1
|
Mao J, Wang J, Chen H, Yan Q. Development of a sandwich-type electrochemical DNA sensor based on CeO 2/AuPt nanoprobes for highly sensitive detection of hepatitis B virus DNA. Bioelectrochemistry 2025; 163:108901. [PMID: 39787729 DOI: 10.1016/j.bioelechem.2025.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO2/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO2/AuPt modified signal probe DNA (S2-DNA). Leveraging the excellent H2O2 catalytic activity of the CeO2/AuPt nanocomposite, the constructed sandwich-type electrochemical DNA sensor was used to detect HBV DNA. By optimizing the detection conditions, the sensor showed a good linear response in the range of 1 fmol/L to 1 nmol/L, with a detection limit as low as 0.36 fmol/L. The sensor had good specificity, repeatability, and stability. Further, spiked recovery experiments of actual serum samples showed recoveries ranging from 98.7 % to 102.7 %, and the relative standard deviations were all lower than 4.77 %. This study provides a new method for the detection of HBV DNA with potential clinical applications.
Collapse
Affiliation(s)
- Jian Mao
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Jiaxin Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China.
| |
Collapse
|
2
|
Wang S, Ao J, Ding S, Shu T. Label-free electrochemical immunosensors based on Cu-Ni metal-organic framework and carbon nanotube composite for carcinoembryonic antigen detection. Bioelectrochemistry 2025; 163:108918. [PMID: 39883996 DOI: 10.1016/j.bioelechem.2025.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Monitoring cancer biomarkers is of great significance in clinical diagnosis. In this work, a label-free MWCNTs-COOH/CuNi-BTC/FTO electrochemical immunosensor was developed to quantitatively detect carcinoembryonic antigen (CEA). The bimetallic CuNi-BTC showed enhanced current than singe Ni-BTC, and the addition of the MWCNTs-COOH increased the conductivity and further amplified the current signal. The electrode was further modified with CEA antigen (Ag) and bovine serum albumin (BSA) was used to block the non-specific binding sites. Using the emplified current signal of CuNi-BTC, CEA was detected by a DPV method through the current change caused by the specific recognition reaction of Ag and Ab. Under optimal conditions, a range of 0.80-140 ng/mL and a detection limit of 0.046 ng/mL for CEA was obtained. This electrochemical immunosensor possessed good selectivity, reproducibility and long-term stability.
Collapse
Affiliation(s)
- Shi Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning 437100 PR China
| | - Jialin Ao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning 437100 PR China
| | - Saiwen Ding
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning 437100 PR China
| | - Ting Shu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning 437100 PR China; School of Pharmacy, Hubei University of Science and Technology, Xianning 437100 PR China.
| |
Collapse
|
3
|
Mohan B, Modi K, Singh G, Paul A, Garazade IM, Pombeiro AJL, Liu X, Sun W, Kim SS. Understanding the Electrochemical MOF Sensors in Detecting Cancer with Special Emphasis on Breast Carcinoma Biomarkers. Top Curr Chem (Cham) 2025; 383:9. [PMID: 39966301 DOI: 10.1007/s41061-025-00493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025]
Abstract
Cancer is a disease that claims millions of lives each year, often because early symptoms go unnoticed, a situation which severely impacts society. Point-of-care biosensors using metal-organic frameworks (MOFs) have the power to transform cancer biomarker detection due to their exceptional structural and conductive properties. This review discusses the electrochemical sensor's design and development of electroactive MOF materials with mechanistic insights. It highlights recent advancements in utilizing MOF composites to effectively detect cancer biomarkers in real samples. The emphasis on the critical application of MOFs in breast cancer biomarker detection presents its importance for women's health. The review thoroughly examines the adjustable structures, porosity, and fabrication capabilities of MOFs in identifying cancer biomarkers. It provides a detailed analysis of methods to enhance the sensitivity and applicability of MOF composites for cancer detection. Furthermore, the review explores strategies to boost sensor performance, tackles existing challenges head-on, and outlines promising prospects. It emphasizes the urgent need for advanced cancer detection tools and aims to motivate researchers to develop innovative solutions.
