1
|
Chen L, Kan J, Zalán Z, Xu D, Cai T, Chen K. Application of nanomaterials in the detection of pesticide residues in spices. Food Chem 2025; 473:143101. [PMID: 39889633 DOI: 10.1016/j.foodchem.2025.143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
With the development of global trade and the improvement of consumer safety awareness, the problem of pesticide residues in spices has received considerable attention. At the same time, with the advancement of nanotechnology, nanomaterials have shown great potential in pesticide residue detection. Given the wide variety of spices and their complex matrices, there has been a lack of a comprehensive review on the application of nanomaterials in pesticide residue detection in spices until now. In this study, the advancements in research on newly developed nanomaterials were examined for the detection of pesticide residues in spices over the last 10 years, focusing on the applications of carbon nanotubes, graphene and its derivatives, metal nanoparticles, metal-organic frameworks, molecularly imprinted polymers, and quantum dots. Additionally, this study also explores the advantages and challenges of different nanomaterials' applications and predicts their development trends, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Lijun Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Cao C, Guo W. Synthesis of metal framework-modified carbon dots with super large stokes shift using Hami melon as a green precursor for detecting thiophanate-methyl residue in leafy vegetables. Food Chem 2024; 460:140703. [PMID: 39098191 DOI: 10.1016/j.foodchem.2024.140703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Consuming leafy vegetables with excessive thiophanate-methyl (TM) residue poses serious risks to human health. To realize rapidly and sensitively detecting TM in leafy vegetables, we developed a fluorescent probe based on zeolitic imidazolate framework-8-modified carbon dots using Hami melon as the green precursor (HM-CDs@ZIF-8). Meanwhile, the mechanism of HM-CDs@ZIF-8 for detecting TM was investigated and explained. The results of the performance tests showed that the prepared HM-CDs@ZIF-8 exhibited high sensitivity, excellent selectivity, robust anti-interference capability, reliable reproducibility and repeatability, and long-term stability. After optimization experiments, the fluorescence intensity of HM-CDs@ZIF-8 showed a strong linear correlation with the concentration of TM (0.00171-3.4239 mol/L) with a detection limit of 2.025 μmol/L. The HM-CDs@ZIF-8 was successfully applied to determine TM in spiked leafy vegetables with satisfactory recoveries of 96-105%. The relative standard deviations were in the range of 0.26-2.55%. The sensor has a promising application for detecting TM in leafy vegetables.
Collapse
Affiliation(s)
- Chunhao Cao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Krishna Perumal P, Chen CW, Giri BS, Singhania RR, Patel AK, Dong CD. Graphene-based functional electrochemical sensors for the detection of chlorpyrifos in water and food samples: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:631-641. [PMID: 38410271 PMCID: PMC10894149 DOI: 10.1007/s13197-023-05772-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 02/28/2024]
Abstract
Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
4
|
Himanshu JK, Lakshmi GBVS, Verma AK, Ahlawat A, Solanki PR. Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode. ENVIRONMENTAL RESEARCH 2024; 240:117478. [PMID: 37879395 DOI: 10.1016/j.envres.2023.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Novel Carbon quantum dots-graphite composite ink-based Screen-printed electrodes (CQDs/SPEs) were used to assemble a highly sensitive electrochemical aptasensor against chlorpyrifos (CPF). The aptasensor showed a broad linear range from 1 pM (0.445 ng/ml) to 500 nM (0.22 mg/ml) with a detection limit (LOD) 0.834 pM (0.37 ng/ml); sensitivity 21.39 μA pM-1 cm- 2 and with good linearity of R2 = 0.973. Moreover, the aptasensor's showed better selectivity among few other pesticides. Further, the aptasensor electrode showed high stability for five months when stored at 4 °C. In the final step, the aptasensor's ability to identify CPF in real samples was evaluated on spiked potato (Solanum tuberosum) extract samples. Potato extract spiked with CPF in the electrochemical aptasensing platform showed excellent linearity of R2 = 0.981. The developed aptasensor showed good response to without spiked potato extract with increasing volumes. Hence, the developed aptasensor demonstrated reasonable applicability in real food and agriculture samples.
Collapse
Affiliation(s)
- Jayendra Kumar Himanshu
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Awadhesh Kumar Verma
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Amit Ahlawat
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India.
| |
Collapse
|
5
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Gutiérrez-Gálvez L, Sulleiro MV, Gutiérrez-Sánchez C, García-Nieto D, Luna M, Pérez EM, García-Mendiola T, Lorenzo E. MoS 2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. BIOSENSORS 2023; 13:bios13030348. [PMID: 36979560 PMCID: PMC10046281 DOI: 10.3390/bios13030348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 05/27/2023]
Abstract
In this work, we present the combination of two different types of nanomaterials, 2D molybdenum disulfide nanosheets (MoS2-NS) and zero-dimensional carbon nanodots (CDs), for the development of a new electrochemiluminescence (ECL) platform for the early detection and quantification of the biomarker human epidermal growth factor receptor 2 (HER2), whose overexpression is associated with breast cancer. MoS2-NS are used as an immobilization platform for the thiolated aptamer, which can recognize the HER2 epitope peptide with high affinity, and CDs act as coreactants of the anodic oxidation of the luminophore [Ru(bpy)3]2+. The HER2 biomarker is detected by changes in the ECL signal of the [Ru(bpy)3]2+/CD system, with a low detection limit of 1.84 fg/mL and a wide linear range. The proposed method has been successfully applied to detect the HER2 biomarker in human serum samples.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Daniel García-Nieto
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Emilio M. Pérez
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|