1
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
2
|
Flores-Lasluisa JX, Cazorla-Amorós D, Morallón E. Deepening the Understanding of Carbon Active Sites for ORR Using Electrochemical and Spectrochemical Techniques. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1381. [PMID: 39269043 PMCID: PMC11397285 DOI: 10.3390/nano14171381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Defect-containing carbon nanotube materials were prepared by subjecting two commercial multiwalled carbon nanotubes (MWCNTs) of different purities to purification (HCl) and oxidative conditions (HNO3) and further heat treatment to remove surface oxygen groups. The as-prepared carbon materials were physicochemically characterized to observe changes in their properties after the different treatments. TEM microscopy shows morphological modifications in the MWCNTs after the treatments such as broken walls and carbon defects including topological defects. This leads to both higher surface areas and active sites. The carbon defects were analysed by Raman spectroscopy, but the active surface area (ASA) and the electrochemical active surface area (EASA) values showed that not all the defects are equally active for oxygen reduction reactions (ORRs). This suggests the importance of calculating either ASA or EASA in carbon materials with different structures to determine the activity of these defects. The as-prepared defect-containing multiwalled carbon nanotubes exhibit good catalytic performance due to the formation of carbon defects active for ORR such as edge sites and topological defects. Moreover, they exhibit good stability and methanol tolerances. The as-prepared MWCNTs sample with the highest purity is a promising defective carbon material for ORR because its activity is only related to high concentrations of active carbon defects including edge sites and topological defects.
Collapse
Affiliation(s)
- Jhony Xavier Flores-Lasluisa
- Department Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Department Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Emilia Morallón
- Department Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
3
|
Flores-Lasluisa JX, Carré B, Caucheteux J, Compère P, Léonard AF, Job N. Development of In Situ Methods for Preparing La-Mn-Co-Based Compounds over Carbon Xerogel for Oxygen Reduction Reaction in an Alkaline Medium. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1362. [PMID: 39195400 DOI: 10.3390/nano14161362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Metal oxides containing La, Mn, and Co cations can catalyze oxygen reduction reactions (ORRs) in electrochemical processes. However, these materials require carbon support and optimal interactions between both compounds to be active. In this work, two approaches to prepare composites of La-Mn-Co-based compounds over carbon xerogel were developed. Using sol-gel methods, either the metal-based material was deposited on the existing carbon xerogel or vice versa. The metal oxide selected was the LaMn0.7Co0.3O3 perovskite, which has good catalytic behavior and selectivity towards direct ORRs. All the as-prepared composites were tested for ORRs in alkaline liquid electrolytes and characterized by diverse physicochemical techniques such as XRD, XPS, SEM, or N2 adsorption. Although the perovskite structure either decomposed or failed to form using those in situ methods, the materials exhibited great catalytic activity, which can be ascribed to the strengthening of the interactions between oxides and the carbon support via C-O-M covalent bonds and to the formation of new active sites such as the MnO/Co heterointerfaces. Moreover, Co-Nx-C species are formed during the synthesis of the metal compounds over the carbon xerogel. These species possess a strong catalytic activity towards ORR. Therefore, the composites formed by synthesizing metal compounds over the carbon xerogel exhibit the best performance in the ORR, which can be ascribed to the presence of the MnO/Co heterointerfaces and Co-Nx-C species and the strong interactions between both compounds. Moreover, the small nanoparticle size leads to a higher number of active sites available for the reaction.
