1
|
Broncel A, Bocian R, Konopacki J. Vagal Nerve Stimulation: The Effect on the Brain Oscillatory Field Potential. Neuroscience 2021; 483:127-138. [PMID: 34952159 DOI: 10.1016/j.neuroscience.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
More than thirty years of medical treatment with the use of vagal nerve stimulation (VNS) has shown that this therapeutic procedure works in a number of homeostatic disturbances. Although the clinical usage of VNS has a long history, our knowledge about the central mechanisms underlying this treatment is still limited. In the present paper we review the effects of VNS on brain oscillations as a possible electrophysiological bio-marker of VNS efficacy. The review was prepared mainly on the basis of data delivered from clinical observations and the outcomes of electrophysiological experiments conducted on laboratory animals that are available in PubMed. We consciously did not focus on epileptiform activity understood as a pathologic oscillatory activity, which was widely discussed in the numerous previously published reviews. The main conclusion of the present paper is that further, well-designed experiments on laboratory animals are absolutely necessary to address the electrophysiological issues. These will fill a number of gaps in our present knowledge of the central mechanisms underlying VNS therapy.
Collapse
Affiliation(s)
- Adam Broncel
- Medical Technology Centre, Natolin 15, 92-701 Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
2
|
Katagiri M, Iida K, Ishihara K, Nair D, Harada K, Kagawa K, Seyama G, Hashizume A, Kuramoto T, Hanaya R, Arita K, Kurisu K. Anti-seizure effect and neuronal activity change in the genetic-epileptic model rat with acute and chronic vagus nerve stimulation. Epilepsy Res 2019; 155:106159. [PMID: 31277035 DOI: 10.1016/j.eplepsyres.2019.106159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND VNS showed time-dependent anti-seizure effect. However, the precise mechanism of VNS in acute and chronic anti-seizure effect has not been fully elucidated. Noda epileptic rat (NER) is genetic epilepsy model rat which exhibits spontaneous generalized tonic-clonic seizure (GTC) approximately once per 30 h and frequent dialeptic seizure (DS). We performed acute and chronic VNS on NER to focus on the acute and chronic anti-epileptic effect and neuronal activity change by VNS. METHODS We performed acute VNS (2 h) on 22 NERs (VNS, n = 11, control, n = 11), then subsequently administered chronic (4 weeks) VNS on 10 of 22 NERs (VNS n = 5, control n = 5). We evaluated the acute and chronic anti-seizure effects of VNS on GTC and DS by behavioral and electroencephalographical observation (2 h every week). We carried out double immunofluorescence for biomarkers of short-term (c-Fos) and long-term (ΔFosB) neuronal activation to map regions in the brain that were activated by acute (VNS n = 6, control n = 6) or chronic VNS (VNS n = 5, control n = 5). Furthermore, we performed chronic VNS (4 w) on 12 NERs (VNS n = 6, control n = 6) with long-term observation (8 h a day, 5d per week) to obtain an adequate number of GTCs to elucidate the time dependent anti-epileptic effect on GTC. RESULTS Acute VNS treatment reduced GTC seizure frequency and total duration of the DS. Chronic VNS resulted in a time-dependent reduction of DS frequency and duration. However, chronic VNS did not show time-dependent reduction of GTC frequency. There were significant c-Fos expressions in the central medial nucleus (CM), mediodorsal thalamic nucleus (MDM), locus coeruleus (LC), and nucleus of solitary tract (NTS) after acute VNS. And there were significant ΔFosB expressions in the lateral septal nucleus (LSV), medial septal nucleus (MSV), MDM, and pontine reticular nucleus caudal (PnC) after chronic VNS. Any decrease in frequency of GTCs by chronic VNS could not be confirmed even with long-term observation. CONCLUSION We confirmed acute VNS significantly reduced the frequency of GTC and duration of DS. Chronic VNS decreased the frequency and duration of DS in a time-dependent manner. The brainstem and midline thalamus were activated after acute and chronic VNS. The forebrain was activated only after chronic VNS.
Collapse
Affiliation(s)
- Masaya Katagiri
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Koji Iida
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kumatoshi Ishihara
- Laboratory of Neuropharmacology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, 737-0112, Japan.
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Kana Harada
- Laboratory of Neuropharmacology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, 737-0112, Japan.
| | - Kota Kagawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Go Seyama
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Akira Hashizume
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, 606-8501, Kyoto, Japan.
