1
|
Liu M, Wang S, Zhou H, Liu H, Huang D, Liu L, Li Q, Chen H, Lei Y, Jin LN, Zhang W. Thermal environment driving specific microbial species to form the visible biofilms on the UNESCO World Heritage Dazu Rock Carvings. ENVIRONMENTAL RESEARCH 2025; 276:121510. [PMID: 40174744 DOI: 10.1016/j.envres.2025.121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
The Dazu Rock Carvings, a UNESCO World Heritage site with over a millennium of history, are facing significant deterioration from microbial biofilms. However, the key microbial species responsible and the environmental factors driving their growth remain unclear. To address this gap, we conducted metagenomic sequencing to characterize the microbial community on the carvings, followed by correlation analyses with a variety of environmental factors in the surrounding air and within the rocks. Bacterial communities exhibited significantly higher richness and diversity than eukaryotic communities, though diversity metrics showed no significant differences between visibly colonized and uncolonized surfaces. We identified a distinctive consortium of 64 bacterial species, 35 fungal species, and 1 algal species specifically associated with visible biofilms, occurring at 9.56-fold higher relative abundance in colonized areas. These microorganisms contribute to characteristic green, brown-black, and white coloration on the carvings. Statistical analysis revealed absolute humidity and dew point temperature as key environmental factors influencing biofilm visibility, with thresholds of 21.00 g/m3 and 23.4 °C respectively, above which biofilms became visible. This study provides precise targets for conservation efforts and establishes critical environmental parameters to guide preservation strategies for this irreplaceable cultural heritage.
Collapse
Affiliation(s)
- Meng Liu
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Shuwan Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Hua Zhou
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Huan Liu
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China.
| | - Di Huang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Lumeng Liu
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Qisheng Li
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China
| | - Huili Chen
- Academy of Dazu Rock Carvings, Chongqing, 402360, China
| | - Yu Lei
- Academy of Dazu Rock Carvings, Chongqing, 402360, China
| | - Ling N Jin
- Department of Civil and Environmental Engineering & Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Wengang Zhang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
2
|
Li D, Tang X, Li L, Zhang B, Wang Z, Liu Z, Zhao Y. UV-B radiation aging changed the environmental behavior of polystyrene micro-/nanoplastics-adsorption kinetics of BDE-47, plankton toxicities and joint toxicities with BDE-47. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136198. [PMID: 39426143 DOI: 10.1016/j.jhazmat.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
UV-B radiation acts as an important environmental factor for aging micro-/nanoplastics (MNPs) in the marine environments, while the effect of aged MNPs on plankton is lacking specific research. Referencing to the UV-B radiation intensity in natural environments (2.29 W·m-2), we chose the floating polystyrene (PS) MNPs (50 nm, 1 µm) as the research target in this study. The results indicated that UV-B radiation aging for 30 days led to a rougher surface, increased SBET, increased hydrophobicity, and decreased negative charges of PS MNPs. Correspondingly, aged MNPs increased their adsorption abilities for 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), especially for the initial stage. After UV-B radiation aging processes, the individual toxicities of the two sized MNPs on Thalassiosira pseudonana and Brachionus plicatilis both increased, while their joint toxicities with BDE-47 decreased on T. pseudonana but increased on B. plicatilis. The changes in toxicity were more pronounced in 1 µm PS MNPs under air-aged conditions. This study provided the data basis for evaluating the changes of MNPs environmental behaviors under UV-B radiation in the marine environments, with important ecological significance.