Collapse
Affiliation(s)
- Jhony Xavier Flores-Lasluisa
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Bryan Carré
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Joachim Caucheteux
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Philippe Compère
- Center for Applied Research and Education in Microscopy (CAREM), Chemistry Institute, University of Liège, B6c, Allée du Six Août 11, 4000 Liège, Belgium
- Interfaculty Research Center on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6c, Allée du Six Août 11, 4000 Liège, Belgium
| | - Alexandre F Léonard
- Department of Chemical Engineering-CARPOR, University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Nathalie Job
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| |
Collapse
|
4
|
Liu Y, Xiao L, Tan H, Zhang J, Dong C, Liu H, Du X, Yang J. Amorphous/Crystalline Phases Mixed Nanosheets Array Rich in Oxygen Vacancies Boost Oxygen Evolution Reaction of Spinel Oxides in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401504. [PMID: 38564787 DOI: 10.1002/smll.202401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
As promising oxygen evolution reaction (OER) catalysts, spinel-type oxides face the bottleneck of weak adsorption for oxygen-containing intermediates, so it is challenging to make a further breakthrough in remarkably lowering the OER overpotential. In this study, a novel strategy is proposed to substantially enhance the OER activity of spinel oxides based on amorphous/crystalline phases mixed spinel FeNi2O4 nanosheets array, enriched with oxygen vacancies, in situ grown on a nickel foam (NF). This unique architecture is achieved through a one-step millisecond laser direct writing method. The presence of amorphous phases with abundant oxygen vacancies significantly enhances the adsorption of oxygen-containing intermediates and changes the rate-determining step from OH*→O* to O*→OOH*, which greatly reduces the thermodynamic energy barrier. Moreover, the crystalline phase interweaving with amorphous domains serves as a conductive shortcut to facilitate rapid electron transfer from active sites in the amorphous domain to NF, guaranteeing fast OER kinetics. Such an anodic electrode exhibits a nearly ten fold enhancement in OER intrinsic activity compared to the pristine counterpart. Remarkably, it demonstrates record-low overpotentials of 246 and 315 mV at 50 and 500 mA cm-2 in 1 m KOH with superior long-term stability, outperforming other NiFe-based spinel oxides catalysts.
Collapse
Affiliation(s)
- Ying Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liyang Xiao
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haiwen Tan
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingtong Zhang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cunku Dong
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Yang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Noh S, Oh H, Kim J, Jung S, Shim JH. Cobalt-Copper-Embedded Nitrogen-Doped Carbon Nanostructures Derived from Zeolite Imidazolate Frameworks as Electrocatalysts for the Oxygen Reduction Reaction. ACS OMEGA 2024; 9:29431-29441. [PMID: 39005836 PMCID: PMC11238306 DOI: 10.1021/acsomega.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
In recent years, researchers have focused on developing zeolite imidazolate frameworks (ZIFs) as an alternative to Pt electrocatalysts for various applications, including water splitting, lithium-air batteries, zinc-air batteries, and fuel cells. In this study, we synthesized CoCu-ZIF to be used as a precursor in the development of cathode catalysts for the oxygen reduction reaction (ORR) in fuel cells. Hydrazine played a crucial role in maintaining uniformity in the development and particle size of the ZIF-67 structures. Moreover, it facilitated the rapid formation of the ZIF-67 structures at higher temperatures. A unique pseudorhombic dodecahedral morphology was obtained at a Co/Cu molar ratio of 7:3. Among all the synthesized N-doped carbon nanostructures embedded with Co and Cu nanoparticles, CoCu@NC-750, pyrolyzed at 750 °C, showed superior ORR catalytic performance. This catalyst exhibited a notably higher half-wave potential of 0.816 V and demonstrated a clear 4-electron transfer mechanism. The overpotential of CoCu@NC-750 shifted by only 11 mV over 10,000 cyclic voltammetry cycles, whereas a 55 mV shift was observed for Pt/C. CoCu@NC-750 exhibited a ∼0.8% decrease in current density during a 12-h ORR, in contrast to the 8.3% decline shown by Pt/C. This superior catalytic activity and stability can be attributed to factors such as higher oxygen adsorption induced by the N-doped carbon layer due to the localized changes in electron density and the enhanced stability of the bimetallic core. Our findings suggest that CoCu@NC-750 is a promising alternative to Pt/C in fuel cell cathodes.
Collapse
Affiliation(s)
- Sunguk Noh
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hyejin Oh
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Jihyun Kim
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Sojin Jung
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Jun Ho Shim
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
- Department
of Chemistry Education, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
6
|
García-Rodríguez M, Flores-Lasluisa JX, Cazorla-Amorós D, Morallón E. Enhancing Interaction between Lanthanum Manganese Cobalt Oxide and Carbon Black through Different Approaches for Primary Zn-Air Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2309. [PMID: 38793376 PMCID: PMC11123494 DOI: 10.3390/ma17102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Due to the need for decarbonization in energy generation, it is necessary to develop electrocatalysts for the oxygen reduction reaction (ORR), a key process in energy generation systems such as fuel cells and metal-air batteries. Perovskite-carbon material composites have emerged as active and stable electrocatalysts for the ORR, and the interaction between both components is a crucial aspect for electrocatalytic activity. This work explores different mixing methods for composite preparation, including mortar mixing, ball milling, and hydrothermal and thermal treatments. Hydrothermal treatment combined with ball milling resulted in the most favorable electrocatalytic performance, promoting intimate and extensive contact between the perovskite and carbon material and improving electrocatalytic activity. Employing X-ray photoelectron spectroscopy (XPS), an increase in the number of M-O-C species was observed, indicating enhanced interaction between the perovskite and the carbon material due to the adopted mixing methods. This finding was further corroborated by temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. Interestingly, the ball milling method results in similar performance to the hydrothermal method in the zinc-air battery and, thus, is preferable because of the ease and straightforward scalability of the preparation process.