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
3
|
Yao C, He Z, Nakano T, Shuai J. Spiking patterns of a neuron model to stimulus: Rich dynamics and oxygen's role. CHAOS (WOODBURY, N.Y.) 2018; 28:083112. [PMID: 30180647 DOI: 10.1063/1.5018707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Neuronal spiking patterns, which are of fundamental importance for the understanding of information processing in neural systems, can be generated in response to different stimuli. We here investigate in detail the stimulus-induced spiking patterns in a biologically plausible neuron model in which the oxygen concentration and the dynamical concentrations of potassium, sodium, and chloride are considered. Various types of spiking patterns can be induced by the different external potassium accumulations in response to the stimulus, including two different types of epileptic seizure (SZ) and spreading depression (SD) states, two different mixed states of SD and SZ, SZ state with multi-burst, and tonic firing behaviors. Interestingly, we show that these rich spiking patterns can also be induced by the current stimulus with a low oxygen concentration. Furthermore, we reveal that the stimulus can induce two different phase transitions from the SD state to the SZ state according to the phase transition theory, which results in the different electrical activities. All these findings may provide insight into information processing in neural systems.
Collapse
Affiliation(s)
- Chenggui Yao
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
| | - Zhiwei He
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
| | - Tadashi Nakano
- Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
4
|
Sevcencu C, Jiao J, Harreby KR, Jensen W. A New Rat Model of Seizures Suitable for Screening Antiepileptic Electrical Stimulation Therapies. Artif Organs 2017. [PMID: 28621831 DOI: 10.1111/aor.12945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antiepileptic effects of the electrical stimulation therapies developed for patients with intractable epilepsies depend critically on the stimulation parameters, including the pulse duration, current, and frequency. Consequently, optimization of such therapies requires many animals for testing each of the stimulation parameters alone or in combination, which is costly and time consuming. This drawback could be reduced by testing several stimulation paradigms in each animal, but this requires an animal model of long-lasting seizures allowing such repetitive tests. This study was performed to validate such a model of long-lasting seizures. The present analysis was performed on electrocorticogram and intracortical signals collected from the somatosensory cortex of 11 Sprague Dawley rats. A protocol of controlled intravenous infusion of pentylenetetrazol (PTZ) was developed to induce spike-and-wave (SW) seizures and maintain stable those seizures for the whole experimental time. SW discharges were induced and maintained stable for 2 h in all rats through a two-stage infusion of PTZ. During the first stage, the SW discharges were induced by 2.5 min infusion of 10 mg/kg/min PTZ. During the second stage, the SW discharges were maintained at a stable level of frequency and power for 2 h via a 0.21 mg/kg/min PTZ infusion rate. The proposed animal model of seizures is characterized by SW discharges which remain stable for 2 h. This 2-h long time interval allows repetitive tests with different stimulation parameters in each animal, which may lead to a significant reduction of the number of animals necessary for optimizing electrical stimulation therapies developed to inhibit seizures.
Collapse
Affiliation(s)
- Cristian Sevcencu
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jianhang Jiao
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China
| | | | - Winnie Jensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Stimulus-induced Epileptic Spike-Wave Discharges in Thalamocortical Model with Disinhibition. Sci Rep 2016; 6:37703. [PMID: 27876879 PMCID: PMC5120301 DOI: 10.1038/srep37703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Epileptic absence seizure characterized by the typical 2–4 Hz spike-wave discharges (SWD) are known to arise due to the physiologically abnormal interactions within the thalamocortical network. By introducing a second inhibitory neuronal population in the cortical system, here we propose a modified thalamocortical field model to mathematically describe the occurrences and transitions of SWD under the mutual functions between cortex and thalamus, as well as the disinhibitory modulations of SWD mediated by the two different inhibitory interneuronal populations. We first show that stimulation can induce the recurrent seizures of SWD in the modified model. Also, we demonstrate the existence of various types of firing states including the SWD. Moreover, we can identify the bistable parametric regions where the SWD can be both induced and terminated by stimulation perturbations applied in the background resting state. Interestingly, in the absence of stimulation disinhibitory functions between the two different interneuronal populations can also both initiate and abate the SWD, which suggests that the mechanism of disinhibition is comparable to the effect of stimulation in initiating and terminating the epileptic SWD. Hopefully, the obtained results can provide theoretical evidences in exploring dynamical mechanism of epileptic seizures.