Collapse
Affiliation(s)
- Danrui Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Ziqi Wang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Zhen Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
3
|
Shi T, Lure M, Zhang R, Liu Z, Hu Q, Liu J, Yang S, Jing L. Indole-3-acetic acid improves periphyton's resistance to ultraviolet-B: From physiological-biochemical properties and bacteria community to livestock-polluted water purification. ENVIRONMENTAL RESEARCH 2024; 246:118029. [PMID: 38160980 DOI: 10.1016/j.envres.2023.118029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Livestock-polluted water is a pressing water environmental issue in plateau pastoral regions, necessitating the adoption of eco-friendly solutions. Despite periphyton being a promising alternative, its efficacy is limited by the prevalence of intense ultraviolet radiation, particularly ultraviolet-B (UVB), in these regions. Therefore, this study employs molecular tools and small-scale trials to explore the crucial role of indole-3-acetic acid (IAA) in modulating periphyton characteristics and mediating nutrient removal from livestock-polluted water under UVB exposure. The results revealed that IAA augments periphyton's resilience to UVB stress through several pathways, including increasing periphyton's biomass, producing more extracellular polymeric substances (EPS), and enhancing antioxidant enzyme activities and photosynthetic activity of periphyton. Moreover, IAA addition increased periphyton's bacterial diversity, reshaped bacterial community structure, enhanced community stability, and elevated the R2 value of neutral processes in bacterial assembly from 0.257 to 0.651 under UVB. Practically, an IAA concentration of 50 mg/L was recommended. Small-scale trials confirmed the effectiveness of IAA in assisting UVB-stressed periphyton to remove nitrogen and phosphorus from livestock-polluted water, without the risk of nitrogen accumulation. These findings offer valuable insights into the protection of aquatic ecosystems in plateau pastoral regions based on periphyton property in an eco-friendly manner.
Collapse
Affiliation(s)
- Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Maobulin Lure
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Run Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Zhiheng Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Qianming Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ugya AY, Chen H, Wang Q. Microalgae biofilm system as an efficient tool for wastewater remediation and potential bioresources for pharmaceutical product production: an overview. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:131-142. [PMID: 37382505 DOI: 10.1080/15226514.2023.2229920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The role of microalgae in wastewater remediation and metabolite production has been well documented, but the limitations of microalgae harvesting and low biomass production call for a more sustainable method of microalgae utilization. The current review gives an insight on how microalgae biofilms can be utilized as a more efficient system for wastewater remediation and as potential source of metabolite for pharmaceutical product production. The review affirms that the extracellular polymeric substance (EPS) is the vital component of the microalgae biofilm because it influences the spatial organization of the organisms forming microalgae biofilm. The EPS is also responsible for the ease interaction between organisms forming microalgae biofilm. This review restate the crucial role play by EPS in the removal of heavy metals from water to be due to the presence of binding sites on its surface. This review also attribute the ability of microalgae biofilm to bio-transform organic pollutant to be dependent on enzymatic activities and the production of reactive oxygen species (ROS). The review assert that during the treatment of wastewater, the wastewater pollutants induce oxidative stress on microalgae biofilms. The response of the microalgae biofilm toward counteracting the stress induced by ROS leads to production of metabolites. These metabolites are important tools that can be harness for the production of pharmaceutical products.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Meng S, Qian Y, Liu X, Wang Y, Wu F, Wang W, Gu JD. Community structures and biodeterioration processes of epilithic biofilms imply the significance of micro-environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162665. [PMID: 36894084 DOI: 10.1016/j.scitotenv.2023.162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Epilithic biofilms colonising outdoor stone monuments can intensify the deterioration processes of the stone materials and pose great challenges to their protection. In this study, biodiversity and community structures of the epilithic biofilms colonising the surfaces of five outdoor stone dog sculptures were characterised by high-throughput sequencing. Although they are exposed to the same envrionment in a small yard, the analysis of their biofilm populations revealed high biodiversity and species richness as well as great differences in community compostions. Interestingly, populations responsible for pigment production (e.g., Pseudomonas, Deinococcus, Sphingomonas and Leptolyngbya) and for nitrogen (e.g., Pseudomonas, Bacillus, and Beijerinckia) and sulfur cycling (e.g., Acidiphilium) were the core common taxa in the epilithic biofilms, suggesting the potential biodeterioration processes. Furthermore, significant positive corrolections of metal elements rich in stone with biofilm communities showed that epilithic biofilms could take in minerals of stone. Importantly, geochemical properties of soluble ions (higher concentration of SO42- than NO3-) and slightly acidic micro-environments on the surfaces suggest corrosion of biogenic sulfuric acids as a main mechanism of biodeterioration of the sculptures. Interestingly, relative abundacne of Acidiphilium showed a positive correlation with acidic micro-environments and SO42- concentrations, implying they could be an indicator of sulfuric acid corrosion. Together, our findings support that micro-environments are inportant to community assembly of epilithic biofilms and the biodeterioration processes involved.
Collapse
Affiliation(s)
- Shanshan Meng
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China
| | - Youfen Qian
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yali Wang
- Guangdong Conservation Centre, Guangdong Museum, 2 Zhujiang East Road, Guangzhou, Guangdong 510623, China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, China
| | - Wanfu Wang
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, China
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
| |
Collapse
|