1
|
Gubitosa J, Rizzi V, Cignolo D, Fini P, Barisano D, Freda C, Petrella A, Cosma P. Regenerable chitosan-biochar-TiO 2 composite sponges for hazardous pollutants removal from water: The case of carbamazepine. Int J Biol Macromol 2025; 300:140315. [PMID: 39864698 DOI: 10.1016/j.ijbiomac.2025.140315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Water pollution is a significant worldwide problem, and research studies in this field are still in progress to find strategies for removing pollutants from water. Among the others, adsorption process seems to exhibit several advantages, especially when biomasses are in use. This work proposes biochar from olive pomace pyrolysis for adsorbing contaminants from water, in synergistic combination with TiO2, for constituting water-stable and recyclable composite chitosan-based sponges. The photocatalyst and the biochar were embedded into the polymeric chitosan foam network. So, the employed materials were characterized from a physical and chemical point of view, revealing the nature of porous adsorbent substrates having irregular surfaces useful for sequestrating pollutants. UV-Vis spectroscopy was used to monitor the amount of pollutants in water, and the maximum adsorption capacities were calculated. Carbamazepine, was selected as a model contaminant to study the process features under different working conditions. A comparison with the removal of a textile dye was also performed to unveil the mechanism of adsorption. After the pollutant adsorption, its complete desorption was obtained, proposing a way to reuse the adsorbent material, lowering the environmental impact. An alternative to regenerate the adsorbent was also studied by exploiting the photocatalytic role of TiO2.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy; CNR NANOTEC - Istituto di Nanotecnologia - Sede Secondaria di Bari c/o Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70126 Bari, Italy.
| | - Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Domenico Cignolo
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS, Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Donatella Barisano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Lungotevere Thaon di Revel, 76, 00196 Rome, Italy
| | - Cesare Freda
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Lungotevere Thaon di Revel, 76, 00196 Rome, Italy
| | - Andrea Petrella
- Department of Civil, Environmental, Land, Construction and Chemistry, Polytechnic University of Bari, Bari 70125, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy; CNR NANOTEC - Istituto di Nanotecnologia - Sede Secondaria di Bari c/o Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70126 Bari, Italy
| |
Collapse
|
2
|
Gao Y, Zheng L, Duan L, Bi J. Separable Metal-Organic Framework-Based Materials for the Adsorption of Emerging Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024504 DOI: 10.1021/acs.langmuir.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thousands of chemicals have been released into the environment in recent decades. The presence of emerging contaminants (ECs) in water has emerged as a pressing concern. Adsorption is a viable solution for the removal of ECs. Metal-organic frameworks (MOFs) have shown great potential as efficient adsorbents, but their dispersed powder form limits their practical applications. Recently, researchers have developed various separable MOF-based adsorbents to improve their recyclability. The purpose of this review is to summarize the latest developments in the construction of separable MOF-based adsorbents and their applications in adsorbing ECs. The construction strategies for separable MOFs are classified into four categories: magnetic MOFs, MOF-fiber composites, MOF gels, and binder-assisted shaping. Typical emerging contaminants include pesticides, pharmaceuticals and personal care products, and endocrine-disrupting compounds. The adsorption performance of different materials is evaluated based on the results of static and dynamic adsorption experiments. Additionally, the regeneration methods of MOF-based adsorbents are discussed in detail to facilitate effective recycling and reuse. Finally, challenges and potential future research opportunities are proposed, including reducing performance losses during the shaping process, developing assessment systems based on dynamic purification and real polluted water, optimizing regeneration methods, designing multifunctional MOFs, and low-cost, large-scale synthesis of MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Lisi Zheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, P. R. China
| |
Collapse
|
3
|
Zhang J, Teng F, Hu B, Liu W, Huang Y, Wu J, Wang Y, Su H, Yang S, Zhang L, Guo L, Lei Z, Yan M, Xu X, Wang R, Bao Q, Dong Q, Long J, Qian K. Early Diagnosis and Prognosis Prediction of Pancreatic Cancer Using Engineered Hybrid Core-Shells in Laser Desorption/Ionization Mass Spectrometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311431. [PMID: 38241281 DOI: 10.1002/adma.202311431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Effective detection of bio-molecules relies on the precise design and preparation of materials, particularly in laser desorption/ionization mass spectrometry (LDI-MS). Despite significant advancements in substrate materials, the performance of single-structured substrates remains suboptimal for LDI-MS analysis of complex systems. Herein, designer Au@SiO2@ZrO2 core-shell substrates are developed for LDI-MS-based early diagnosis and prognosis of pancreatic cancer (PC). Through controlling Au core size and ZrO2 shell crystallization, signal amplification of metabolites up to 3 orders is not only achieved, but also the synergistic mechanism of the LDI process is revealed. The optimized Au@SiO2@ZrO2 enables a direct record of serum metabolic fingerprints (SMFs) by LDI-MS. Subsequently, SMFs are employed to distinguish early PC (stage I/II) from controls, with an accuracy of 92%. Moreover, a prognostic prediction scoring system is established with enhanced efficacy in predicting PC survival compared to CA19-9 (p < 0.05). This work contributes to material-based cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Juxiang Zhang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Teng
