1
|
Liu J, Tsuboyama M, Jannati A, Kaye HL, Hipp JF, Rotenberg A. Shortened Motor Evoked Potential Latency in the Epileptic Hemisphere of Children With Focal Epilepsy. J Clin Neurophysiol 2024; 41:530-536. [PMID: 37820241 DOI: 10.1097/wnp.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
PURPOSE Motor evoked potential (MEP) amplitude and latency are acquired routinely during neuronavigated transcranial magnetic stimulation, a method of functional mapping of the motor cortex before epilepsy surgery. Although MEP amplitude is routinely used to generate a motor map, MEP latency in patients with focal epilepsy has not been studied systematically. Given that epilepsy may alter myelination, we tested whether intrinsic hand muscle MEPs obtained from the hemisphere containing a seizure focus differ in latency from MEPs collected from the opposite hemisphere. METHODS Latencies of abductor pollicis brevis MEPs were obtained during routine motor mapping by neuronavigated transcranial magnetic stimulation in children with intractable, unihemispheric focal epilepsy. The primary motor cortex was stimulated bilaterally in all cases. Only data from patients without a lesion involving the corticospinal tract were included. We tested whether abductor pollicis brevis MEP latency varied as a function of seizure focus lateralization. RESULTS In the 17 patients who met the inclusion criteria, the mean latency of MEPs with amplitudes in the top and bottom quartiles was shorter in the epileptic hemisphere. Interhemispheric latency difference was greater in patients with lesional epilepsy than in those with nonlesional epilepsy (0.7 ± 0.4 vs. 0.1 ± 0.6 milliseconds, P = 0.02). CONCLUSIONS Motor evoked potential latency was shortened in the epileptic hemisphere of children with focal epilepsy.
Collapse
Affiliation(s)
- Jingjing Liu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Ali Jannati
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| | - Harper Lee Kaye
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Boston University School of Medicine, Behavioral Neuroscience Program, Boston, Massachusetts, U.S.A.; and
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| |
Collapse
|
2
|
Jamil Z, Saisanen L, Demjan M, Reijonen J, Julkunen P. The Effect of Stimulation Intensity, Sampling Frequency, and Sample Synchronization in TMS-EEG on the TMS Pulse Artifact Amplitude and Duration. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2612-2620. [PMID: 39024076 DOI: 10.1109/tnsre.2024.3429176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) possesses diagnostic and therapeutic benefits. However, TMS provokes a large pulse artifact that momentarily obscures the cortical response, presenting a significant challenge for EEG data interpretation. We examined how stimulation intensity (SI), EEG sampling frequency (Fs) and synchronization of stimulation with EEG sampling influence the amplitude and duration of the pulse artifact. In eight healthy subjects, single-pulse TMS was administered to the primary motor cortex, due to its well-documented responsiveness to TMS. We applied two different SIs (90% and 120% of resting motor threshold, representing the commonly used subthreshold and suprathreshold levels) and Fs (conventional 5 kHz and high frequency 20 kHz) both with TMS synchronized with the EEG sampling and the conventional non-synchronized setting. Aside from removal of the DC-offset and epoching, no preprocessing was performed to the data. Using a random forest regression model, we identified that Fs had the largest impact on both the amplitude and duration of the pulse artifact, with median variable importance values of 1.444 and 1.327, respectively, followed by SI (0.964 and 1.083) and sampling synchronization (0.223 and 0.248). This indicated that Fs and SI are crucial for minimizing prediction error and thus play a pivotal role in accurately characterizing the pulse artifact. The results of this study enable focusing some of the study design parameters to minimize TMS pulse artifact, which is essential for both enhancing the reliability of clinical TMS-EEG applications and improving the overall integrity and interpretability of TMS-EEG data.
