1
|
Lu P, Liu T, Ma J, Kan T, Han X, Ji Z, Mao J. Investigation of Efficient Pullulan Synthesis Utilizing Huangjiu Lees as a Substrate. Foods 2024; 13:3874. [PMID: 39682945 DOI: 10.3390/foods13233874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pullulan is a high-value biopolymer synthesized by Aureobasidium pullulans through the fermentation of starch and sugars. It finds extensive applications in food, packaging, biomedicine, and other sectors. However, the high production costs significantly limit the development and application of pullulan. Consequently, there is an urgent need to identify high-quality fermentation substrates. In recent years, the rapid growth of Huangjiu industry has led to the generation of waste Huangjiu lees, which not only contribute to environmental pollution but also represent a significant waste of resources. As a result, the resource utilization of Huangjiu lees has garnered considerable attention. In this study, Huangjiu lees were employed as raw materials for fermentation to produce pullulan. Following fermentation of Huangjiu lees powder with the primary strain Aureobasidium pullulans LL1, the yield of pullulan was notably reduced. Through adaptive evolution, an evolved strain, Aureobasidium pullulans AP9, was isolated, demonstrating enhanced efficiency in producing pullulan from Huangjiu lees. The impact of Huangjiu lees on pullulan biosynthesis was elucidated via transcriptome analysis. Fermentation conditions were optimized using a single-factor approach, and a multi-strain staged fermentation strategy involving Aspergillus niger and Aureobasidium pullulans was employed to further enhance pullulan yield. Under optimal conditions, the pullulan yield reached 22.06 g/L, with a molecular weight of 1.04 × 106 Da. This study underscores the significant potential of utilizing Huangjiu lees for pullulan production and offers valuable insights for the resource utilization of this byproduct.
Collapse
Affiliation(s)
- Peiqi Lu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Tiantian Liu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Jingqiu Ma
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Tao Kan
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Xiao Han
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Zhongwei Ji
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| |
Collapse
|
2
|
Wang W, Zhao J, Zhang K, Wang Z, Ma J, Yang Q, Lin C. Transcriptome Analysis of Aureobasidium pullulans YQ65 Grown on Yeast Extract Peptone Glucose and Potato Dextrose Agar Media and Quantification of Their Effects on Pullulan Production. Foods 2024; 13:3619. [PMID: 39594035 PMCID: PMC11593368 DOI: 10.3390/foods13223619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Pullulan is a high-value polysaccharide produced through the fermentation of Aureobasidium pullulans. It has significant applications in the fields of food, medicine, environmental science, and packaging. However, the yield, molecular weight, and other characteristics of pullulan can vary depending on the fermentation substrate used. Therefore, it is crucial to analyze the underlying causes of these variations at the molecular level. In this study, we first investigated the morphological differences in A. pullulans YQ65 when cultured in YPD and PDA media. The results indicated that different culture media significantly influence the primary cell morphology of A. pullulans YQ65, which in turn affects the synthesis of secondary metabolites. Subsequently, we employed different culture media to ferment pullulan and examined the variations in pullulan yield, molecular weight, and biomass. Moreover, FTIR and thermodynamic stability tests were conducted to analyze the differences among pullulans across different culture media. Finally, transcriptome analysis revealed that A. pullulans YQ65, when cultured in YPD and PDA media, regulates its growth and metabolism through the expression of key genes that are involved in pathways such as the proteasome, oxidative phosphorylation, metabolism of various secondary metabolites, fatty acid anabolism, carbon metabolism, and amino acid metabolism. The transcriptome results were further validated by assessing the expression of specific genes. This study enhances the understanding of the fermentation differences observed with different substrates in A. pullulans and provides valuable insights for optimizing culture substrates. Additionally, it offers guidance for utilizing agricultural and forestry processing waste, as well as food processing by-products, to produce pullulan cost-effectively in the future.
Collapse
Affiliation(s)
- Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (J.Z.); (Q.Y.)
| | - Jiyun Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (J.Z.); (Q.Y.)
| | - Kai Zhang
- School of Life Science, Ludong University, Yantai 264025, China;
| | - Zhengran Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China;
| | - Jingqiu Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (J.Z.); (Q.Y.)
| | - Congyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (J.Z.); (Q.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
3
|
Li D, Zhang Y, Yu F, Wang J, Zhang X, Feng L, Lang T, Yang F. Vadose-zone characteristic pollutants distribution, microbial community structure and functionality changes in response to long-term leachate pollution of an informal landfill site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174596. [PMID: 38997023 DOI: 10.1016/j.scitotenv.2024.174596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO₃--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Furong Yu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jili Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Tao Lang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Fengtian Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Lin C, Lu P, Ma J, Kan T, Han X, Liu S, Ji Z, Mao J. Investigation into the Production of Melanin from By-Products of Huangjiu Brewing. Foods 2024; 13:3063. [PMID: 39410098 PMCID: PMC11475479 DOI: 10.3390/foods13193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Melanin is a high value bioproduct generated through the fermentation of Aureobasidium pullulans, playing a crucial role in various fields, including food, medicine, environmental protection, and materials science. However, its high production costs and low synthetic yields significantly limit its applications. Therefore, it is essential to identify high-yield strains, reduce production costs, and optimize fermentation strategies. In this study, a high melanin-yielding Aureobasidium pullulans 53LC7 was screened and identified, and the fermentation process was optimized based on melanin yield, color value, and pullulan yield. The results indicated that the melanin yield peaked at an initial pH of 6.0, temperature of 27 °C, fermentation time of 6.5 d, and inoculation quantity of 2.5%, achieving a melanin yield of 16.33 g/L. Subsequently, huangjiu lees, a byproduct of huangjiu production, was incorporated into the fermentation medium, resulting in a melanin yield of 5.91 g/L. This suggests that the Aureobasidium pullulans was not effectively utilizing huangjiu lees. To address this, we employed an adaptive evolution strategy, which increased the melanin yield to 8.72 g/L. The enhanced production was correlated with the expression of key genes, including FKS, PKS, and Cmr1. Finally, cellulase was utilized to convert the crude fibers in huangjiu lees, which were difficult to utilize, into usable substrates, while pullulanase was employed to minimize byproduct formation in the fermentation system, resulting in a melanin yield of 19.07 g/L. This study not only provides promising strains for further research but also offers valuable insights for resource production technologies.
Collapse
Affiliation(s)
- Congyu Lin
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Peiqi Lu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
| | - Jingqiu Ma
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Tao Kan
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Xiao Han
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Shuangping Liu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Zhongwei Ji
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| |
Collapse
|
5
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
6
|
Wang Y, Du J, Li Q, Tao Y, Cheng Y, Lu J, Wang H. Bioconversion of cellulose and hemicellulose in corn cob into L-lactic acid and xylo-oligosaccharides. Int J Biol Macromol 2023; 253:126775. [PMID: 37699460 DOI: 10.1016/j.ijbiomac.2023.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.
Collapse
Affiliation(s)
- Yiqin Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Zhang K, Wang W, Yang Q. Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress. Int J Mol Sci 2023; 24:16103. [PMID: 38003294 PMCID: PMC10671783 DOI: 10.3390/ijms242216103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Aureobasidium pullulans (A. pullulans), a commonly found yeast-like fungus, exhibits adaptability to a wide range of pH environments. However, the specific mechanisms and regulatory pathways through which A. pullulans respond to external pH remain to be fully understood. In this study, we first sequenced the whole genome of A. pullulans using Nanopore technology and generated a circle map. Subsequently, we explored the biomass, pullulan production, melanin production, and polymalic acid production of A. pullulans when cultivated at different pH levels. We selected pH 4.0, pH 7.0, and pH 10.0 to represent acidic, neutral, and alkaline environments, respectively, and examined the morphological characteristics of A. pullulans using SEM and TEM. Our observations revealed that A. pullulans predominantly exhibited hyphal growth with thicker cell walls under acidic conditions. In neutral environments, it primarily displayed thick-walled spores and yeast-like cells, while in alkaline conditions, it mainly assumed an elongated yeast-like cell morphology. Additionally, transcriptome analysis unveiled that A. pullulans orchestrates its response to shifts in environmental pH by modulating its cellular morphology and the expression of genes involved in pullulan, melanin, and polymalic acid synthesis. This research enhances the understanding of how A. pullulans regulates itself in diverse pH settings and offers valuable guidance for developing and applying engineered strains.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Wang W, Zhang K, Lin C, Zhao S, Guan J, Zhou W, Ru X, Cong H, Yang Q. Influence of Cmr1 in the Regulation of Antioxidant Function Melanin Biosynthesis in Aureobasidium pullulans. Foods 2023; 12:2135. [PMID: 37297380 PMCID: PMC10252820 DOI: 10.3390/foods12112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
We have successfully identified the transcription factor Cmr1 from the fungus Aureobasidium pullulans Hit-lcy3T, which regulates melanin biosynthesis genes. Bioinformatics analysis revealed that the Cmr1 gene encodes a protein of 945 amino acids, containing two Cys2His2 zinc finger domains and a Zn(II)2Cys6 binuclear cluster domain located at the N-terminus of Cmr1. To investigate the function of the Cmr1 gene, we performed gene knockout and overexpression experiments. Our results showed that Cmr1 is a key regulator of melanin synthesis in Hit-lcy3T, and its absence caused developmental defects. Conversely, overexpression of Cmr1 significantly increased the number of chlamydospores in Hit-lcy3T and improved melanin production. RT-qPCR analysis further revealed that overexpression of Cmr1 enhanced the expression of several genes involved in melanin biosynthesis, including Cmr1, PKS, SCD1, and THR1. Melanin extracted from the Hit-lcy3T was characterized using UV and IR spectroscopy. Furthermore, we assessed the antioxidant properties of Hit-lcy3T melanin and found that it possesses strong scavenging activity against DPPH·, ABTS·, and OH·, but weaker activity against O2-·. These findings suggest that Hit-lcy3T melanin holds promise for future development as a functional food additive.
