1
|
Zhao Z, Zhang L, Yao X, Wang H, Saadu T, Zhao Z. Precision methane quantification in aquatic environments: Overcoming the challenge of dissolved oxygen interference in MIMS. WATER RESEARCH 2025; 280:123532. [PMID: 40138863 DOI: 10.1016/j.watres.2025.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Membrane inlet mass spectrometry (MIMS) is a well-established technique for measuring dissolved gases and volatile compounds due to its high sensitivity, rapid analysis, minimal sample preparation and low cost. While it has been applied to measure dissolved methane (dCH4), the potential interference caused by dissolved oxygen (DO) in ionization has been overlooked. In this study, samples with different dCH4 and DO concentrations were measured by MIMS, and the results revealed that dCH4 could be overestimated when the effect of DO was not considered, especially for samples with high concentrations. We incorporated an orthogonal partial least squares (OPLS) model to identify and exclude DO interference for dCH4 determination Quantification of standard samples showed that our innovative MIMS-OPLS method effectively reduced the deviation in dCH4, achieving a 47.69 % reduction in root mean square error (RMSE) compared to the linear model without considering DO interference. Four applications, including batch samples, continuous processes and biochemical reaction mechanism studies, further demonstrated the reliability and accuracy of the MIMS-OPLS method for practical dCH4 quantification. The MIMS-OPLS method is suitable for dCH4 determination in waters with broad range of DO and provides precise insights into CH4 formation and its mechanisms, further highlighting this new options for advancing aquatic environmental monitoring and biochemical research.
Collapse
Affiliation(s)
- Zhongjing Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaolong Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tahir Saadu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
2
|
Qian C, Wang Q, Gilfedder BS, Frei S, Yu J, Kattel GR, Yu ZG. Seasonal dynamics of groundwater discharge: Unveiling the complex control over reservoir greenhouse gas emissions. WATER RESEARCH 2025; 269:122801. [PMID: 39571523 DOI: 10.1016/j.watres.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
The pronounced topographical differences, giving rise to numerous water bodies, also endow these formations with substantial hydraulic gradients, leading to pronounced groundwater discharge within their low-lying, natural reservoir settings. However, the dynamics of groundwater discharge in reservoirs and their impact on greenhouse gas (GHG) production and emission under different conditions remain unclear. This study focuses on a reservoir in southeastern China, where we conducted seasonal field observations alongside microcosm incubation experiments to elucidate the relationship between greenhouse gas emissions and groundwater discharge. Based on the radon (222Rn) mass balance model, groundwater discharge rates were estimated to be 2.14 ± 0.49 cm d-1 in autumn, 4.04 ± 2.09 cm d-1 in winter, 2.55 ± 1.32 cm d-1 in spring, and 2.61 ± 1.93 cm d-1 in summer. Groundwater discharge contributes on average to 31.23 % of CH4, 35.65 % of CO2, and 11.26 % of N2O emissions across all seasons in the reservoir. Groundwater primarily influences GHG emissions by directly inputting carbon and nitrogen, as well as by altering aquatic chemical conditions and the environment of dissolved organic matter (DOM), exerting significant effects particularly during spring and autumn seasons. Especially, in winter, higher groundwater discharge rates influence microbial activity and environmental conditions in the water body, including the C/N ratio, which somewhat reduces its enhancement of greenhouse gas emissions. This study provides an in-depth exploration of greenhouse gas emissions from reservoirs and examines the impact of groundwater on these emissions, aiming to reduce uncertainties in understanding greenhouse gas emission mechanisms and carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Chang Qian
- Key Laboratory Carbon Source and Sink-China of Ecosystem Meteorological Administration (ECSS-CMA)/School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qianqian Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Benjamin S Gilfedder
- Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | - Sven Frei
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Science, Wageningen University Research Centre, Wageningen, the Netherlands
| | - Jieyu Yu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Giri R Kattel
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
| | - Zhi-Guo Yu
- Key Laboratory Carbon Source and Sink-China of Ecosystem Meteorological Administration (ECSS-CMA)/School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China.
