1
|
Abu Elella MH, Abdallah HM, Ali EA, Makhado E, Abd El-Ghany NA. Recent developments in conductive polysaccharide adsorbent formulations for environmental remediation: A review. Int J Biol Macromol 2025; 304:140915. [PMID: 39947533 DOI: 10.1016/j.ijbiomac.2025.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Environmental remediation is crucial for human life and ecosystems, involving the cleanup of contaminated water to protect health and restore ecological balance. However, rapid industrialization and population growth have worsened pollution, particularly in water bodies, making effective wastewater treatment a key challenge in ensuring clean drinking water, and the adsorption of toxic gases for air treatment are the main strategies for environmental remediation. Among the various treatment methods, adsorption stands out for its high selectivity, low energy and chemical use, ease of operation, and cost-effectiveness. To date, innovative, highly efficient, non-toxic, engineered adsorbent materials have received potential interest from scientific and governmental communities. Conducting polymer-modified polysaccharide formulations are crucial in wastewater treatment due to their high surface area, adsorption efficiency, excellent stability, and eco-friendly, biodegradable properties. This review offers an extensive overview of recent progress in synthesizing conducting polymer-modified polysaccharide formulations (hydrogels, aerogels, nanofibers, and nanocomposites) for capturing toxic heavy metal ions, organic dyes, pharmaceuticals, phenols as well as adsorbing different toxic gases using various adsorption mechanisms. It also emphasizes the integration of different nanofillers, including carbon-based materials, Mxenes, nanoclay, metal/metal oxides, and hybrid nanomaterials, into conductive polysaccharide chains to improve their physicochemical properties and adsorption efficiency. The reported data showed that these engineered adsorbent materials based on conductive polysaccharide formulations have immense potential for wastewater treatment applications, offering more effective and sustainable solutions.
Collapse
Affiliation(s)
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Eman AboBakr Ali
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, Polokwane 0727, South Africa
| | | |
Collapse
|
2
|
Ding Q, Ji C, Wang T, Wang Y, Yang H. Hairy chitin nanocrystals: Sustainable adsorbents for efficient removal of organic dyes. Int J Biol Macromol 2025; 298:139948. [PMID: 39828162 DOI: 10.1016/j.ijbiomac.2025.139948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Chitin nanocrystals (ChNCs) are typically produced using a combination of strong acid hydrolysis and mechanical treatments. In this study, a mild, energy-efficient, and environmentally friendly method was developed to prepare a novel form of chitin nanocrystals called hairy chitin nanocrystals (HChNCs) without the need of any mechanical treatments. The HChNCs were made by sequential oxidations on partially deacetylated chitin, resulting in a unique morphology with chitin molecular chains protruding from central chitin nanorods. These HChNCs have a high content of carboxyl groups, reaching up to 2.72 mmol/g, which enhances their ability to adsorb methylene blue (MB) effectively. Within just 1 min, the HChNCs can adsorb as much as 909.11 ± 17.44 mg/g of MB, a significantly higher capacity compared to other chitin-derived materials. Additionally, the HChNCs showed remarkable synergistic removal efficiency for both MB and methyl orange (MO) in a mixed dye system, making them a promising sustainable option for treating wastewater from industrial printing and dyeing processes.
Collapse
Affiliation(s)
- Qian Ding
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunyu Ji
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifeng Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Koirala P, Bhattarai P, Sriprablom J, Zhang R, Nirmal S, Nirmal N. Recent progress of functional nano-chitosan in pharmaceutical and biomedical applications: An updated review. Int J Biol Macromol 2025; 285:138324. [PMID: 39638188 DOI: 10.1016/j.ijbiomac.2024.138324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chitosan is a deacylated derivative of chitin, which is a naturally occurring polysaccharide found in the shells of crustaceans. Chitosan's biocompatibility, physicochemical and mechanical properties qualify it as an excellent candidate for biomedical and pharmaceutical applications. Furthermore, the nanoengineering of chitosan enhances its functional and desirable properties for various applications. Additional functionalization of nano-chitosan is possible using various crosslinkers via chemical modification of hydroxyl or amino groups chitosan. This advanced functionalized nano-chitosan enables drug stability, site-specific delivery, controlled release, and sustainable pharmacodynamic properties. It is also used as a regenerative medicine for wound healing, bone and dental repair, biosensing and disease detection, tissue engineering, etc. Therefore, this review discusses the functionalization of nano-chitosan. A brief discussion is provided on the applications of nano-chitosan in the pharmaceutical industry such as drug carriers, targeted delivery, and controlled release, as well as in the biomedical industry, including wound healing, bone, and dental repair. Additionally, the disease detection using nano-chitosan has been investigated. Lastly, future perspectives and concluding remarks are presented.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Prabina Bhattarai
- Department of Health and Human Development, Montana State University, Bozeman, MT, USA
| | - Jiratthitikan Sriprablom
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Siddhesh Nirmal
- Maharashtra Institute of Technology, Chatrapati Sambhaji Nagar, Aurangabad, Maharashtra 431010, India
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
5
|
Iñiguez-Moreno M, Santiesteban-Romero B, Melchor-Martínez EM, Parra-Saldívar R, González-González RB. Valorization of fishery industry waste: Chitosan extraction and its application in the industry. MethodsX 2024; 13:102892. [PMID: 39221014 PMCID: PMC11363563 DOI: 10.1016/j.mex.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
6
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
7
|
Huang S, Liu T, Liu Y, Duan Y, Zhang J. Gradient heating activated ammonium persulfate oxidation for efficient preparation of high-quality chitin nanofibers. Carbohydr Polym 2024; 340:122308. [PMID: 38858009 DOI: 10.1016/j.carbpol.2024.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
APS is a cheap and eco-friendly oxidant which enables one-step extraction of nanochitin (NCh) from fishery wastes. However, it is challenging to improve the preparation efficiency and NCh quality simultaneously, owing to the uneven or uncontrollable oxidation. Herein, we propose a simple and controllable way to isolate chitin nanofibers (ChNFs) from squid pen by gradient heating activated (GHA)- ammonium persulfate (APS) oxidation. Compared to the isothermal activated (ITA)-APS oxidation, our strategy reduced the mass ratio of squid pen to APS from 1:45 to 1:6 and reaction time from 15 h to 8 h. Meanwhile, the as-prepared ChNFs exhibited high yield (91.5 %), light transmittance (98 % at 500 nm), crystallinity index (96.9 %), and carboxyl content (1.53 mmol/g). GHA-APS oxidation involved multiple continuous heating and isothermal stages. The former stimulates a moderate activation of APS and enhances the oxidation rate, while the latter provides a duration for surface chemistry. This non-isothermal heating facilitates the continuous decomposition of APS at a relatively high and consistent rate, thereby enhances its oxidation efficiency. Furthermore, green assessments indicate this method is simple, time-saving, eco-friendly and cost-effective. Overall, this work introduces a novel perspective for the industrial extraction of high-efficiency and high-quality nanomaterials.