Collapse
Affiliation(s)
- Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Krunal Modi
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| | - Anup Paul
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Ismayil M Garazade
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
5
|
Wen X, Zhang L, Wang Y, Dong X, Sun Y, Xu B, Li C. A dual-mode label-free electrochemical immunosensor for ultrasensitive detection of procalcitonin by on-site vulcanization of dual-MOF heterostructure. Talanta 2024; 275:126186. [PMID: 38703482 DOI: 10.1016/j.talanta.2024.126186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Detection of procalcitonin (PCT) is crucial for the early identification of sepsis. PCT is primarily utilized in the multiple diagnosis of bacterial and viral illnesses along with to guide the application of antibiotics. Considering their advantages of high specificity and straightforward usage, electrochemical immunosensors offer significant application prospects in the detection of disease indicators. A dual-mode electrochemical immunosensor was constructed in this study to reliably identify PCT. In light of the synergistic effect of the dual-MOF derived heterostructure, the immunosensor demonstrating excellent square wave voltammetry (SWV) signals as well as significant catalytic activity for the H2O2 redox process. In addition to maintaining a low detection limit (SWV: 0.31 fg/mL and i-t: 0.098 fg/mL), the immunosensor offers an extensive linear response range (0.000001-100 ng/mL). The excellent performance is on account of the introduction of the local on-site sulfurized dual-MOF heterostructure with abundant metal chalcogenides/MOF interfaces, which boosts the specific surface area, offers an abundance of active sites, enhances conductivity, and raises catalytic activity. Furthermore, the immunosensor exhibits outstanding specificity, stability and reproducibility for the determination of PCT in serum, which is of great crucial for the clinical screening and diagnosis of sepsis.
Collapse
Affiliation(s)
- Xin Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Li Zhang
- SINOCHEM Environmental Science and Technology Engineering Co., Ltd., Liaoning, Shenyang, 110000, China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Xiaojing Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China.
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China.
| |
Collapse
|
6
|
Ding X, Lin H, Zhou J, Lin Z, Huang Y, Chen G, Zhang Y, Lv J, Chen J, Liu G, Xu X, Xu D. Silver Nanocomposites with Enhanced Shelf-Life for Fruit and Vegetable Preservation: Mechanisms, Advances, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1244. [PMID: 39120349 PMCID: PMC11314483 DOI: 10.3390/nano14151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Reducing fruit and vegetable waste and maintaining quality has become challenging for everyone. Nanotechnology is a new and intriguing technology that is currently being implemented in fruit and vegetable preservation. Silver nanomaterials provide superior antibacterial qualities, biodegradability, and biocompatibility, which expands their potential applications in fruit and vegetable preservation. Silver nanomaterials include silver nanocomposites and Ag-MOF, of which silver nanocomposites are mainly composed of silver nanoparticles. Notably, not all kinds of silver nanoparticles utilized in the preservation of fruits and vegetables are thoroughly described. Therefore, the synthesis, mechanism of action, and advancements in research on silver nanocomposites for fruit and vegetable preservation were discussed in this study.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Huan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanguo Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jing Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
7
|
Deng Y, Guo M, Zhou L, Huang Y, Srivastava S, Kumar A, Liu JQ. Prospects, advances and biological applications of MOF-based platform for the treatment of lung cancer. Biomater Sci 2024; 12:3725-3744. [PMID: 38958409 DOI: 10.1039/d4bm00488d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nowadays in our society, lung cancer is exhibiting a high mortality rate and threat to human health. Conventional diagnostic techniques used in the field of lung cancer often necessitate the use of extensive instrumentation, exhibit a tendency for false positives, and are not suitable for widespread early screening purposes. Conventional approaches to treat lung cancer primarily involve surgery, chemotherapy, and radiotherapy. However, these broad-spectrum treatments suffer from drawbacks such as imprecise targeting and significant side effects, which restrict their widespread use. Metal-organic frameworks (MOFs) have attracted significant attention in the diagnosis and treatment of lung cancer owing to their tunable electronic properties and structures and potential applications. These porous nanomaterials are formed through the intricate assembly of metal centers and organic ligands, resulting in highly versatile frameworks. Compared to traditional diagnostic and therapeutic modalities, MOFs can improve the sensitivity of lung cancer biomarker detection in the diagnosis of lung cancer. In terms of treatment, they can significantly reduce side effects and improve therapeutic efficacy. Hence, this perspective provides an overview concerning the advancements made in the field of MOFs as potent biosensors for lung cancer biomarkers. It also delves into the latest research dealing with the use of MOFs as carriers for drug delivery. Additionally, it explores the applications of MOFs in various therapeutic approaches, including chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Furthermore, this review comprehensively analyses potential applications of MOFs as biosensors in the field of lung cancer diagnosis and combines different therapeutic approaches aiming for enhanced therapeutic efficacy. It also presents a concise overview of the existing obstacles, aiming to pave the way for future advancements in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yong Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Shreya Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Ouyang R, Feng M, Zhao Y, Liu J, Ma Y, Liu X, Liu B, Miao Y. Cubic Na 0.5Bi 0.5TiO 3 nanoperovskite significantly expands the application of sensitive immunosensor for the detection of carcinoembryonic antigen. Mikrochim Acta 2024; 191:381. [PMID: 38858277 DOI: 10.1007/s00604-024-06451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