| |
Collapse
|
3
|
Tan W, Zhong Z, He Q, Yun X, Yang L, Wang X, Ji D, Wang G, Zhao J, Zhang X. Methane emission fluxes and associated microbial community characteristics in a temperate seagrass meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177991. [PMID: 39662403 DOI: 10.1016/j.scitotenv.2024.177991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Seagrass meadows are acknowledged as blue carbon ecosystems, yet they are also ideal habitats for methane (CH4) release, offsetting their ability to mitigate climate change. The global CH4 fluxes in seagrass meadows remain highly uncertain due to regional and species biases, and the microbial mechanisms driving methane release are poorly understood. Here, we investigated CH4 air-sea fluxes, sediment CH4 emission potential and microbes involved in CH4 release using geochemical techniques combined with qPCR and Illumina sequencing in a temperate Zostera japonica and Zostera marina mixed meadow. The CH4 air-sea fluxes fluctuated from -0.42 to 11.42 μmol·m-2·d-1, showing a strong seasonal variation. CH4 emission potential was significantly higher in seagrass vegetated sediments (10.34 ± 2.72 nmol·g-1·d-1) than in the adjacent bare sediments (1.55 ± 1.15 nmol·g-1·d-1), primarily attributed to variations in sediment organic matter content. Diverse methanogens occurred in the seagrass meadow, with Methanolobus dominating in seagrass sediments, while Methanococcoides, Methanosarcina, and Methanoculleus being prevalent in bare sediments. Meanwhile, a variety of methylotrophic groups were detected, including aerobic Gammaproteobacteria, anaerobic Desulfobacterota and Methylomirabilota, as well as archaea Candidatus Methanoperedens. The co-occurrence of these functional groups implied the presence of complex CH4 production and oxidation pathways, which regulated the CH4 budget in the seagrass ecosystems. Taken together, our findings enhance the comprehension of the methane emission process and driving mechanism in seagrass ecosystems.
Collapse
Affiliation(s)
- Wenwen Tan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihai Zhong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianling He
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xin Yun
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Lin Yang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xin Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daode Ji
- School of Ocean, Yantai University, Yantai 264005, China
| | - Guangyu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
4
|
Wang L, Xiang L, Wang X, Liu T, Chen H, Li D, Jian C, Guo W, Xiao Z, He Y. Utilization patterns strongly dominated the dynamics of CO 2 and CH 4 emissions from small artificial lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123613. [PMID: 39662434 DOI: 10.1016/j.jenvman.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Small lakes are significant sources of CO2 and CH4 emissions to atmosphere. The dynamics and controls of CO2 and CH4 emissions from human-dominated small lakes with diverse functions remain poorly understood. We investigated the spatiotemporal dynamics of CO2 and CH4 concentrations and fluxes in 33 small lakes around the urban area with different landscape properties and utilization patterns, to clarify the impact of human-dominated functional shift on their greenhouse gas emissions. Meanwhile, we used microcosm cultivation methods to assess the CO2 and CH4 production rates of sediments in these lakes. The results indicated that the utilization ways significantly influence the CO2 and CH4 emissions in these lakes, with urban landscape lakes and aquaculture lakes showing significantly higher emissions compared to irrigation water-supplying lakes and drinking-water lakes. Extensive urbanization and aquaculture practices could increase the risk of that small lakes turn into hotspots of CO2 and CH4 emissions, and further complicate their spatial heterogeneity. Meanwhile, the production potential of CO2 and CH4 in sediments, as well as gas fluxes in small lakes, exhibited consistent functional differentiation across different utilization patterns. They were mainly driven by changes in sediment organic carbon and microbial carbon. Additionally, the difference of organic carbon and nitrogen loads were another drives for the variability in CO2 and CH4 emissions. We highlighted that the continuous accumulation of nutrient loads in water and sediments in human-dominated small lakes has greatly enhanced the potential for carbon gas emissions. We also found that utilization ways can significantly affect the key controls of CO2 and CH4 emission from small lakes, and also influence the reliability of carbon emission prediction models based on water chemistry parameters. To accurately estimate the contribution of small lakes to the global greenhouse gas inventory, it is essential to establish adaptive predictive models that consider the uncertainties in lake carbon emissions resulting from human utilization patterns.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Lingyi Xiang
- Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; Chongqing Huadi Resources and Environmental Science and Technology Co., LTD, Chongqing, 400000, China
| | - Xiaofeng Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China.