Collapse
|
6
|
Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G. A computational study of stimulus driven epileptic seizure abatement. PLoS One 2014; 9:e114316. [PMID: 25531883 PMCID: PMC4273970 DOI: 10.1371/journal.pone.0114316] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/05/2014] [Indexed: 01/24/2023] Open
Abstract
Active brain stimulation to abate epileptic seizures has shown mixed success. In spike-wave (SW) seizures, where the seizure and background state were proposed to coexist, single-pulse stimulations have been suggested to be able to terminate the seizure prematurely. However, several factors can impact success in such a bistable setting. The factors contributing to this have not been fully investigated on a theoretical and mechanistic basis. Our aim is to elucidate mechanisms that influence the success of single-pulse stimulation in noise-induced SW seizures. In this work, we study a neural population model of SW seizures that allows the reconstruction of the basin of attraction of the background activity as a four dimensional geometric object. For the deterministic (noise-free) case, we show how the success of response to stimuli depends on the amplitude and phase of the SW cycle, in addition to the direction of the stimulus in state space. In the case of spontaneous noise-induced seizures, the basin becomes probabilistic introducing some degree of uncertainty to the stimulation outcome while maintaining qualitative features of the noise-free case. Additionally, due to the different time scales involved in SW generation, there is substantial variation between SW cycles, implying that there may not be a fixed set of optimal stimulation parameters for SW seizures. In contrast, the model suggests an adaptive approach to find optimal stimulation parameters patient-specifically, based on real-time estimation of the position in state space. We discuss how the modelling work can be exploited to rationally design a successful stimulation protocol for the abatement of SW seizures using real-time SW detection.
Collapse
Affiliation(s)
- Peter Neal Taylor
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yujiang Wang
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marc Goodfellow
- College of Engineering, University of Exeter, Exeter, United Kingdom
| | - Justin Dauwels
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Friederike Moeller
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Effect of vagus nerve stimulation on electrical kindling in different stages of seizure severity in freely moving cats. Epilepsy Res 2014; 108:81-9. [DOI: 10.1016/j.eplepsyres.2013.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 11/21/2022]
|
8
|
Vagus nerve stimulation inhibits seizure activity and protects blood–brain barrier integrity in kindled rats with cortical dysplasia. Life Sci 2013; 92:289-97. [DOI: 10.1016/j.lfs.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 11/21/2022]
|
9
|
Alexander GM, McNamara JO. Vagus nerve stimulation elevates seizure threshold in the kindling model. Epilepsia 2012; 53:2043-52. [DOI: 10.1111/j.1528-1167.2012.03646.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Aalbers M, Vles J, Klinkenberg S, Hoogland G, Majoie M, Rijkers K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol 2011; 230:167-75. [PMID: 21565191 DOI: 10.1016/j.expneurol.2011.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a moderately effective adjunctive treatment for patients suffering from medically refractory epilepsy and is explored as a treatment option for several other disorders. The present review provides a critical appraisal of the studies on VNS in animal models of seizures and epilepsy. So far, these studies mostly applied short-term VNS in seizure models, demonstrating that VNS can suppress and prevent seizures and affect epileptogenesis. However, the mechanism of action is still largely unknown. Moreover, studies with a clinically more relevant setup where VNS is chronically applied in epilepsy models are scarce. Future directions for research and the application of this technology in animal models of epilepsy are discussed.
Collapse
Affiliation(s)
- Marlien Aalbers
- School for Mental Health & Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Magdaleno-Madrigal VM, Martínez-Vargas D, Valdés-Cruz A, Almazán-Alvarado S, Fernández-Mas R. Preemptive effect of nucleus of the solitary tract stimulation on amygdaloid kindling in freely moving cats. Epilepsia 2010; 51:438-44. [DOI: 10.1111/j.1528-1167.2009.02337.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Rijkers K, Aalbers M, Hoogland G, van Winden L, Vles J, Steinbusch H, Majoie M. Acute seizure-suppressing effect of vagus nerve stimulation in the amygdala kindled rat. Brain Res 2010; 1319:155-63. [DOI: 10.1016/j.brainres.2010.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/03/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
|
13
|
