1
|
Trakarnpaiboon S, Bunterngsook B, Wansuksriand R, Champreda V. Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production. J Microbiol Biotechnol 2021; 31:1455-1464. [PMID: 34409951 PMCID: PMC9705850 DOI: 10.4014/jmb.2106.06032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40°C, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Rungtiva Wansuksriand
- Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Bangkok 10900, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand,Corresponding author Phone: +66 2564 6700 x 3446 Fax: +66 2564 6707 E-mail:
| |
Collapse
|
2
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
3
|
Improvement of Trehalose Production by Immobilized Trehalose Synthase from Thermus thermophilus HB27. Molecules 2018; 23:molecules23051087. [PMID: 29734676 PMCID: PMC6100327 DOI: 10.3390/molecules23051087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/16/2023] Open
Abstract
Trehalose is a non-reducing disaccharide with a wide range of applications in the fields of food, cosmetics, and pharmaceuticals. In this study, trehalose synthase derived from Thermus thermophilus HB27 (TtTreS) was immobilized on silicalite-1-based material for trehalose production. The activity and the stability of TtTreS against pH and temperature were significantly improved by immobilization. Enzyme immobilization also led to a lower concentration of byproduct glucose, which reduces byproduct inhibition of TtTreS. The immobilized TtTreS still retained 81% of its initial trehalose yield after 22 cycles of enzymatic reactions. The immobilized TtTreS exhibited high operational stability and remarkable reusability, indicating that it is promising for industrial applications.
Collapse
|
4
|
Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl Microbiol Biotechnol 2018; 102:2965-2976. [PMID: 29460000 DOI: 10.1007/s00253-018-8814-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023]
Abstract
Trehalose (α-D-glucopyranosyl-(1 → 1)-α-D-glucopyranoside) is a non-reducing disaccharide composed of two glucose molecules linked by an α,α-1,1-glycosidic bond. It possesses physicochemical properties, which account for its biological roles in a variety of prokaryotic and eukaryotic organisms and invertebrates. Intensive studies of trehalose gradually uncovered its functions, and its applications in foods, cosmetics, and pharmaceuticals have increased every year. Currently, trehalose is industrially produced by the two-enzyme method, which was first developed in 1995 using maltooligosyltrehalose synthase (EC 5.4.99.15) and subsequently using maltooligosyltrehalose trehalohydrolase (EC 3.2.1.141), with starch as the substrate. This biotechnical method has lowered the price of trehalose and expanded its applications. However, when trehalose synthase (EC 5.4.99.16) was later discovered, this method for trehalose production using maltose as the substrate soon became a popular topic because of its simplicity and potential in industrial production. Since then, many trehalose synthases have been studied. This review summarizes the sources and characteristics of reported trehalose synthases, and the most recent advances on structural analysis of trehalose synthase, catalytic mechanism, molecular modification, and usage in industrial production processes.
Collapse
|
5
|
Jiang XR, Lin YF, Chen PT. Trehalose production via merged secretion, purification, and immobilization of trehalose synthase in Bacillus subtilis. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Immobilized Trienzymatic System with Enhanced Stabilization for the Biotransformation of Lactose. Molecules 2017; 22:molecules22020284. [PMID: 28241449 PMCID: PMC6155631 DOI: 10.3390/molecules22020284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022] Open
Abstract
The use of ketohexose isomerases is a powerful tool in lactose whey processing, but these enzymes can be very sensitive and expensive. Development of immobilized/stabilized biocatalysts could be a further option to improve the process. In this work, β-galactosidase from Bacillus circulans, l-arabinose (d-galactose) isomerase from Enterococcus faecium, and d-xylose (d-glucose) isomerase from Streptomyces rubiginosus were immobilized individually onto Eupergit C and Eupergit C 250 L. Immobilized activity yields were over 90% in all cases. With the purpose of increasing thermostability of derivatives, two post-immobilization treatments were performed: alkaline incubation to favor the formation of additional covalent linkages, and blocking of excess oxirane groups by reacting with glycine. The greatest thermostability was achieved when alkaline incubation was carried out for 24 h, producing l-arabinose isomerase-Eupergit C derivatives with a half-life of 379 h and d-xylose isomerase-Eupergit C derivatives with a half-life of 554 h at 50 °C. Preliminary assays using immobilized and stabilized biocatalysts sequentially to biotransform lactose at pH 7.0 and 50 °C demonstrated improved performances as compared with soluble enzymes. Further improvements in ketohexose productivities were achieved when the three single-immobilizates were incubated simultaneously with lactose in a mono-reactor system.