| | - Tingting Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Honglin Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Dongfeng Li
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Chen Jian
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Wentao Guo
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Zuolin Xiao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Yixin He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Cui P, Zheng Y, Cui L, Su F. Sediment properties control riverine methane emissions: A case study of the Liao river in northern China. ENVIRONMENTAL RESEARCH 2024; 263:120076. [PMID: 39341533 DOI: 10.1016/j.envres.2024.120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
River and stream sediments act as biogeochemical reactors for greenhouse gases, particularly methane. However, understanding how riverbed sediment properties influence river carbon emissions remains relatively unclear. The Liao River in northern China is a typical watershed with heterogeneous water and sediment sources, characterized by varying sediment properties. In this study, we surveyed CH4 and CO2 emissions from its mainstem and tributaries during flood and dry seasons. We found consistent seasonal patterns in CH4 and CO2 emissions, with peaks occurring during the flood season. The average CH4 and CO2 fluxes were 1.64 ± 1.80 mmol m-2 d-1 and 59.66 ± 44.60 mmol m-2 d-1, respectively. Notably, the percentage of sediment silt was significantly correlated with CH4 concentration and flux (R2 = 0.12-0.30, p < 0.05). Fine particles dominated the availability of sediment organic matter and redox conditions, which were related to riverine CH4 production and emissions. Structural equation modeling revealed that both grain size and the percentage of TOC (total organic carbon) directly influenced riverine CH4 and CO2 emissions. The organic content and redox conditions of the riverbed sediment collectively explained 65% of riverine CH4 emissions, while grain size composition indirectly controlled CH4 emissions by altering sediment substrate quality and redox conditions. In contrast, river CO2 emissions were only weakly dependent on anaerobic metabolism in riverbed sediments. These findings enhance our understanding of the sources and metabolic mechanisms of riverine CH4 and CO2 emissions and offer potential improvements for estimating carbon fluxes in regional or global riverine networks by considering riverbed sediment properties.
Collapse
Affiliation(s)
- Panpan Cui
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yunlong Zheng
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, China; Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, China; Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, China.
| |
Collapse
|
6
|
Chingangbam SS, Khoiyangbam RS. Ebullition mediated transport dominates methane emission from open water area of the floating national park in Indo Burma hotspot. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64842-64856. [PMID: 39560867 DOI: 10.1007/s11356-024-35523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Ebullition is an important route of methane emission from aquatic ecosystems. Ebullitive CH4 emissions from the wetlands, particularly the mountain wetlands of Eastern Himalayan, are poorly understood. To gain insights into the role of ebullition in CH4 emissions and understand the factors influencing CH4 ebullition, we conducted field measurements of the spatial and temporal variation of ebullition in a freshwater wetland area in floating national park (40 sq. km, 780 m amsl, maximum depth < 4.5) in Northeast India. The average ebullitive CH4 flux ranged from 220.24 to 1889.35 mg m-2 d-1, while the overall CH4 fluxes varied widely ranging from 345.81 to 2240.56 mg m-2 d-1. Methane constituted 90.18% of the gas bubbles produced from the sediment, with CO2 comprising 8.82% of the total sediment gas in the wetland. This suggests that CH4 emission through ebullition plays an important role in transporting biogenic CH4 to the atmosphere. The ebullition rate was markedly higher during summer and lower during winter and exhibited a significant seasonal variation. At a spatial scale, the sites with dense aquatic vegetation growth increase CH4 emission where plants derived autochthonous sediment organic matter, substantiating the supply of carbon substrate for CH4 production. Linear mixed-effect models revealed that water temperature, organic matter, organic carbon and dissolved organic matter are the important factors affecting the ebullitive methane flux. Our results indicate that mountainous wetlands with organic-rich sediments may be potential hotspots for CH4 ebullition. However, the lack of information on these wetlands in the scientific literature emphasizes the need for further research.
Collapse
Affiliation(s)
- Suraj S Chingangbam
- Department of Environmental Science, Manipur University, Canchipur, Imphal, 795003, India
| | - Raju Singh Khoiyangbam
- Department of Environmental Science, Manipur University, Canchipur, Imphal, 795003, India.