Biggio F, Gorini G, Utzeri C, Olla P, Marrosu F, Mocchetti I, Follesa P. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychopharmacol 2009; 12:1209-21. [PMID: 19309534 PMCID: PMC2879889 DOI: 10.1017/s1461145709000200] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vagus nerve stimulation (VNS) is used to treat pharmacotherapy-resistant epilepsy and depression. However, the mechanisms underlying the therapeutic efficacy of VNS remain unclear. We examined the effects of VNS on hippocampal neuronal plasticity and behaviour in rats. Cell proliferation in the hippocampus of rats subjected to acute (3 h) or chronic (1 month) VNS was examined by injection of bromodeoxyuridine (BrdU) and immunohistochemistry. Expression of doublecortin (DCX) and brain-derived neurotrophic factor (BDNF) was evaluated by immunofluorescence staining. The dendritic morphology of DCX+ neurons was measured by Sholl analysis. Our results show that acute VNS induced an increase in the number of BrdU+ cells in the dentate gyrus that was apparent 24 h and 3 wk after treatment. It also induced long-lasting increases in the amount of DCX immunoreactivity and in the number of DCX+ neurons. Neither the number of BrdU+ cells nor the amount of DCX immunoreactivity was increased 3 wk after the cessation of chronic VNS. Chronic VNS induced long-lasting increases in the amount of BDNF immunoreactivity and the number of BDNF+ cells as well as in the dendritic complexity of DCX+ neurons in the hippocampus. In contrast to chronic imipramine treatment, chronic VNS had no effect on the behaviour of rats in the forced swim or elevated plus-maze tests. Both chronic and acute VNS induced persistent changes in hippocampal neurons that may play a key role in the therapeutic efficacy of VNS. However, these changes were not associated with evident behavioural alterations characteristic of an antidepressant or anxiolytic action.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, 09100 Italy
- Department of Neuroscience, Georgetown University, 20007 Washington DC, USA
| | - Giorgio Gorini
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, 09100 Italy
| | - Cinzia Utzeri
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, 09100 Italy
| | - Pierluigi Olla
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, 09100 Italy
| | - Francesco Marrosu
- Department of Neurological and Cardiovascular Sciences, University of Cagliari, Cagliari, 09100 Italy
| | - Italo Mocchetti
- Department of Neuroscience, Georgetown University, 20007 Washington DC, USA
| | - Paolo Follesa
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, 09100 Italy
| |
Collapse
|
14
|
Aalbers M, Rijkers K, van Winden L, Hoogland G, Vles J, Majoie H. Horner's syndrome: A complication of experimental carotid artery surgery in rats. Auton Neurosci 2009; 147:64-9. [DOI: 10.1016/j.autneu.2009.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022]
|
15
|
Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, Puligheddu M, Marrosu F, Biggio G. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 2007; 1179:28-34. [PMID: 17920573 DOI: 10.1016/j.brainres.2007.08.045] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/10/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
Abstract
Vagus nerve stimulation therapy, effective for treatment-resistant epilepsy, has recently been approved also for treatment-resistant depression; nevertheless, the molecular mechanism(s) underlying its therapeutic action remains unclear. Given that neurotrophic factors and monoamines could play a crucial role in the pathophysiology of depression, we tested whether vagus nerve stimulation increases the expression of brain-derived neurotrophic factor, fibroblast growth factor, and nerve growth factor as well as the concentration of norepinephrine in the rat brain. Rats were implanted with a vagus nerve stimulator device and the effects of acute stimulation were evaluated on the growth factors mRNA levels and norepinephrine concentration by ribonuclease protection assay and microdialysis, respectively. We found that acute vagus nerve stimulation increased the expression of brain-derived neurotrophic factor and fibroblast growth factor in the hippocampus and cerebral cortex, decreased the abundance of nerve growth factor mRNA in the hippocampus, and, similar to the antidepressant drug venlafaxine, increased the norepinephrine concentration in the prefrontal cortex. This study demonstrates that acute vagus nerve stimulation triggers neurochemical and molecular changes in the rat brain involving neurotransmitters and growth factors known to play a crucial role in neuronal trophism. These new findings contribute to the elucidation of the molecular mechanisms underlying the therapeutic actions of vagus nerve stimulation in both treatment-resistant depression and epilepsy.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pollo C, Villemure JG. Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:311-20. [PMID: 17691317 DOI: 10.1007/978-3-211-33081-4_34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrical stimulation of deep brain structures is a promising new technology for the treatment of medically intractable seizures. Performed in vitro and on animal models of epilepsy, electrical stimulation has shown to reduce seizure frequency. Preliminary results on humans are encouraging. However, such improvements emerge despite a lack of understanding of the precise mechanisms underlying electrical stimulation either delivered directly on the epileptogenic zone (direct control) or through an anatomical relay of cortico-subcortical networks (remote control). Anatomical targets such as the thalamus (centromedian nucleus, anterior thalamus, mamillary body and mamillothalamic tracts), the subthalamic nucleus, the caudate nucleus and direct stimulation of the hippocampal formation have been successfully investigated. Although randomized controlled studies are still missing, deep brain stimulation is a promising treatment option for a subgroup of carefully selected patients with intractable epilepsy who are not candidates for resective surgery. The effectiveness, the optimal anatomic targets, the ideal stimulation parameters and devices, as well as patient selection criteria are still to be defined.