Collapse
|
7
|
Song X, Tang S, Jiang L, Zhu L, Huang H. Integrated Biocatalytic Process for Trehalose Production and Separation from Maltose. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaogang Song
- College
of Biotechnology and Pharmaceutical Engineering, ‡Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), #College of Food Science
and Light Industry, and ⊥College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Susu Tang
- College
of Biotechnology and Pharmaceutical Engineering, ‡Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), #College of Food Science
and Light Industry, and ⊥College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Ling Jiang
- College
of Biotechnology and Pharmaceutical Engineering, ‡Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), #College of Food Science
and Light Industry, and ⊥College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Liying Zhu
- College
of Biotechnology and Pharmaceutical Engineering, ‡Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), #College of Food Science
and Light Industry, and ⊥College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - He Huang
- College
of Biotechnology and Pharmaceutical Engineering, ‡Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), #College of Food Science
and Light Industry, and ⊥College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
8
|
Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, Deng Z. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6179-6187. [PMID: 27472444 DOI: 10.1021/acs.jafc.6b02175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.
Collapse
Affiliation(s)
| | - Hengwei Wang
- Innovation & Application Institute (IAI), Zhejiang Ocean University , Zhoushan 316022, China
| | | | | | | | | | | |
Collapse
|
9
|
Eslamipour F, Hejazi P. Evaluating effective factors on the activity and loading of immobilized α-amylase onto magnetic nanoparticles using a response surface-desirability approach. RSC Adv 2016. [DOI: 10.1039/c5ra26140f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of different operational conditions of α-amylase covalent immobilization on magnetic nanoparticles were investigated using a central composite design.
Collapse
Affiliation(s)
- F. Eslamipour
- Biotechnology Research Laboratory
- School of Chemical Engineering
- Iran University of Science and Technology
- Tehran
- Iran
| | - P. Hejazi
- Biotechnology Research Laboratory
- School of Chemical Engineering
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
10
|
He D, Zhou J, Xia Q, Jiang L, Qiu Y, Zhao L. Kinetics and equilibria of the chromatographic separation of maltose and trehalose. J Sep Sci 2015; 38:2229-37. [PMID: 25873564 DOI: 10.1002/jssc.201500005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 11/12/2022]
Abstract
Trehalose, a nonreducing disaccharide, has been extensively applied to food, cosmetics, and pharmaceutical goods. The resultant solution of trehalose prepared by enzymatic methods includes high amounts of maltose. However, it is quite difficult to separate maltose and trehalose on an industrial scale because of their similar properties. In this paper, a high-performance resin was selected as a stationary phase to separate trehalose and maltose, and the resolution of these sugars was 0.59. The potential of a cation exchange resin was investigated as the stationary phase in separating trehalose and maltose using deionized water as the mobile phase. Based on the equilibrium dispersive model, the axial dispersion coefficients and overall mass transfer coefficients of maltose and trehalose were determined by moment analysis at two different temperatures, 50 and 70°C. Other parameters, including the column void and the adsorption isotherms, were also determined and applied to simulate the elution curves of trehalose and maltose. The simulated results matched the experimental data, validating the parameters. The optimized parameters are critical to the chromatographic separation of trehalose and maltose on an industrial scale.