Collapse
Affiliation(s)
- Mario García-Rodríguez
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Jhony X. Flores-Lasluisa
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Diego Cazorla-Amorós
- Departamento Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Emilia Morallón
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| |
Collapse
|
7
|
Ingavale S, Gopalakrishnan M, Enoch CM, Pornrungroj C, Rittiruam M, Praserthdam S, Somwangthanaroj A, Nootong K, Pornprasertsuk R, Kheawhom S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308443. [PMID: 38258405 DOI: 10.1002/smll.202308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Perovskite oxides exhibit bifunctional activity for both oxygen reduction (ORR) and oxygen evolution reactions (OER), making them prime candidates for energy conversion in applications like fuel cells and metal-air batteries. Their intrinsic catalytic prowess, combined with low-cost, abundance, and diversity, positions them as compelling alternatives to noble metal and metal oxides catalysts. This review encapsulates the nuances of perovskite oxide structures and synthesis techniques, providing insight into pivotal active sites that underscore their bifunctional behavior. The focus centers on the breakthroughs surrounding lanthanum (La) and strontium (Sr)-based perovskite oxides, specifically their roles in zinc-air batteries (ZABs). An introduction to the mechanisms of ORR and OER is provided. Moreover, the light is shed on strategies and determinants central to optimizing the bifunctional performance of La and Sr-based perovskite oxides.
Collapse
Affiliation(s)
- Sagar Ingavale
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Carolin Mercy Enoch
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai, 603203, India
| | - Chanon Pornrungroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasadit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rojana Pornprasertsuk
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
8
|
Zhao H, Wang T, Li C, Chen M, Niu L, Gong Y. Designing highly efficient oxygen evolution reaction electrocatalyst of high-entropy oxides FeCoNiZrO x: Theory and experiment. iScience 2024; 27:108718. [PMID: 38235334 PMCID: PMC10792234 DOI: 10.1016/j.isci.2023.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The correlations between the experimental methods and catalytic activities are urgent to be defined for the design of highly efficient catalysts. In this work, a new oxygen evolution reaction electrocatalyst of high-entropy oxide (HEO) FeCoNiZrOx was designed and analyzed by experimental and theoretical methods. On account of the shortened coordinate bond along with the increased annealing temperature, the atomic/electronic structures of active site were adjusted quantitatively with the aid of the pre-designed correlator of d electron density, which contributed to adjust the catalytic activity of HEO specimens. The prepared HEO specimen exhibited the low overpotentials of 245 mV at 10 mA cm-2 and 288 mV at 100 mA cm-2 with small Tafel slope of 35.66 mV dec-1, fast charge transfer rate, and stable electrocatalytic activity. This strategy would be adopted to improve the catalytic activity of HEO by adjusting the d electron density of transition metal ions with suitable preparation method.
Collapse
Affiliation(s)
- Haiqing Zhao
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Tao Wang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Department of Physics, China Jiliang University, Hangzhou 310018, China
| | - Lengyuan Niu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yinyan Gong
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
He W, Zhang R, Liu H, Hao Q, Li Y, Zheng X, Liu C, Zhang J, Xin HL. Atomically Dispersed Silver Atoms Embedded in NiCo Layer Double Hydroxide Boost Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301610. [PMID: 37093206 DOI: 10.1002/smll.202301610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Bimetallic layered double hydroxides (LDHs) are promising catalysts for anodic oxygen evolution reaction (OER) in alkaline media. Despite good stability, NiCo LDH displays an unsatisfactory OER activity relative to the most robust NiFe LDH and CoFe LDH. Herein, a novel NiCo LDH electrocatalyst modified with single-atom silver grown on carbon cloth (AgSA -NiCo LDH/CC) that exhibits exceptional OER activity and stability in 1.0 m KOH is reported. The AgSA -NiCo LDH/CC catalyst only requires a low overpotential of 192 mV to reach a current density of 10 mA cm-2 , obviously boosting the OER activity of NiCo LDH/CC (410 mV@10 mA cm-2 ). Inspiringly, AgSA -NiCo LDH/CC can maintain its high activity for up to 500 h at a large current density of 100 mA cm-2 , exceeding most single-atom OER catalysts. In situ Raman spectroscopy studies uncover that the in situ formed NiCoOOH during OER is the real active species. Hard X-ray absorption spectrum (XAS) and density functional theory (DFT) calculations validate that single-atom Ag occupying Ni site increases the chemical valence of Ni elements, and then weakens the adsorption of oxygen-contained intermediates on Ni sites, fundamentally accounting for the enhanced OER performance.
