1
|
Zhu Y, Li D, Ma B, Zeng H, Zhang J. Deciphering key microbes and their interactions within anaerobic ammonia oxidation systems. BIORESOURCE TECHNOLOGY 2025; 416:131799. [PMID: 39532267 DOI: 10.1016/j.biortech.2024.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The stability of anaerobic ammonium oxidation (anammox) performance is inseparably linked to the dynamic equilibrium of microbial interactions. However, understanding of the key microbes within anammox systems remains limited. Through the analysis of 186 16S rRNA datasets combined with various ecological analysis methods, this study identified key microbes in the anammox process. Interactions between Candidatus_Kuenenia and other key microbes are the most significant with greater tolerance to differing water quality, while Candidatus_Jettenia have higher habitat specificity. Under adverse conditions, anammox bacteria can reduce the impact of unfavorable environments by enhancing interactions with certain microbes. This study comprehensively reviews the main functions of key microbes in the anammox system and their interactions, and summarizes several common interaction mechanisms, providing new insights for understanding the startup and stable operation of the anammox process.
Collapse
Affiliation(s)
- Yuliang Zhu
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ben Ma
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
White CA, Antell EH, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang WQ, Alvarez-Cohen L. Life history strategies determine response to SRT driven crash in anammox bioreactors. WATER RESEARCH 2024; 268:122727. [PMID: 39549623 DOI: 10.1016/j.watres.2024.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a biological process often applied in wastewater treatment plants for nitrogen removal from highly concentrated side-stream effluents from anaerobic digesters. However, they are vulnerable to process instability prompted by operational shocks and microbial community imbalances, resulting in lengthy recovery times. These issues are further compounded by a lack of understanding of how sustained press disturbances influence the microbial ecology of the system. Here we investigate the response and recovery of an anammox membrane bioreactor to a solids retention time (SRT)-induced reactor crash using 16S rRNA gene and shotgun metagenomic sequencing. We observed a strong selection of bacterial groups based on reproduction strategies, with the Orders Rhodospirillales and Sphingobacteriales increasing from 1.0 % and 11.9 % prior to the crash to 31.9 % and 18.1 % during the crash respectively. The Orders Brocadiales and Anaerolineales decreased from 17.3 % and 28.3 % to 7.3 % and 1.4 % over the same time period, respectively. Metagenomic and metatranscriptomic analyses revealed differential crash responses in metabolically distinct groups of bacteria, with increased expression of genes for extracellular carbohydrate active enzymes, peptidases and membrane transporters. Following the crash, the reactor recovered to its prior state of nitrogen removal performance and pathway analysis demonstrated increased expression of genes related to exopolysaccharide biosynthesis and quorum sensing during the reactor recovery period. This study highlights the effects of reactor perturbations on microbial community dynamics in anammox bioreactors and provides insight into potential recovery mechanisms from severe disturbance.
Collapse
Affiliation(s)
- Christian A White
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Edmund H Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Sarah L Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Wei-Qin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States; Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
3
|
Gao M, Guo B, Zou X, Guo H, Yao Y, Chen Y, Guo J, Liu Y. Mechanisms of anammox granular sludge reactor effluent as biostimulant: Shaping microenvironment for anammox metabolism. BIORESOURCE TECHNOLOGY 2024; 406:130962. [PMID: 38876278 DOI: 10.1016/j.biortech.2024.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Effluent from anammox granular sludge (AnGS) bioreactor contains microbes and microbial products. This study explored mechanisms of utilizing AnGS-effluent as biostimulant for anammox process enhancement. Compared with no AnGS-effluent supplemented control reactor, 5.0 and 1.3 times higher ammonium nitrogen and total inorganic nitrogen removal rates, respectively were obtained with continuous AnGS-effluent supplementation after 98 days' operation. Anammox bacteria from Candidatus Brocadia accounted for 0.1 % (DNA level) and 1.3 %-1.5 % (RNA level) in control reactor, and 2.9 % (DNA level) and 54.5 %-55.4 % (RNA level) in the AnGS-effluent-fed reactor. Influent microbial immigration evaluation showed that bacterial immigration via AnGS-effluent supplementation was not the main contributor to active anammox community development. Amino acids biosynthesis, B-vitamins and coenzymes metabolism related pathways were facilitated by AnGS-effluent supplementation. AnGS-effluent supplementation aided anammox metabolic activity by shaping microenvironment and microbial interactions. This study provides insights into enhancing anammox bacterial metabolism with AnGS-effluent microbial products as biostimulant.
Collapse
Affiliation(s)
- Mengjiao Gao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia.
| |
Collapse
|
4
|
Wang X, Yi K, Pang H, Liu Z, Li X, Zhang W, Zhang C, Liu S, Huang J, Zhang C. An overview of quorum sensing in shaping activated sludge forms: Mechanisms, applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171886. [PMID: 38531459 DOI: 10.1016/j.scitotenv.2024.171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.