| |
Collapse
|
7
|
Tian H, Du Y, Deng Y, Sun X, Zhu S, Xu J, Li Q, Gan Y, Wang Y. Seasonal Dynamics of Methane Fluxes from Groundwater to Lakes:Hydrological and Biogeochemical Controls. WATER RESEARCH 2024; 268:122679. [PMID: 39486152 DOI: 10.1016/j.watres.2024.122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Methane (CH4) inputs to lakes through lacustrine groundwater discharge (LGD-derived CH4) represent a potentially important but often overlooked source of lake methane emissions. Although great efforts have been made to quantify LGD-derived CH4 fluxes and their spatial variablity, the underlying mechanisms controlling seasonal LGD-derived CH4 fluxes and their influence on lake CH4 emissions remain poorly understood, particularly in humid inland areas. To address this gap, we applied the 222Rn mass balance model, as well as hydrological, isotopic and microbial methods to assess seasonal LGD-derived CH4 fluxes and their influence on the seasonal variability of lake methane emissions in a typical oxbow lake, central Yangtze River. The results revealed wide seasonal differences in LGD-derived CH4 fluxes, which were controlled by hydrological and biogeochemical processes. During the dry season, although more intense methane oxidation and weaker methanogenesis occurred in groundwater, the much higher LGD rate (51.71 mm/d) produced a higher LGD-derived CH4 flux (16.41 mmol/m2/d). During the wet season, methanogenesis was more active and methane oxidation was weaker, but a lower LGD rate (12.16 mm/d) led to a lower LGD-derived CH4 flux (5.33 mmol/m2/d). Furthermore, higher LGD-derived CH4 flux in the dry season resulted in higher CH4 emissions from the lake and diminished the extent of methane oxidation in the lake. In comparison to other regions, the differences in LGD-derived CH4 fluxes and their seasonal variations were found to be controlled by climatic conditions and lake types in different global regions. Higher LGD-derived CH4 fluxes and more pronounced seasonal variations could be associated with higher temperature, larger water depth and more intense water level fluctuations. This study provides a novel perspective and broader implications for the comprehension and evaluation of seasonal methane emissions and understanding the carbon cycle in global lake ecosystems in humid areas with intense water level fluctuations.
Collapse
Affiliation(s)
- Hao Tian
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China.
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan, 430205, China
| | - Xiaoliang Sun
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Shunjie Zhu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Jiawen Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan, 430205, China
| | - Yiqun Gan
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
8
|
Yang R, Ji M, Zhang X, He F, Yu Z, Zeng J, Zhao D. Methane emissions and microbial communities under differing flooding conditions and seasons in littoral wetlands of urban lake. ENVIRONMENTAL RESEARCH 2024; 250:118390. [PMID: 38331139 DOI: 10.1016/j.envres.2024.118390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Wetlands are the largest natural sources of methane (CH4) emissions worldwide. Littoral wetlands of urban lakes represent an ecotone between aquatic and terrestrial ecosystems and are strongly influenced by water levels, environmental conditions, and anthropogenic activities. Despite these littoral zones being potential "hotspots" of CH4 emissions, the status of CH4 emissions therein and the role of physicochemical properties and microbial communities regulating these emissions remain unclear. This study compared the CH4 fluxes, physicochemical properties, and CH4-cycling microbial communities (methanogens and methanotrophs) of three zones (a non-flooded supralittoral zone, a semi-flooded eulittoral zone, and a flooded infralittoral zone) in the littoral wetlands of Lake Pipa, Jiangsu Province, China, for two seasons (summer and winter). The eulittoral zone was a CH4 source (median: 11.49 and 0.02 mg m-2 h-1 in summer and winter, respectively), whereas the supralittoral zone acted as a CH4 sink (median: -0.78 and -0.09 mg m-2 h-1 in summer and winter, respectively). The infralittoral zone shifted from CH4 sink to source between the summer (median: -10.65 mg m-2 h-1) and winter (median: 0.11 mg m-2 h-1). The analysis of the functional genes of methanogenesis (mcrA) and methanotrophy (pmoA) and path analysis showed that CH4 fluxes were strongly regulated by biotic factors (abundance of the mcrA gene and alpha diversity of CH4-cycling microbial communities) and abiotic factors (ammonia nitrogen, moisture, and soil organic carbon). In particular, biotic factors had a major influence on the variation in the CH4 flux, whereas abiotic factors had a minor influence. Our findings provide novel insights into the spatial and seasonal variations in CH4-cycling microbial communities and identify the key factors influencing CH4 fluxes in littoral wetlands. These results are important for managing nutrient inputs and regulating the hydrological regimes of urban lakes.
Collapse
Affiliation(s)
- Runhan Yang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Mengting Ji
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiaomin Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fei He
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| |
Collapse
|