1
|
Wang H, Wang H, Wei S, Sun L, Cheng L. Interaction between arbuscular mycorrhizal fungi and dark septate endophytes in the root systems of Populus euphratica and Haloxylon ammodendron under different drought conditions in Xinjiang, China. FRONTIERS IN PLANT SCIENCE 2025; 15:1504650. [PMID: 39931336 PMCID: PMC11808033 DOI: 10.3389/fpls.2024.1504650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Background and Aims Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) are known to enhance the tolerance of host plants to biotic and abiotic stresses, but the mechanism of their interaction under natural conditions has not been extensively studied. Methods We analyzed the endophytic fungal diversity and colonization characteristics in the typical desert plants Populus euphratica and Haloxylon ammodendron and the relationship between them and environmental factors. Results Except for DSE in the roots of H. ammodendron, the colonization rates of AMF and DSE were significantly positively correlated with drought severity. The abundance of AMF and DSE under medium and mild drought conditions was greater than that under severe drought conditions. The root colonization rate and abundance of AMF were lower than those of DSE under the same drought conditions. The species diversity and abundance of AMF and DSE in P. euphratica were greater than those in H. ammodendron. AMF were more susceptible to soil factors such as soil water content, soil nitrogen and phosphorus content, and urease, whereas DSE were more affected by pH. Conclusion Drought stress has different effects on AMF and DSE in the roots of P. euphratica and H. ammodendron. DSE have a greater advantage in extremely arid environments. This study demonstrates the interaction between AMF and DSE with the host plants P. euphratica and H. ammodendron as well as their effects on the adaptation of host plants to the desert environment, which can provide a basis for strengthening desert vegetation management.
Collapse
Affiliation(s)
- Huimei Wang
- College of Ecology Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
| | - Hengfang Wang
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Xinjiang University, Urumqi, China
| | - Shengtao Wei
- College of Ecology Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
| | - Li Sun
- College of Ecology Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Xinjiang University, Urumqi, China
| | - Linlin Cheng
- College of Ecology Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Li X, Wang L, Wang H, Hao R, Gao L, Cui H, Wu H, Wu X, Qiao T, Bai W, Zhang L. Dynamic physiology and transcriptomics revealed the alleviation effect of melatonin on Reaumuria trigyna under continuous alkaline salt stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1486436. [PMID: 39906237 PMCID: PMC11790669 DOI: 10.3389/fpls.2024.1486436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025]
Abstract
Introduction Reaumuria trigyna, a pivotal salt-tolerant plant species in Central Asian salt desert ecosystems, has garnered significant attention due to its resilience under harsh environmental conditions. This study investigates the response mechanisms of melatonin on the dynamic physiology and transcriptomics of Reaumuria trigyna, a critical salt-tolerant plant species in Central Asian salt desert ecosystems. Despite significant progress in understanding plant salt tolerance, research on the positive effects of melatonin on Reaumuria trigyna, particularly its impact on seed germination and the underlying physiological and molecular mechanisms, remains limited. Methods In this study, we evaluated the physiological responses of Reaumuria trigyna under continuous alkaline salt stress and examined the effect of melatonin on seed germination. Results Our results demonstrate that melatonin at concentrations of 300μmol/L significantly enhances plant growth and promotes the accumulation of osmotic regulators. Notably, melatonin treatment increased the germination rate by 35.48% compared to the alkaline salt stress group, which exhibited a 52.15% lower germination rate than the untreated control. The key mechanism identified involves melatonin's ability to increase antioxidant enzyme activity, reduce reactive oxygen species and hydrogen peroxide levels, and alter gene expression patterns. Discussion Transcriptomic analysis revealed significant changes in gene expression, particularly in photosynthetic signal transduction, phytohormone signaling, MAPK signaling, and the peroxisome pathway, which are crucial for the plant's response to alkaline salt stress. Our findings provide new insights into how melatonin affects plant growth, salt tolerance, seed germination, and gene expression in Reaumuria trigyna under continuous alkaline salt stress. These results address a significant gap in current scientific knowledge and offer valuable theoretical support and practical guidance for cultivating salt-resistant crops and the ecological restoration of salt-affected desert environments.
Collapse
Affiliation(s)
- Xuebo Li
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Lei Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Heyi Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Hao
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Lunkai Gao
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongbo Cui
- Office of the People's Government of Haibowan District, District People’s Government of Haibowan District, Wuhai, Inner Mongolia Autonomous Region, China
| | - Hai Wu
- Office of the People's Government of Haibowan District, District People’s Government of Haibowan District, Wuhai, Inner Mongolia Autonomous Region, China
| | - Xiaodong Wu
- Office of the People's Government of Haibowan District, District People’s Government of Haibowan District, Wuhai, Inner Mongolia Autonomous Region, China
| | - Tong Qiao
- Office of the Bureau of Natural Resources, Natural Resources Bureau of Haibowan District, Wuhai, Inner Mongolia Autonomous Region, China
| | - Weijie Bai
- Office of the Bureau of Natural Resources, Natural Resources Bureau of Haibowan District, Wuhai, Inner Mongolia Autonomous Region, China
| | - Liming Zhang
- Office of the Civil Affairs Bureau of Wuhai City, Civil Affairs Bureau, Wuhai, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Yang B, Federmann P, Warth V, Ren M, Mu X, Wu H, Bäckvall JE. Total Synthesis of Strigolactones via Palladium-Catalyzed Cascade Carbonylative Carbocyclization of Enallenes. Org Lett 2024; 26:4637-4642. [PMID: 38805214 PMCID: PMC11165582 DOI: 10.1021/acs.orglett.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.