Collapse
Affiliation(s)
- Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Congyu Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Shanshan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China;
| | - Jiaqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Wei Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Xin Ru
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Hua Cong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (W.W.); (K.Z.); (J.G.); (W.Z.); (X.R.); (H.C.)
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Zhang K, Lin C, Zhao S, Wang W, Zhou W, Ru X, Cong H, Yang Q. The role of pH transcription factor Appacc in upregulation of pullulan biosynthesis in Aureobasidium pullulans using potato waste as a substrate. Int J Biol Macromol 2023; 242:124797. [PMID: 37182631 DOI: 10.1016/j.ijbiomac.2023.124797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
pH is one of the important environmental factors affecting the growth, development and secondary metabolites of fungi. To better utilize potato waste for the production of pullulan by fermentation, in this study, the amino acid sequence and structural domain of pH transcription factor Appacc were analyzed using the bioinformatics methods. Appacc showed three typically conserved zinc finger domains, with the closest homology to Zymoseptoria brevis. The function of Appacc was characterized by ΔAppacc and OEXpacc mutants. The mycelium growth of ΔApacc mutants was inhibited, especially, under alkaline conditions. Furthermore, the pullulan production of ΔAppacc mutant was reduced and the expression of pullulan synthetic genes also decreased. Moreover, the OEXpacc mutant further demonstrated that pacc could regulate the expression of pullulan synthesis genes. The yield of pullulan polysaccharide increased from 13.6 g/L to 17.8 g/L by direct fermentation without changing the pH of potato waste. These results suggest that Appacc played a vital role in the growth of Aureobasidium pullulans and that the production of pullulan from potato waste can be increased by overexpression of pacc gene.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Congyu Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wei Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Xin Ru
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Hua Cong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
11
|
Zhang K, Zhou W, Wang W, Zhao S, Lin C, Ru X, Guan J, Cong H, Yang Q. Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans. Foods 2023; 12:foods12030660. [PMID: 36766189 PMCID: PMC9914807 DOI: 10.3390/foods12030660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of the fungus to regulate metabolism on various nitrogen sources makes it survive and metabolize in different environments. The biomass and the β-glucan yield of Aureobasidium pullulans are closely associated with the nitrogen source. This study found the only GATA nitrogen source activation regulating factor Area in HIT-LCY3. In order to testify the Area function, we amplified its conserved domain to build a silencing vector and used the RNAi to obtain the Area silent strain, and then explored its effect on the phenotype of A. pullulans and the yield of β-glucan. We found that the biomass and β-glucan yield of the silent strain decreased significantly after culturing with different nitrogen sources, in particular when using sodium nitrate and glutamate as the source. However, the β-glucan yield increased significantly after overexpression of Area, reaching 5.2 g/L when glutamine was the nitrogen source. In addition, the strain morphology changed as well under different nitrogen sources. At last, we investigated the antioxidant activity in vitro of β-glucan and found that it has a significant clearance effect on OH·, DPPH·, and ABTS·, being best with ABTS. Therefore, this study believed that the Area gene has a certain regulation function on the synthesis of β-glucan with antioxidant activity.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wei Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Congyu Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ru
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jiaqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Hua Cong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
- Correspondence:
| |
Collapse
|
12
|
He C, Zhang X, Zhang Z, Wang C, Wang D, Wei G. Whole-crop biorefinery of corn biomass for pullulan production by Aureobasidium pullulans. BIORESOURCE TECHNOLOGY 2023; 370:128517. [PMID: 36565822 DOI: 10.1016/j.biortech.2022.128517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the present study, corn starch, cob, and straw were biorefined and used as feedstocks for the production of pullulan. The titer and molecular weight (Mw) of pullulan significantly decreased when corn cob and straw hydrolysates were utilized by the parental strain Aureobasidium pullulans CCTCC M 2012259 (PS). Based on adaptive laboratory evolution of PS, an evolved strain A. pullulans EV6 with strong adaptability to the whole corn biomass hydrolysate and high capability of pullulan biosynthesis was screened. Batch pullulan fermentation results indicated that EV6 produced an increased titer of pullulan with a higher Mw than PS. The underlying reasons for these increases were revealed by assaying key enzymes activities and measuring intracellular uridine diphosphate glucose levels. Subsequently, whole-crop biorefinery of corn biomass was conducted, and the results confirmed that whole corn crop has immense potential for efficient pullulan production.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xuehan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|