Collapse
Affiliation(s)
- Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Kaixin Yi
- College of Materials and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
5
|
Yang B, Sun J, Wang Z, Duan Y. Sustainable biochar application in anammox process: Unveiling novel pathways for enhanced nitrogen removal and efficient start-up at low temperature. BIORESOURCE TECHNOLOGY 2024; 402:130773. [PMID: 38701987 DOI: 10.1016/j.biortech.2024.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This study explored the use of biochar to accelerate the establishment of anaerobic ammonium oxidation (anammox) reactors operating at 15 ± 1℃. Incorporating 10 g/L bamboo charcoal in S1 accelerated the start-up of anammox in 87 days, which was significantly shorter than 103 days in S0 (without biochar). After 140 days, S1 exhibited a 10.9 % increase in nitrogen removal efficiency due to a 28.9 % elevation in extracellular polymeric substances, bolstering anammox bacterial resilience. Predominant anammox bacteria (Cadidatus Brocadia and Cadidatus Jettenia) showed relative abundances of 3.19 % and 0.38 % in S1, respectively, which were significantly higher than 0.40 % and 0.05 % in S0. Biochar provides favorable habitats for the enrichment of anammox bacteria and accelerates the establishment of anammox at low temperatures. This finding holds promise for enhancing the efficiency of anammox in cold climates and advancing sustainable wastewater nitrogen removal.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiawei Sun
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zhongyu Wang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yun Duan
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
6
|
Zhang X, Al-Dhabi NA, Gao B, Zhou L, Zhang X, Zhu Z, Tang W, Chuma A, Chen C, Wu P. Robust rehabilitation of anammox system by granular activated carbon under long-term starvation stress: Microbiota restoration and metabolic reinforcement. BIORESOURCE TECHNOLOGY 2024; 393:130113. [PMID: 38013039 DOI: 10.1016/j.biortech.2023.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This article investigates the buffering capacity and recovery-enhancing ability of granular activated carbon (GAC) in a starved (influent total nitrogen: 20 mg/L) anaerobic ammonium oxidation (anammox) reactor. The findings revealed that anammox aggregated and sustained basal metabolism with shorter performance recovery lag (6 days) and better nitrogen removal efficiency (84.9 %) due to weak electron-repulsion and abundance redox-active groups on GAC's surface. GAC-supported enhanced extracellular polymeric substance secretion aided anammox in resisting starvation. GAC also facilitated anammox bacterial proliferation and expedited the restoration of anammox microbial community from a starved state to its initial-level. Metabolic function analyses unveiled that GAC improved the expression of genes involved in amino acid metabolism and sugar-nucleotide biosynthesis while promoted microbial cross-feeding, ultimately indicating the superior potential of GAC in stimulating more diverse metabolic networks in nutrient-depleted anammox consortia. This research sheds light on the microbial and metabolic mechanisms underlying GAC-mediated anammox system in low-substrate habitats.
Collapse
Affiliation(s)
- Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Amen Chuma
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
7
|
Zhang LH, Zhang J, Hu X. Analyzing the nitrogen removal performance and cold adaptation mechanism of immobilized cold-acclimation ANAMMOX granules at low temperatures. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10985. [PMID: 38305068 DOI: 10.1002/wer.10985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 02/03/2024]
Abstract
To improve the treatment performance of anaerobic ammonium oxidation (ANAMMOX) processes at low temperatures, the immobilized cold-acclimation ANAMMOX granules (R3) were prepared and their low-temperature nitrogen removal ability as well as the cold adaptation mechanism were analyzed. The results indicated that the total inorganic nitrogen (TIN) removal efficiency of R3 was significantly higher than that of R2 (cold-acclimation granules without immobilization) and R1 (common granules), especially at 11 ± 2 and 7 ± 2°C (68% and 54%). These were attributed to the remarkable biomass retention capacity of R3, high up to 4.3-4.9 mg/gVSS even at 5-18°C. Besides, higher protein (PN) content of tightly bound extracellular polymeric substances (TB-EPS) also facilitated microbial aggregation in R3. Meanwhile, R3 granules retained higher ANAMMOX activity and heme c content at 5-25°C. The original dominant ANAMMOX genus (Candidatus Kuenenia) in R3 kept higher abundance (49%-57%) at 23 ± 2 and 16 ± 2°C, whereas Candidatus Brocadia became the dominant ANAMMOX genus (25%-32%) in R3 at 11 ± 2 and 7 ± 2°C. Notably, different ANAMMOX genera in R3 may adapt to cold environment by regulating the expression of cold-stress proteins (CspA, CspB, PpiD, and UspA). PRACTITIONER POINTS: Immobilized cold-acclimation ANAMMOX granules showed higher nitrogen removal efficiency at 23°C → 5°C. Immobilization method effectively retained biomass (Candidatus Kuenenia and Candidatus Brocadia). Immobilization facilitated TB-EPS release and biological aggregation in cold-acclimation granules. Expression of cold-stress proteins in immobilized cold-acclimation granules was more active.