Collapse
Affiliation(s)
- Bin Yang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Patrick Federmann
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Viktoria Warth
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mingzhe Ren
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin Mu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
4
|
Verma KK, Joshi A, Song XP, Liang Q, Xu L, Huang HR, Wu KC, Seth CS, Arora J, Li YR. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. FRONTIERS IN PLANT SCIENCE 2024; 15:1377793. [PMID: 38855463 PMCID: PMC11157439 DOI: 10.3389/fpls.2024.1377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Hai-rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Kai-Chao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | | | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
5
|
Bala IA, Nicolescu A, Georgescu F, Dumitrascu F, Airinei A, Tigoianu R, Georgescu E, Constantinescu-Aruxandei D, Oancea F, Deleanu C. Synthesis and Biological Properties of Fluorescent Strigolactone Mimics Derived from 1,8-Naphthalimide. Molecules 2024; 29:2283. [PMID: 38792143 PMCID: PMC11124091 DOI: 10.3390/molecules29102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.
Collapse
Affiliation(s)
- Ioana-Alexandra Bala
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Alina Nicolescu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | | | - Florea Dumitrascu
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Radu Tigoianu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, 240050 Ramnicu Valcea, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Calin Deleanu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| |
Collapse
|
6
|
Brooks SJ, Gomes T, Almeida AC, Christou M, Zheng C, Shaposhnikov S, Popa DG, Georgescu F, Oancea F. An ecotoxicological assessment of a strigolactone mimic used as the active ingredient in a plant biostimulant formulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116244. [PMID: 38537480 DOI: 10.1016/j.ecoenv.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
A risk assessment on the aquatic toxicity of the plant biostimulant strigolactone mimic (2-(4-methyl-5-oxo-2,5-dihydro-furan-2-yloxy)-benzo[de]isoquinoline-1,3-dione (SL-6) was performed using a suite of standardised bioassays representing different trophic groups and acute and chronic endpoints. In freshwater, three trophic groups of algae, crustacea and fish were used. Whilst in seawater, algae (unicellular and macroalgae), Crustacea and Mollusca were employed. In addition, the genotoxicity of SL-6 was determined with the comet assessment performed on unicellular marine algae, oysters, and fish embryos. This was the first time ecotoxicity tests have been performed on SL-6. In freshwater, the lowest LOEC was measured in the unicellular algae at 0.31 mg/L SL-6. Although, similar LOEC values were found for embryo malformations and impacts on hatching rate in zebrafish (LOEC 0.31-0.33 mg/L). Consistent malformations of pericardial and yolk sac oedemas were identified in the zebrafish embryos at 0.31 mg/L. In marine species, the lowest LOEC was found for both Tisbe battagliai mortality and microalgae growth at an SL-6 concentration of 1.0 mg/L. Significant genotoxicity was observed above control levels at 0.0031 mg/L SL-6 in the unicellular algae and 0.001 mg/L SL-6 in the oyster and zebrafish larvae. When applying the simple risk assessment, based on the lowest NOECs and appropriate assessment factors, the calculated predicted no effect concentration (PNEC), for the ecotoxicity and the genotoxicity tests were 1.0 µg/L and 0.01 µg/L respectively.
Collapse
Affiliation(s)
- Steven J Brooks
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | - Maria Christou
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | | | - Daria G Popa
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| | | | - Florin Oancea
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| |
Collapse
|
7
|
Danish S, Hareem M, Dawar K, Naz T, Iqbal MM, Ansari MJ, Salmen SH, Datta R. The role of strigolactone in alleviating salinity stress in chili pepper. BMC PLANT BIOLOGY 2024; 24:209. [PMID: 38519997 PMCID: PMC10960418 DOI: 10.1186/s12870-024-04900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Salinity stress can significantly delay plant growth. It can disrupt water and nutrient uptake, reducing crop yields and poor plant health. The use of strigolactone can be an effective technique to overcome this issue. Strigolactone enhances plant growth by promoting root development and improvement in physiological attributes. The current pot study used strigolactone to amend chili under no salinity and salinity stress environments. There were four treatments, i.e., 0, 10µM strigolactone, 20µM strigolactone and 30µM strigolactone. All treatments were applied in four replications following a completely randomized design (CRD). Results showed that 20µM strigolactone caused a significant increase in chili plant height (21.07%), dry weight (33.60%), fruit length (19.24%), fruit girth (35.37%), and fruit yield (60.74%) compared to control under salinity stress. Significant enhancement in chili chlorophyll a (18.65%), chlorophyll b (43.52%), and total chlorophyll (25.09%) under salinity stress validated the effectiveness of 20µM strigolactone application as treatment over control. Furthermore, improvement in nitrogen, phosphorus, and potassium concentration in leaves confirmed the efficient functioning of 20µM strigolactone compared to other concentrations under salinity stress. The study concluded that 20µM strigolactone is recommended for mitigating salinity stress in chili plants. Growers are advised to apply 20µM strigolactone to enhance their chili production under salinity stress.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Tayyaba Naz
- Saline Agriculture Research Centre, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38400, Pakistan
| | - Muhammad Mazhar Iqbal
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| |
Collapse
|
8
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
9
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|