Collapse
Affiliation(s)
- C Pollo
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | |
Collapse
|
17
|
Dedeurwaerdere S, Gilby K, Vonck K, Delbeke J, Boon P, McIntyre D. Vagus nerve stimulation does not affect spatial memory in fast rats, but has both anti-convulsive and pro-convulsive effects on amygdala-kindled seizures. Neuroscience 2006; 140:1443-51. [PMID: 16650602 DOI: 10.1016/j.neuroscience.2006.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 02/13/2006] [Accepted: 03/12/2006] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS) is an adjunctive treatment for refractory epilepsy. Using a seizure-prone Fast-kindling rat strain with known comorbid behavioral features, we investigated the effects of VNS on spatial memory, epileptogenesis, kindled seizures and body weight. Electrodes were implanted in both amygdalae and around the left vagus nerve of 17 rats. Following recovery, rats were tested in the Morris water-maze utilizing a fixed platform paradigm. The VNS group received 2 h of stimulation prior to entering the Morris water-maze. Rats were then tested in the kindling paradigm wherein the VNS group received 2 h of stimulation prior to daily kindling stimulation. Finally, the abortive effects of acute VNS against kindling-induced seizures were determined in fully kindled rats by applying VNS immediately after the kindling pulse. Body weight, water consumption and food intake were measured throughout. Memory performance in the Morris water-maze was not different between control and vagus nerve stimulation rats. Similarly, kindling rate was unaffected by antecedent VNS. However, pro-convulsive effects (P<0.05) were noted, when VNS was administered prior to the kindling pulse in fully kindled rats. Yet, paradoxically, VNS showed anti-convulsant effects (P<0.01) in those rats when applied immediately after the kindling stimulus. Body weight was significantly lower throughout kindling (P<0.01) in VNS-treated rats compared with controls, which was associated with reduced food intake (P<0.05), but without difference in water consumption. VNS appears to be devoid of significant cognitive side effects in the Morris water-maze in Fast rats. Although VNS exhibited no prophylactic effect on epileptogenesis or seizure severity when applied prior to the kindling stimulus, it showed significant anti-convulsant effects in fully kindled rats when applied after seizure initiation. Lastly, VNS prevented the weight gain associated with kindling through reduced food intake.
Collapse
Affiliation(s)
- S Dedeurwaerdere
- Laboratory for Clinical and Experimental Neurophysiology and Reference Centre for Refractory Epilepsy, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Dedeurwaerdere S, Cornelissen B, Van Laere K, Vonck K, Achten E, Slegers G, Boon P. Small animal positron emission tomography during vagus nerve stimulation in rats: a pilot study. Epilepsy Res 2005; 67:133-41. [PMID: 16289508 DOI: 10.1016/j.eplepsyres.2005.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/23/2005] [Accepted: 09/24/2005] [Indexed: 11/23/2022]
Abstract
Vagus nerve stimulation (VNS) is an effective neurophysiological treatment for patients with refractory epilepsy, however, the mechanism of action remains unclear. Small animal positron emission tomography (PET) permits the monitoring of biochemical processes during multiple scans in the same animal. The aim of this pilot study was to explore the potential of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG)-PET to investigate the effect of acute and chronic VNS on glucose metabolism in the rat brain. One week after EEG and VNS electrode implantation, a baseline FDG-PET scan was acquired during which animals were not stimulated. Secondly, scans were taken after first activation of the VNS electrode (acute VNS) and after one week of continuous VNS (chronic VNS). On the same time points, images were obtained in a control group. After acquisition, PET images were manually fused with MRI data. Normalized brain activities and left/right activity ratios of different brain structures were compared between control measurements and VNS group. During acute VNS, glucose metabolism was significantly decreased in the left hippocampus (P<0.05). Significant increases were found in both olfactory bulbs (P<0.05). During chronic VNS, a significant decrease in left/right ratio in the striatum (P<0.05) was found. Acute and chronic VNS induced changes in glucose metabolism in regions important for seizure control (hippocampus and striatum). Our results promote further brain research on VNS using small animal PET in rats.