Collapse
Affiliation(s)
- Wenjun He
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Hui Liu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Qiuyan Hao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Ying Li
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Caichi Liu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Jun Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), Hebei University of Technology, Tianjin, 300130, China
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Bhuvanendran N, Park CW, Su H, Lee SY. Multifunctional Pt 3Rh-Co 3O 4 alloy nanoparticles with Pt-enriched surface and induced synergistic effect for improved performance in ORR, OER, and HER. ENVIRONMENTAL RESEARCH 2023; 229:115950. [PMID: 37084945 DOI: 10.1016/j.envres.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Engineering high-performance electrocatalysts to improve the kinetics of parallel electrochemical reactions in low-temperature fuel cells, water splitting, and metal-air battery applications is important and inevitable. In this study, by employing a chemical co-reduction method, we developed multifunctional Pt3Rh-Co3O4 alloy with uniformly distributed ultrafine nanoparticles (2-3 nm), supported on carbon. The presence of Co3O4 and the incorporation of Rh led to a strong electronic and ligand effect in the Pt lattice environment, which caused the d-band center of Pt to shift. This shift improved the electrocatalytic performance of Pt3Rh-Co3O4 alloy. When Pt3Rh-Co3O4/C was used to catalyze the oxygen reduction reaction (E1/2: 0.75 V), oxygen evolution reaction (η10: 290 mV), and hydrogen evolution reaction (η10: 55 mV), it showed greater endurance (mass activity loss of only 7%-17%) than Pt-Co3O4/C and Pt/C catalysts up to 5000 potential cycles in perchloric acid. Overall, the as-prepared Pt3Rh-Co3O4/C showed high multifunctional electrocatalytic potency, as demonstrated by typical electrochemical studies, and its physicochemical properties endorse their extended performance for a wide range of energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Chae Won Park
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Sae Youn Lee
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
11
|
Kumbhakar P, Sha MS, Tiwary CS, Muthalif AGA, Al-maadeed S, Sadasivuni KK. An efficient transition metal chalcogenide sensor for monitoring respiratory alkalosis. 3 Biotech 2023; 13:109. [PMID: 36875961 PMCID: PMC9978044 DOI: 10.1007/s13205-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
For many biomedical applications, high-precision CO2 detection with a rapid response is essential. Due to the superior surface-active characteristics, 2D materials are particularly crucial for electrochemical sensors. The liquid phase exfoliation method of 2D Co2Te3 production is used to achieve the electrochemical sensing of CO2. The Co2Te3 electrode performs better than other CO2 detectors in terms of linearity, low detection limit, and high sensitivity. The outstanding physical characteristics of the electrocatalyst, including its large specific surface area, quick electron transport, and presence of a surface charge, can be credited for its extraordinary electrocatalytic activity. More importantly, the suggested electrochemical sensor has great repeatability, strong stability, and outstanding selectivity. Additionally, the electrochemical sensor based on Co2Te3 could be used to monitor respiratory alkalosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03497-z.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Mizaj Shabil Sha
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Asan G. A. Muthalif
- Department of Mechanical and Industrial Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Somaya Al-maadeed
- Department of Computer Science and Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | | |
Collapse
|
12
|
He X, Qiao T, Li B, Zhang Z, Wang S, Wang X, Liu H. Tuning Electronic Structure of CuCo
2
O
4
Spinel via Mn‐Doping for Enhancing Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xuanmeng He
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Tong Qiao
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Beijun Li
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Zeqin Zhang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Shaolan Wang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Xinzhen Wang
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Hui Liu
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| |
Collapse
|