Collapse
Affiliation(s)
- Shasha Huang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tianjiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yunxiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
8
|
Laanoja J, Sihtmäe M, Vihodceva S, Iesalnieks M, Otsus M, Kurvet I, Kahru A, Kasemets K. Synthesis and synergistic antibacterial efficiency of chitosan-copper oxide nanocomposites. Heliyon 2024; 10:e35588. [PMID: 39170383 PMCID: PMC11337737 DOI: 10.1016/j.heliyon.2024.e35588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Copper and chitosan are used for biomedical applications due to their antimicrobial properties. In this study, a facile method for the synthesis of chitosan-copper oxide nanocomposites (nCuO-CSs) was modified, yielding stable colloidal nCuO-CSs suspensions. Using this method, nCuO-CSs with different copper-to-chitosan (50-190 kDa) weight ratios (1:0.3, 1:1, 1:3) were synthesized, their physicochemical properties characterized, and antibacterial efficacy assessed against Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. The nCuO-CSs with a primary size of ∼10 nm and a ζ-potential of >+40 mV proved efficient antibacterials, acting at concentrations around 1 mg Cu/L. Notably, against Gram-negative bacteria, this inhibitory effect was already evident after a 1-h exposure and surpassed that of copper ions, implying to a synergistic effect of chitosan and nano-CuO. Indeed, using flow cytometry and confocal laser scanning microscopy, we showed that chitosan promoted interaction between the nCuO-CSs and bacterial cells, facilitating the shedding of copper ions in the close vicinity of the cell surface. The synergy between copper and chitosan makes these nanomaterials promising for biomedical applications (e.g., wound dressings).
Collapse
Affiliation(s)
- Jüri Laanoja
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Svetlana Vihodceva
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Mairis Iesalnieks
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
9
|
Nirmal N, Demir D, Ceylan S, Ahmad S, Goksen G, Koirala P, Bono G. Polysaccharides from shell waste of shellfish and their applications in the cosmeceutical industry: A review. Int J Biol Macromol 2024; 265:131119. [PMID: 38522682 DOI: 10.1016/j.ijbiomac.2024.131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Shell waste from shellfish processing contains valuable natural polysaccharides, including sulfated polysaccharides, acidic polysaccharides, glycosaminoglycans, chitin and their derivatives. These shellfish waste-derived polysaccharides have numerous functional and biological properties that can be applied in various industries, including the cosmeceutical industry. In keeping with global sustainability and green industry trends, the cosmeceuticals industry is transitioning from petrochemical-based ingredients to natural substitutes. In this context, shell waste-derived polysaccharides and their derivatives can play a major role as natural substitutes for petroleum-based components in various cosmeceutical skincare, hair care, oral care and body care products. This review focuses on the presence of polysaccharides and their derivatives in shell waste and discusses their various cosmeceutical applications in skin care, hair care, sun care, oral care and body care products. This indicates that shell waste utilization will help create a circular economy in which extracted polysaccharides are used to produce green cosmeceutical products.
Collapse
Affiliation(s)
- Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Türkiye
| | - Sameer Ahmad
- Food Technology Department, Jamia Hamdard, G782+55X, Mehrauli - Badarpur Rd, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara 61, 91026 Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
10
|
Zhang Z, Ma Z, Song L, Farag MA. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 2024; 57:59-76. [PMID: 37931655 PMCID: PMC10918363 DOI: 10.1016/j.jare.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt.
| |
Collapse
|
11
|
Koirala P, Bhandari Y, Khadka A, Kumar SR, Nirmal NP. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int J Biol Macromol 2024; 262:130008. [PMID: 38331073 DOI: 10.1016/j.ijbiomac.2024.130008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Yash Bhandari
- Department of Nutrition and Dietetics, Central Campus of Technology, Tribhuvan University, Nepal
| | - Abhishek Khadka
- Rural Reconstruction Nepal, 288 Gairidhara Road 2, Kathmandu Metropolitan City, Bagmati, Nepal
| | - Simmi Ranjan Kumar
- Department of Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
12
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|