1
|
Buitrago-Cortes J, Sarazin P, Dieme D, Côté J, Ouellet C, El Majidi N, Bouchard M. Follow-up Biomonitoring Study of Metal Exposure in Apprentice Welders in Montreal, Quebec, During Gas Metal Arc Welding (GMAW). Biol Trace Elem Res 2025; 203:2442-2457. [PMID: 39212818 DOI: 10.1007/s12011-024-04354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Welding activities are known to expose workers to metal fumes, but few studies have focused on assessing the internal exposure of apprentices in learning environments. This study aimed at determining internal doses of metals in apprentices performing gas metal arc welding (GMAW) during their training course. A total of 85 apprentice welders were assessed, and multi-elements were measured in urine, hair, fingernail, and toenail samples collected at the beginning of the program, and at the beginning and end of GMAW practical training. Concentrations of welding fumes and metals were also determined in personal respirable air samples. Serial measurements of metal concentrations in urine and hair, which reflect more recent exposure, showed an increase in arsenic (As), chromium (Cr), iron (Fe), and manganese (Mn) (and to a lesser extent nickel (Ni)) levels at the end of the GMAW process. Metal concentrations in fingernails and toenails showed a time-dependent increase in Fe, Mn, and Ni (and to a lesser extent cobalt (Co)) levels, reflecting cumulative exposure. Levels of Mn and Fe were high in personal air samples with respective median concentrations (95th percentiles) of 21 (300) and 230 (1900) µg/m3. Results show that even short-term exposure to welding fumes in a learning environment leads to a significant increase in absorbed metal doses, particularly for Fe and Mn. This follow-up study confirmed the interest and usefulness of measuring multi-elements in multiple matrices to assess internal exposure to welding fumes and its applicability to occupational or even population exposure to metals.
Collapse
Affiliation(s)
- Jairo Buitrago-Cortes
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Philippe Sarazin
- Chemical and Biological Hazards Prevention, Institut de Recherche Robert-Sauvé en santé et en sécurité du travail du Québec, 505 Boulevard de Maisonneuve O, Montréal, QC, H3A 3C2, Canada
| | - Denis Dieme
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Capucine Ouellet
- Chemical and Biological Hazards Prevention, Institut de Recherche Robert-Sauvé en santé et en sécurité du travail du Québec, 505 Boulevard de Maisonneuve O, Montréal, QC, H3A 3C2, Canada
| | - Naïma El Majidi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
2
|
Buitrago-Cortes J, Sarazin P, Dieme D, El Majidi N, Bouchard M. Factors influencing metal concentrations in hair and nails during longitudinal follow-up of apprentice welders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1030-1049. [PMID: 39360830 DOI: 10.1080/15287394.2024.2410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The aim of this study was to determine factors influencing observed increased metal biomarkers of exposure levels in a group of 116 Quebec apprentice welders during a longitudinal follow-up of exposure. Analysis of 14 metals was carried out in hair, fingernail, and toenail samples taken from participants over the course of their welding curriculum at 6 different times. Personal and socio-demographic characteristics, lifestyle habits, and other potential confounding factors were documented by questionnaire. Multivariate linear mixed-effect models were used to assess main predictors of metal concentrations in each biological matrix including increasing time of exposure throughout the curriculum (defined as the repeated measure "time" variable"). Significant associations between repeated measure "time" variable and metal levels in hair, fingernails, and toenails were found for chromium, iron, manganese and nickel. Significant associations with "time" were also noted for arsenic levels in hair and fingernails, and for barium, cobalt and vanadium levels in fingernails and toenails. The repeated measure "time" variable, hence increasing time of exposure throughout the curriculum, was the predominant predictor of elevated biological metal levels. Reduced spaces and simultaneous activities such as oxyfuel-cutting and welding in the same welding room were suspected to contribute to higher metal levels. Age, ethnicity, and annual household income exerted an effect on metal levels and considered as confounders in the models. Variations observed in metal levels between hair and nails of apprentice welders also emphasized the relevance and importance of performing multi-matrix and multi-element biomonitoring to assess temporal variations in biological metal concentrations during welding curriculum.
Collapse
Affiliation(s)
- Jairo Buitrago-Cortes
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Canada
| | - Philippe Sarazin
- Chemical and Biological Hazard Prevention, Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - Denis Dieme
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Canada
| | - Naïma El Majidi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Canada
| |
Collapse
|
3
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
4
|
Solorio-Rodriguez SA, Wu D, Boyadzhiev A, Christ C, Williams A, Halappanavar S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:743. [PMID: 38727337 PMCID: PMC11085103 DOI: 10.3390/nano14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Metal oxide nanoparticles (MONP/s) induce DNA damage, which is influenced by their physicochemical properties. In this study, the high-throughput CometChip and micronucleus (MicroFlow) assays were used to investigate DNA and chromosomal damage in mouse lung epithelial cells induced by nano and bulk sizes of zinc oxide, copper oxide, manganese oxide, nickel oxide, aluminum oxide, cerium oxide, titanium dioxide, and iron oxide. Ionic forms of MONPs were also included. The study evaluated the impact of solubility, surface coating, and particle size on response. Correlation analysis showed that solubility in the cell culture medium was positively associated with response in both assays, with the nano form showing the same or higher response than larger particles. A subtle reduction in DNA damage response was observed post-exposure to some surface-coated MONPs. The observed difference in genotoxicity highlighted the mechanistic differences in the MONP-induced response, possibly influenced by both particle stability and chemical composition. The results highlight that combinations of properties influence response to MONPs and that solubility alone, while playing an important role, is not enough to explain the observed toxicity. The results have implications on the potential application of read-across strategies in support of human health risk assessment of MONPs.
