsequent surface modifications for enhanced adsorption capacity in removal of Cr(VI) ions from aqueous solution are reported. The green synthesis of SiO2 NPs was carried out using simple bamboo leaves followed by surface modification with amine (A-SiO2) and carboxylic (C-SiO2) functional groups with aim to study the effect of functionalization on adsorption capacity. These nano-adsorbents were characterized by FTIR, SEM, XPS, BET, and zeta potential. and adsorption of Cr(VI) was studied at varying parameters i.e. NPs mass, contact time, and solution pH. The investigation shows interesting results revealing the importance of interactions between the surface functional groups on SiO2 NPs and Cr(VI) species as well as experimental conditions for the choice of surface modifier to achieve a maximum adsorption capacity. The adsorption mechanism has been studied using Langmuir, Freundlich and Temkin adsorption isotherms. The maximum adsorption capacity has been achieved in the case of A-SiO2 NPs which was found to 174 mg/g and much higher than that of SiO2 and C-SiO2 NPs attributed to the selective adsorption and pH conditions. Additionally, A-SiO2 NPs exhibit excellent recyclability indicating their suitability for promising and long term potential applications. This study provides a novel, simple and cost-effective synthesis/surface engineering technology for producing high performance recyclable nano-adsorbents for adsorptive removal of Cr(VI).
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India.
| | - Tapas Palai
- Department of Chemical Engineering, National Institute of Technology Hamirpur, H.P.-177005, India
| | - Raj Kaushal
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India.
| |
Collapse
|
21
|
Chakraborty A, Ruzimuradov O, Gupta RK, Cho J, Prakash J. TiO 2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113550. [PMID: 35654159 DOI: 10.1016/j.envres.2022.113550] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) has been considered as one of the most promising photocatalysts nanomaterials and is being used in a variety of fields of energy and environment under sunlight irradiation via photocatalysis. Highly efficient photocatalytic materials require the design of the proper structure with excellent morphology, interfacial structures, optical and surface properties, etc. Which are the key points to realize effective light-harvesting for photocatalytic applications. Hierarchical TiO2 based nanoflower structures (i.e., 3D nanostructures) possess such characteristics and have attracted much attention in recent years. The uniqueness of TiO2 nanoflowers (NFs) with a coarse texture and arranged structures demonstrates higher photocatalytic activity. This review deals with the hydrothermal synthesis of 3D TiO2 NFs and effect of shape/size as well as various key synthesis parameters to improve their optoelectronic and photocatalytic properties. Furthermore, to improve their photocatalytic properties, various strategies such as doping engineering and heterojunction/nanocomposite formation with other functional nanomaterials have been discussed followed by their potential applications in photocatalytic degradation of various emerging pollutants discharged into the wastewater from various sources. Importance of such 3D nanoarchitecutres and future research in other fields of current interest in environments are discussed.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Olim Ruzimuradov
- Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Malaya Kolsevaya 17, Tashkent, 100095, Uzbekistan
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Junghyun Cho
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India.
| |
Collapse
|