Collapse
Affiliation(s)
- Dengjun He
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai, China
| | - Jiachun Zhou
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Yongjun Qiu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai, China
| |
Collapse
|
11
|
Preparation of Cross-Linked Enzyme Aggregates of Trehalose Synthase via Co-aggregation with Polyethyleneimine. Appl Biochem Biotechnol 2014; 174:2067-78. [DOI: 10.1007/s12010-014-1104-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
12
|
Production of Xylooligosaccharides by Immobilized His-tagged Recombinant Xylanase from Penicillium occitanis on Nickel-Chelate Eupergit C. Appl Biochem Biotechnol 2014; 173:1405-18. [DOI: 10.1007/s12010-014-0932-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
13
|
Chen Y, Xiao CP, Chen XY, Yang LW, Qi X, Zheng JF, Li MC, Zhang J. Preparation of cross-linked enzyme aggregates in water-in-oil emulsion: Application to trehalose synthase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Temoçin Z. Immobilization ofα-amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. STARCH-STARKE 2013. [DOI: 10.1002/star.201300132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zülfikar Temoçin
- Faculty of Arts and Sciences; Department of Chemistry; Kırıkkale University; Yahşihan Kırıkkale Turkey
| |
Collapse
|
15
|
Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Khan S, Lindahl S, Turner C, Karlsson EN. Immobilization of thermostable β-glucosidase variants on acrylic supports for biocatalytic processes in hot water. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Covalent immobilization of Kluyveromyces fragilis β-galactosidase on magnetic nanosized epoxy support for synthesis of galacto-oligosaccharide. Bioprocess Biosyst Eng 2012; 35:1287-95. [DOI: 10.1007/s00449-012-0716-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
|
18
|
Integrated process for the purification and immobilization of recombinant trehalose synthase for trehalose production. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Trehalose accumulation from cassava starch and release by a highly thermosensitive and permeable mutant of Saccharomycopsis fibuligera. J Ind Microbiol Biotechnol 2011; 38:1545-52. [PMID: 21290165 DOI: 10.1007/s10295-011-0943-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Highly thermosensitive and permeable mutants are the mutants from which intracellular contents can be released when they are incubated both in low osmolarity water and at non-permissive temperature (usually 37°C). After mutagenesis by using nitrosoguanidine, a highly thermosensitive and permeable mutant named A11-b was obtained from Saccharomycopsis fibuligera A11-12, a trehalose overproducer in which the acid protease gene has been disrupted. Of the total trehalose, 73.8% was released from the mutant cells suspended in distilled water after they had been treated at 37°C overnight. However, only 10.0% of the total trehalose was released from the cells of S. fibuligera A11-12 treated under the same conditions. The cell volume of the mutant cells suspended in distilled water and treated at 37°C overnight was much bigger than that of S. fibuligera A11-12 treated under the same conditions. The cell growth and trehalose accumulation of the mutant were almost the same as those of S. fibuligera A11-12 during the cultivation at the flask level and in a 5-l fermentor. Both could accumulate around 28.0% (w/w) trehalose from cassava starch. After purification, the trehalose crystal from the aqueous extract of the mutant was obtained.
Collapse
|
20
|
Alptekin Ö, Tükel SS, Yıldırım D, Alagöz D. Immobilization of catalase onto Eupergit C and its characterization. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhang Y, Zhang T, Chi Z, Wang JM, Liu GL, Chi ZM. Conversion of cassava starch to trehalose by Saccharomycopsis fibuligera A11 and purification of trehalose. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2009.10.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Chi Z, Wang JM, Chi ZM, Ye F. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. J Ind Microbiol Biotechnol 2009; 37:19-25. [PMID: 19967448 DOI: 10.1007/s10295-009-0644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
Abstract
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.
Collapse
Affiliation(s)
- Zhe Chi
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
23
|
Wang L, Huang R, Gu G, Fang H. Optimization of trehalose production by a novel strainBrevibacteriumsp. SY361. J Basic Microbiol 2008; 48:410-5. [DOI: 10.1002/jobm.200800024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Tan SS, Li DY, Jiang ZQ, Zhu YP, Shi B, Li LT. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. BIORESOURCE TECHNOLOGY 2008; 99:200-4. [PMID: 17258452 DOI: 10.1016/j.biortech.2006.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 05/13/2023]
Abstract
In this study, a thermostable recombinant xylanase B (XynB) from Thermotoga maritima MSB8 was immobilized on nickel-chelated Eupergit C 250L. This immobilized XynB was then used to hydrolyze the autohydrolysis explosion liquor of corncob (AELC) in a packed-bed enzyme reactor for continuous production of xylooligosaccharides, especially xylobiose. When tested in batch hydrolysis of AELC, the immobilized XynB still retained its relative activity of 92.5% after 10 cycles of hydrolysis at 90 degrees C. The immobilized XynB retained 83.6% of its initial hydrolysis activity even after 168 h of hydrolysis reaction at 90 degrees C and demonstrated a half-life time of 577.6 h (24 days) for continuous hydrolysis. HPLC showed that xylobiose (49.8%) and xylose (22.6%) were the main hydrolysis products yielded during continuous hydrolysis. Xylobiose was adsorbed on an activated charcoal column and eluted with a linear gradient of 15% (v/v) ethanol to yield xylobiose with 84.7% of recovery. Also, the purity of xylobiose was up to 97.2% as determined by HPLC. Therefore, the immobilized XynB was suitable for the efficient production of xylobiose from AELC. This is the first report on the immobilization of xylanase for xylobiose production.
Collapse
Affiliation(s)
- S S Tan
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
25
|
Immobilization of the recombinant xylanase B (XynB) from the hyperthermophilic Thermotoga maritima on metal-chelate Eupergit C 250L. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
II Rhee J. Development of a sequential injection analysis system for monitoring of trehalose concentrations. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|