Collapse
|
3
|
Chen Y, Jiang Y, Zhang Z, Li Z, Zhu C. Transcranial magnetic stimulation mapping of the motor cortex: comparison of five estimation algorithms. Front Neurosci 2023; 17:1301075. [PMID: 38130697 PMCID: PMC10733534 DOI: 10.3389/fnins.2023.1301075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background There are currently five different kinds of transcranial magnetic stimulation (TMS) motor mapping algorithms available, from ordinary point-based algorithms to advanced field-based algorithms. However, there have been only a limited number of comparison studies conducted, and they have not yet examined all of the currently available algorithms. This deficiency impedes the judicious selection of algorithms for application in both clinical and basic neuroscience, and hinders the potential promotion of a potential superior algorithm. Considering the influence of algorithm complexity, further investigation is needed to examine the differences between fMRI peaks and TMS cortical hotspots that were identified previously. Methods Twelve healthy participants underwent TMS motor mapping and a finger-tapping task during fMRI. The motor cortex TMS mapping results were estimated by five algorithms, and fMRI activation results were obtained. For each algorithm, the prediction error was defined as the distance between the measured scalp hotspot and optimized coil position, which was determined by the maximum electric field strength in the estimated motor cortex. Additionally, the study identified the minimum number of stimuli required for stable mapping. Finally, the location difference between the TMS mapping cortical hotspot and the fMRI activation peak was analyzed. Results The projection yielded the lowest prediction error (5.27 ± 4.24 mm) among the point-based algorithms and the association algorithm yielded the lowest (6.66 ± 3.48 mm) among field-based estimation algorithms. The projection algorithm required fewer stimuli, possibly resulting from its suitability for the grid-based mapping data collection method. The TMS cortical hotspots from all algorithms consistently deviated from the fMRI activation peak (20.52 ± 8.46 mm for five algorithms). Conclusion The association algorithm might be a superior choice for clinical applications and basic neuroscience research, due to its lower prediction error and higher estimation sensitivity in the deep cortical structure, especially for the sulcus. It also has potential applicability in various other TMS domains, including language area mapping and more. Otherwise, our results provide further evidence that TMS motor mapping intrinsically differs from fMRI motor mapping.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yihan Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Zhuhai, Zhuhai, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Demjan M, Säisänen L, Reijonen J, Rissanen S, Määttä S, Julkunen P. Near-threshold recruitment characteristics of motor evoked potentials in transcranial magnetic stimulation. Brain Res 2023; 1805:148284. [PMID: 36796474 DOI: 10.1016/j.brainres.2023.148284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) can induce motor evoked potentials (MEPs). In TMS applications, near-threshold stimulation intensities (SIs) are often used for characterizing corticospinal excitability using MEPs. We aimed to characterize the individual near-threshold recruitment of MEPs and to test the assumptions related to selection of the suprathreshold SI. We utilized MEP data from a right-hand muscle induced at variable SIs. The single-pulse TMS (spTMS) data from previous studies (27 healthy volunteers), as well as data from new measurements (10 healthy volunteers) that included also MEPs modulated by paired-pulse TMS (ppTMS), were included. The probability of MEP (pMEP) was represented with individually fitted cumulative distribution function (CDF) with two parameters: resting motor threshold (rMT) and spread relative to rMT. MEPs were recorded with 110% and 120% of rMT as well as with Mills-Nithi upper threshold (UT). The individual near-threshold characteristics varied with CDF parameters: the rMT and the relative spread (median: 0.052). The rMT was lower with ppTMS than with spTMS (p < 0.001), while the relative spread remained similar (p = 0.812). At suprathreshold SIs, the probability of MEP was similar between UT and 110% of rMT (pMEP > 0.88), and higher for 120% of rMT (pMEP > 0.98). The individual near-threshold characteristics determine how probably MEPs are produced at common suprathreshold SIs. At the population level, the used SIs UT and 110% of rMT produced MEPs at similar probability. The individual variability in the relative spread parameter was large; therefore, the method of determining the proper suprathreshold SI for TMS applications is of crucial importance.
Collapse
Affiliation(s)
- Michal Demjan
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland; Bittium Biosignals Oy, Pioneerinkatu 6, 70800 Kuopio, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Saara Rissanen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland.
| |
Collapse
|
5
|
Charalambous CC, Hadjipapas A. Is there frequency-specificity in the motor control of walking? The putative differential role of alpha and beta oscillations. Front Syst Neurosci 2022; 16:922841. [PMID: 36387306 PMCID: PMC9650482 DOI: 10.3389/fnsys.2022.922841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2023] Open
Abstract
Alpha and beta oscillations have been assessed thoroughly during walking due to their potential role as proxies of the corticoreticulospinal tract (CReST) and corticospinal tract (CST), respectively. Given that damage to a descending tract after stroke can cause walking deficits, detailed knowledge of how these oscillations mechanistically contribute to walking could be utilized in strategies for post-stroke locomotor recovery. In this review, the goal was to summarize, synthesize, and discuss the existing evidence on the potential differential role of these oscillations on the motor descending drive, the effect of transcranial alternate current stimulation (tACS) on neurotypical and post-stroke walking, and to discuss remaining gaps in knowledge, future directions, and methodological considerations. Electrophysiological studies of corticomuscular, intermuscular, and intramuscular coherence during walking clearly demonstrate that beta oscillations are predominantly present in the dorsiflexors during the swing phase and may be absent post-stroke. The role of alpha oscillations, however, has not been pinpointed as clearly. We concluded that both animal and human studies should focus on the electrophysiological characterization of alpha oscillations and their potential role to the CReST. Another approach in elucidating the role of these oscillations is to modulate them and then quantify the impact on walking behavior. This is possible through tACS, whose beneficial effect on walking behavior (including boosting of beta oscillations in intramuscular coherence) has been recently demonstrated in both neurotypical adults and stroke patients. However, these studies still do not allow for specific roles of alpha and beta oscillations to be delineated because the tACS frequency used was much lower (i.e., individualized calculated gait frequency was used). Thus, we identify a main gap in the literature, which is tACS studies actually stimulating at alpha and beta frequencies during walking. Overall, we conclude that for beta oscillations there is a clear connection to descending drive in the corticospinal tract. The precise relationship between alpha oscillations and CReST remains elusive due to the gaps in the literature identified here. However, better understanding the role of alpha (and beta) oscillations in the motor control of walking can be used to progress and develop rehabilitation strategies for promoting locomotor recovery.