Collapse
Affiliation(s)
- Stefanie Dedeurwaerdere
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
19
|
Thil MA, Gérard B, Jarvis JC, Delbeke J. Two-way communication for programming and measurement in a miniature implantable stimulator. Med Biol Eng Comput 2005; 43:528-34. [PMID: 16255437 DOI: 10.1007/bf02344736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Implantable stimulators are needed for chronic electrical stimulation of nerves and muscles in experimental studies. The device described exploits the versatility of current microcontrollers for stimulation and communication in a miniature implant. Their standard outputs can provide the required selectable constant-current sources. In this device, pre-programmed stimulation paradigms were selected by transcutaneous light pulses. The potential of a programmable integrated circuit (PIC) was thus exploited. Implantable devices must be biocompatible. A novel encapsulation method that require no specialised equipment and that used two classical encapsulants, silicone and Teflon was developed. It was tested for implantation periods of up to four weeks. A novel way to estimate electrode impedance in awake animals is also presented. It was thus possible to follow the evolution of the nerve-electrode interface and, if necessary, to adjust the stimulation parameters. In practice, the electrode voltage at the end of a known constant-current pulse was measured by the PIC. The binary coded value was then indicated to the user as a series of muscle twitches that represented the binary value of the impedance measurement. This neurostimulator has been successfully tested in vitro and in vivo. Thresholds and impedance values were chronically monitored following implantation of a self-sizing spiral cuff electrode. Impedance variations in the first weeks could reflect morphological changes usually observed after the implantation of such electrodes.
Collapse
Affiliation(s)
- M A Thil
- Neural Rehabilitation Engineering Laboratory, Université Catholique de Louvain, Medical School, Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Thil MA, Vince V, Veraart C, Delbeke J, Colin IM. Nitric oxide synthases II and III and vascular endothelial growth factor are up-regulated in sciatic nerve after spiral cuff electrode implantation. J Neuroimmunol 2005; 166:158-66. [PMID: 16038988 DOI: 10.1016/j.jneuroim.2005.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 06/08/2005] [Indexed: 01/12/2023]
Abstract
Nerve cuff electrodes, commonly used in functional electrical stimulation systems, induce local morphological changes that can affect nerve functionality. Nitric oxide (NO) and vascular endothelial growth factor (VEGF) have both neural and vascular effects. We investigated the time-dependent regulation of nitric oxide synthases (NOS) and of VEGF after implantation of spiral cuff electrode around rat sciatic nerve. NOSIII as well as VEGF were up-regulated in both epineurial and endoneurial compartments in cuff-implanted animals along with microvascular changes. Our results suggest that VEGF and NO are implied in morphological and functional alterations occurring in the early time after cuff implantation.
Collapse
Affiliation(s)
- Marie-Anne Thil
- Laboratoire de Génie de la Réabilitation Neurale, Medical School, Brussels, Belgium
| | | | | | | | | |
Collapse
|
21
|
Dedeurwaerdere S, Vonck K, Van Hese P, Wadman W, Boon P. The Acute and Chronic Effect of Vagus Nerve Stimulation in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Epilepsia 2005; 46 Suppl 5:94-7. [PMID: 15987260 DOI: 10.1111/j.1528-1167.2005.01015.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of acute and chronic vagus nerve stimulation (VNS) in genetic absence epilepsy rats from Strasbourg (GAERS). This is a validated model for absence epilepsy, characterized by frequent spontaneous absences concomitant with spike and wave discharges (SWD) on the EEG. Although absences are a benign form of seizures, it is conceptually important to investigate the efficacy of VNS in a controlled study by using this chronic epilepsy model. METHODS Both control and stimulated GAERS were implanted with five epidural EEG electrodes and a stimulation electrode around the left vagus nerve. In the first experiment, VNS was given when SWD occurred in the EEG; this was repeated the next day. A randomized crossover design (n = 8) was used. In the chronic experiment, GAERS underwent EEG monitoring during a first baseline week. During the second week, the treated group (n = 18) received VNS; controls (n = 13), on the other hand, only underwent EEG recordings. RESULTS On day 1 of the acute VNS experiment, the mean duration of the SWD when VNS was applied was higher than in baseline conditions (p < 0.05). However, on day 2, there was no difference in mean duration of the SWD. In the chronic VNS experiment, no statistically significant differences were found between control and stimulated GAERS. CONCLUSIONS Acute VNS applied shortly after the onset of SWD prolonged the mean duration of SWD in GAERS at least during the first day of VNS. Chronic stimulation hardly affected SWD in GAERS.
Collapse
Affiliation(s)
- Stefanie Dedeurwaerdere
- Reference Centre for Refractory Epilepsy and Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|