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Beiyuan Hu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yida Huang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyang Su
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lumin Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Meng Yan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoyu Xu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruimin Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingui Bao
- Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, 200435, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Qutob M, Alshehri S, Shakeel F, Alam P, Rafatullah M. An insight into the role of experimental parameters in advanced oxidation process applied for pharmaceutical degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26452-26479. [PMID: 38546921 DOI: 10.1007/s11356-024-33040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024]
Abstract
The advanced oxidation process (AOP) is an efficient method to treat recalcitrance pollutants such as pharmaceutical compounds. The essential physicochemical factors in AOP experiments significantly influence the efficiency, speed, cost, and safety of byproducts of the treatment process. In this review, we collected recent articles that investigated the elimination of pharmaceutical compounds by various AOP systems in a water medium, and then we provide an overview of AOP systems, the formation mechanisms of active radicals or reactive oxygen species (ROS), and their detection methods. Then, we discussed the role of the main physicochemical parameters (pH, chemical interference, temperature, catalyst, pollutant concentration, and oxidant concentration) in a critical way. We gained insight into the most frequent scenarios for the proper and improper physicochemical parameters for the degradation of pharmaceutical compounds. Also, we mentioned the main factors that restrict the application of AOP systems in a commercial way. We demonstrated that a proper adjustment of AOP experimental parameters resulted in promoting the treatment performance, decreasing the treatment cost and the treatment operation time, increasing the safeness of the system products, and improving the reaction stoichiometric efficiency. The outcomes of this review will be beneficial for future AOP applicants to improve the pharmaceutical compound treatment by providing a deeper understanding of the role of the parameters. In addition, the proper application of physicochemical parameters in AOP systems acts to track the sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Kang JK, Lee H, Kim SB, Bae H. Alkyl chain length of quaternized SBA-15 and solution conditions determine hydrophobic and electrostatic interactions for carbamazepine adsorption. Sci Rep 2023; 13:5170. [PMID: 36997526 PMCID: PMC10063578 DOI: 10.1038/s41598-023-32108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Santa Barbara Amorphous-15 (SBA) is a stable and mesoporous silica material. Quaternized SBA-15 with alkyl chains (QSBA) exhibits electrostatic attraction for anionic molecules via the N+ moiety of the ammonium group, whereas its alkyl chain length determines its hydrophobic interactions. In this study, QSBA with different alkyl chain lengths were synthesized using the trimethyl, dimethyloctyl, and dimethyoctadecyl groups (C1QSBA, C8QSBA, and C18QSBA, respectively). Carbamazepine (CBZ) is a widely prescribed pharmaceutical compound, but is difficult to remove using conventional water treatments. The CBZ adsorption characteristics of QSBA were examined to determine its adsorption mechanism by changing the alkyl chain length and solution conditions (pH and ionic strength). A longer alkyl chain resulted in slower adsorption (up to 120 min), while the amount of CBZ adsorbed was higher for longer alkyl chains per unit mass of QSBA at equilibrium. The maximum adsorption capacities of C1QSBA, C8QSBA, and C18QSBA, were 3.14, 6.56, and 24.5 mg/g, respectively, as obtained using the Langmuir model. For the tested initial CBZ concentrations (2-100 mg/L), the adsorption capacity increased with increasing alkyl chain length. Because CBZ does not dissociate readily (pKa = 13.9), stable hydrophobic adsorption was observed despite the changes in pH (0.41-0.92, 1.70-2.24, and 7.56-9.10 mg/g for C1QSBA, C8QSBA, and C18QSBA, respectively); the exception was pH 2. Increasing the ionic strength from 0.1 to 100 mM enhanced the adsorption capacity of C18QSBA from 9.27 ± 0.42 to 14.94 ± 0.17 mg/g because the hydrophobic interactions were increased while the electrostatic attraction of the N+ was reduced. Thus, the ionic strength was a stronger control factor determining hydrophobic adsorption of CBZ than the solution pH. Based on the changes in hydrophobicity, which depends on the alkyl chain length, it was possible to enhance CBZ adsorption and investigate the adsorption mechanism in detail. Thus, this study aids the development of adsorbents suitable for pharmaceuticals with controlling molecular structure of QSBA and solution conditions.
Collapse
Affiliation(s)
- Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyebin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Song-Bae Kim
- Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyokwan Bae
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|