Collapse
Affiliation(s)
- Lin-Hua Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Civil and Architectural Engineering, Hebei Key Laboratory of Earthquake Engineering and Disaster Prevention, North China University of Science and Technology, Tangshan, China
| | - Jing Zhang
- College of Civil and Architectural Engineering, Hebei Key Laboratory of Earthquake Engineering and Disaster Prevention, North China University of Science and Technology, Tangshan, China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Chen XT, Zhao BH, Zhang J, Li YQ, Yang HS, Zhang YQ. Rapid start-up of partial nitrification reactor by exogenous AHLs and Vanillin combined with intermittent aeration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160191. [PMID: 36395855 DOI: 10.1016/j.scitotenv.2022.160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are common phenomena in microbial systems and play an important role in the nitrification process. However, rapidly start up partial nitrification regulated by N-acyl-homoserine lactones (AHLs)-mediated QS or QQ has not been reported. Hence, we chose N-butyryl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL) as the representative AHLs, and Vanillin as the representative quorum sensing inhibitor (QSI) combined intermittent aeration to investigate their effects on the start-up process of partial nitrification. The start-up speed in the group with C4-HSL or C6-HSL addition was 1.42 or 1.26 times faster than that without addition, respectively. Meanwhile, the ammonium removal efficiency with C4-HSL or C6-HSL addition was increased by 13.87 % and 17.30 % than that of the control group, respectively. And, partial nitrification could maintain for a certain period without AHLs further addition. The increase of Nitrosomonas abundance and ammonia monooxygenase (AMO) activity, and the decrease of Nitrobacter abundance and nitrite oxidoreductase (NXR) activity were the reasons for the rapid start-up of partial nitrification in the AHLs groups. Vanillin addition reduced AMO and hydroxylamine oxidoreductase (HAO) activity, and increased Nitrobacter abundance and NXR activity, thus these were not conducive to achieving partial nitrification. Denitrifying bacteria (Hydrogenophaga, Thauera and Aquimonas) abundance increased in the Vanillin group. QS-related bacteria and gene abundance were elevated in the AHLs group, and reduced in the Vanillin group. Function prediction demonstrated that AHLs promoted the nitrogen cycle while Vanillin enhanced the carbon cycle. This exploration might provide a new technical insight into the rapid start-up of partial nitrification based on QS control.
Collapse
Affiliation(s)
- Xiao-Tang Chen
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Bai-Hang Zhao
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Jing Zhang
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yu-Qi Li
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hai-Shan Yang
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yu-Qing Zhang
- Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Waheed H, Mehmood CT, Li Y, Du Y, Xiao Y. Biofouling control potential of quorum quenching anaerobes in lab-scale anaerobic membrane bioreactors: Foulants profile and microbial dynamics. CHEMOSPHERE 2023; 315:137760. [PMID: 36610508 DOI: 10.1016/j.chemosphere.2023.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Indigenously isolated anaerobes encoding four quorum quenching (QQ) enzymes were applied in immobilized- and bioaugmented forms for their implications on membrane foulants, microbial taxa, and biofouling control. Two identical anaerobic membrane bioreactors (AnMBRs) with different immobilizing media, i.e. silica-alginate (AnMBR-Si) and hollow fiber-alginate (AnMBR-Hf), were sequentially operated for two conventional and three QQ based phases. The synergistic addition of QQ anaerobes in free cells and the immobilized form prolonged the membrane filtration operation by 172 ± 29% and 284 ± 12% in AnMBR-Si and AnMBR-Hf, respectively. Biocake with low surface coverage was prominent during QQ application compared to conventional phases. Despite the better control of AHLs (3OC6-, C6-, 3OC8, C8, and C10-HSL) and AI-2 at various points of QQ phases, the QQ consortium could not maintain a low concentration of signals for longer period. Therefrom, quenching of targeted signal molecules instigate the dominance of microbial species bearing non-targeted quorum sensing mechanism. The QQ significantly altered the biofilm-forming community in mixed liquor, while the members with robust signal transduction systems became dominant to counteract the QQ mechanism and were the ultimate cause of biofouling. The improved methane content in biogas and increased methanogens composition during QQ phases demonstrated the synergism of exogenous and immobilized QQ as the most viable option for long-term AnMBR operation.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ch Tahir Mehmood
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ying Du
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
10
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|