Collapse
Affiliation(s)
- Silvia Aidee Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Callum Christ
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
5
|
Olšovská E, Mikušová ML, Tulinská J, Rollerová E, Vilamová Z, Líšková A, Horváthová M, Szabová M, Svoboda L, Gabor R, Hajnyš J, Dvorský R, Kukutschová J, Lukán N. Immunotoxicity of stainless-steel nanoparticles obtained after 3D printing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116088. [PMID: 38350218 DOI: 10.1016/j.ecoenv.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This study aims to investigate the in vitro effects of nanoparticles (NPs) produced during the selective laser melting (SLM) of 316 L stainless steel metal powder on the immune response in a human blood model. Experimental data did not reveal effect on viability of 316 L NPs for the tested doses. Functional immune assays showed a significant immunosuppressive effect of NPs. There was moderate stimulation (117%) of monocyte phagocytic activity without significant changes in phagocytic activity and respiratory burst of granulocytes. A significant dose-dependent increase in the levels of the pro-inflammatory cytokine TNF-a was found in blood cultures treated with NPs. On the contrary, IL-8 chemokine levels were significantly suppressed. The levels of the pro-inflammatory cytokine IL-6 were reduced by only a single concentration of NPs. These new findings can minimise potential health risks and indicate the need for more research in this area.
Collapse
Affiliation(s)
- Eva Olšovská
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Material Science and Technology, Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic.
| | - Miroslava Lehotská Mikušová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Jana Tulinská
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Eva Rollerová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Zuzana Vilamová
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Materials and Technology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Aurélia Líšková
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Mira Horváthová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Michaela Szabová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Ladislav Svoboda
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roman Gabor
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jiří Hajnyš
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Richard Dvorský
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jana Kukutschová
- Faculty of Material Science and Technology, Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Norbert Lukán
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| |
Collapse
|
6
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Chen Y, Gong Q, Shi Y, Deng M. High-resolution mapping and evolution of steel stocks and waste in civil buildings: a case study of Changsha, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65675-65687. [PMID: 37086317 DOI: 10.1007/s11356-023-26851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Systematic estimation of steel stocks and waste in urban areas and analysis of its historical evolution pattern is crucial for urban buildings steel recycling and environmental sustainability. However, it is a challenging task to collect big data from different sources and estimate accurately with high resolution. In this study, we proposed a novel hybrid approach (GMB model) to estimate building steel stocks and the annual waste rate through combining Geographic Information System, Material Flow Analysis, and Big Data Mining techniques. We estimated the civil-building steel stocks and amount of waste in Changsha urban area from 1985 to 2020 based on the GMB model, and analyzed the historical evolution pattern of steel stocks by using standard deviation ellipse and kernel density. The results showed that the cumulative steel stock in civil buildings grew from 0.66 million tons in 1985 to 8.26 million tons in 2020. The amount of waste increased by 2557 times. The spatiotemporal analysis showed that variations in distribution of the steel stocks are mainly concentrated in the central city, indicating a "central-peripheral" distribution, with a southward trend in the standard deviation ellipse and a southeast-northwest direction in the center of gravity of the steel stocks. There is low-high and high-low spatial aggregation patterns. We also compared the experimental results with the observed data to determine the feasibility of the GMB model. Our study can promote the management of steel resources recycling and aid to achieve the green and low-carbon goals in sustainable development policies.
Collapse
Affiliation(s)
- Youliang Chen
- Department of Geo-Informatics, Central South University, Changsha, 410000, China.
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Qu Gong
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yan Shi
- Department of Geo-Informatics, Central South University, Changsha, 410000, China
| | - Min Deng
- Department of Geo-Informatics, Central South University, Changsha, 410000, China
| |
Collapse
|
8
|
Bocca B, Battistini B, Leso V, Fontana L, Caimi S, Fedele M, Iavicoli I. Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers. TOXICS 2023; 11:120. [PMID: 36850996 PMCID: PMC9962841 DOI: 10.3390/toxics11020120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Advances in nanotechnology have led to an increased use of engineered nanoparticles (ENPs) and the likelihood for occupational exposures. However, how to assess such exposure remains a challenge. In this study, a methodology for human biomonitoring, based on Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS), was developed as a tool to assess the ENPs exposure of workers involved in nanomaterial activities in two Italian Companies. The method was validated for size and number concentration determination of Ag, Au, In2O3, Ir, Pd, Pt, and TiO2 NPs in urine and blood samples. The results showed the presence of In2O3 NPs in blood of exposed workers (mean, 38 nm and 10,371 particles/mL), but not in blood of controls. Silver, Au, and TiO2 NPs were found in urine (mean, Ag 29 nm and 16,568 particles/mL) or blood (mean, Au 15 nm and 126,635 particles/mL; TiO2 84 nm and 27,705 particles/mL) of workers, though these NPs were found also in controls. The presence of ENPs in both workers and controls suggested that the extra-professional exposure is a source of ENPs that cannot be disregarded. Iridium, Pd, and Pt NPs were not detected neither in blood nor in urine. Overall, the findings provided a rational basis to evaluate the exposure assessment to ENPs in cohorts of workers as part of risk assessment and risk management processes in workplaces.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | - Luca Fontana
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Caimi
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mauro Fedele
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|