Nanosized sodium bismuth perovskite titanate (NBT) was synthesized and first used as the electrochemical immune sensing platform for the sensitive detection of carcinoembryonic antigen (CEA). Gold nanoparticles (Au NPs) grew on the surface of NBT through forming Au-N bond to obtain Au@NBT, and a label-free electrochemical immunosensor was proposed using Au@NBT as an immunosensing recognizer towards CEA. The well-ordered crystal structure of NBT was not changed at all after the modification of Au NPs outside, but significantly improved the conductivity, catalytic activity, and biocompatibility of the Au@NBT-modified electrode. The unique cubic crystal nanostructure of NBT offered a large active area for both Au NP modification and the subsequent immobilization of biomolecules over the electrode surface, triggering the effective generation of promising properties of the proposed Au@NBT-based electrochemical immunosensor. As expected, favorable detection performances were achieved using this immunosensor towards CEA detection, where a good linear relationship between the current response and CEA concentration was obtained in the concentration range 10 fg mL-1 to 100 ng mL-1 with a low detection limit (LOD) of 13.17 fg mL-1. Also, the significantly enhanced selectivity, and stability guaranteed the promising electrochemical properties of this immunosensor. Furthermore, the analysis of real serum samples verified the high feasibility of this new method in clinical CEA detection. This work opens a new window for the application of nanoperovskite in the early detection of CEA.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meina Feng
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanhui Ma
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
9
|
Dilek ON, Arslan Kahraman Dİ, Kahraman G. Carcinoembryonic antigen in the diagnosis, treatment, and follow-up of focal liver lesions. World J Gastrointest Surg 2024; 16:999-1007. [PMID: 38690060 PMCID: PMC11056666 DOI: 10.4240/wjgs.v16.i4.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024] Open
Abstract
In this editorial review, we comment on the article published in the recent issue of the World Journal of Gastrointestinal Surgery. Carcinoembryonic antigen (CEA) is a fetal glycoprotein and can be secreted in very small amounts from healthy adults after birth. CEA is widely used not only for diagnostic tumor markers but also importantly for the management of some gastrointestinal tumors. The most common clinical use is surveillance for the monitoring of colorectal carcinoma. However, CEA can become elevated in several malign or benign characterized pathologies. Serum CEA level may vary depending on the location of the lesion, whether it metastasizes or not, and its histopathological characteristics. It has been determined that cases with high preoperative CEA have a more aggressive course and the risk of metastasis to the lymph tissue and liver increases. In this editorial review, we focused on evaluating the role of CEA in clinical practice with a holistic approach, including the diagnostic and prognostic significance of CEA in patients with focal liver lesions, the role of CEA in follow-up after definitive surgery, and also hepatic resection for metastasis, and the management of all patients with raised CEA.
Collapse
Affiliation(s)
- Osman Nuri Dilek
- Department of Surgery, İzmir Katip Celebi University, School of Medicine, İzmir 35150, Turkey
| | | | - Gökhan Kahraman
- Department of Radiology, Suluova State Hospital, Amasya 5500, Turkey
| |
Collapse
|
10
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Recent advancements in the specific determination of carcinoembryonic antigens using MOF-based immunosensors. RSC Adv 2024; 14:9571-9586. [PMID: 38516167 PMCID: PMC10955552 DOI: 10.1039/d3ra07059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Carcinoembryonic antigens (CEAs) are prominent cancer biomarkers that enable the early detection of numerous cancers. For effective CEA screening, rapid, portable, efficient, and sensitive diagnosis approaches should be devised. Metal-organic frameworks (MOFs) are porous crystalline materials that have received major attention for application in high-efficiency signal probes owing to their advantages such as large specific surface area, superior chemical stability and tunability, high porosity, easy surface functional modification, and adjustable size and morphology. Immunoassay strategies using antigen-antibody specific interaction are one of the imperative means for rapid and accurate measurement of target molecules in biochemical fields. The emerging MOFs and their nanocomposites are synthesized with excellent features, providing promising potential for immunoassays. This article outlines the recent breakthroughs in the synthesis approaches of MOFs and overall functionalization mechanisms of MOFs with antigen/antibody and their uses in the CEA immunoassays, which operate according to electrochemical, electrochemiluminescent and colorimetric techniques. The prospects and limitations of the preparation and immunoassay applications of MOF-derived hybrid nanocomposites are also discussed at the end.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mansour Mahmoudpour
- Miandoab Schools of Medical Sciences Miandoab Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|