Collapse
Affiliation(s)
- Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
6
|
Braden AA, Weatherspoon SE, Boardman T, Williard T, Adkins A, Gibbs SK, Wheless JW, Narayana S. Image-guided TMS is safe in a predominately pediatric clinical population. Clin Neurophysiol 2022; 137:193-206. [DOI: 10.1016/j.clinph.2022.01.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
7
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
8
|
Missey F, Rusina E, Acerbo E, Botzanowski B, Trébuchon A, Bartolomei F, Jirsa V, Carron R, Williamson A. Orientation of Temporal Interference for Non-invasive Deep Brain Stimulation in Epilepsy. Front Neurosci 2021; 15:633988. [PMID: 34163317 PMCID: PMC8216218 DOI: 10.3389/fnins.2021.633988] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
In patients with focal drug-resistant epilepsy, electrical stimulation from intracranial electrodes is frequently used for the localization of seizure onset zones and related pathological networks. The ability of electrically stimulated tissue to generate beta and gamma range oscillations, called rapid-discharges, is a frequent indication of an epileptogenic zone. However, a limit of intracranial stimulation is the fixed physical location and number of implanted electrodes, leaving numerous clinically and functionally relevant brain regions unexplored. Here, we demonstrate an alternative technique relying exclusively on non-penetrating surface electrodes, namely an orientation-tunable form of temporally interfering (TI) electric fields to target the CA3 of the mouse hippocampus which focally evokes seizure-like events (SLEs) having the characteristic frequencies of rapid-discharges, but without the necessity of the implanted electrodes. The orientation of the topical electrodes with respect to the orientation of the hippocampus is demonstrated to strongly control the threshold for evoking SLEs. Additionally, we demonstrate the use of Pulse-width-modulation of square waves as an alternative to sine waves for TI stimulation. An orientation-dependent analysis of classic implanted electrodes to evoke SLEs in the hippocampus is subsequently utilized to support the results of the minimally invasive temporally interfering fields. The principles of orientation-tunable TI stimulation seen here can be generally applicable in a wide range of other excitable tissues and brain regions, overcoming several limitations of fixed electrodes which penetrate tissue and overcoming several limitations of other non-invasive stimulation methods in epilepsy, such as transcranial magnetic stimulation (TMS).
Collapse
Affiliation(s)
- Florian Missey
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Evgeniia Rusina
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Emma Acerbo
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Boris Botzanowski
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Agnès Trébuchon
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Fabrice Bartolomei
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Romain Carron
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France.,Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Adam Williamson
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France.,Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| |
Collapse
|
9
|
El Nahas N, Elbokl AM, Abd Eldayem EH, Roushdy TM, Amin RM, Helmy SM, Akl AZ, Ashour AA, Samy S, Amgad A, Emara TH, Nowara M, Kenawy FF. Navigated perilesional transcranial magnetic stimulation can improve post-stroke visual field defect: A double-blind sham-controlled study. Restor Neurol Neurosci 2021; 39:199-207. [PMID: 34024791 DOI: 10.3233/rnn-211181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Visual field defects (VFD) usually do not show improvement beyond 12 weeks from their onset. It has been shown that repetitive presentation of a stimulus to areas of residual vision in cases of visual field defect can improve vision. The counterpart of these areas in the brain are the partially damaged brain regions at the perilesional areas where plasticity can be enhanced. OBJECTIVE We aimed to study the effect of navigated repetitive transcranial magnetic stimulation (rTMS) applied to perilesional areas on the recovery of patients with cortical VFD. METHODS Thirty-two patients with cortical VFD secondary to stroke of more than 3 months duration received 16 sessions of either active or sham high frequency navigated perilesional rTMS. Automated perimetry and visual functioning questionnaire (VFQ-25) were performed at baseline and after completion of the sessions. RESULTS The active group showed significant improvement after intervention, compared to the sham group, in both mean deviation (MD), visual field index (VFI) and in the VFQ-25 scores. CONCLUSIONS Navigated rTMS is a new treatment option for post-stroke VFD as it can selectively stimulate areas of residual vision around the infarcted tissue, improving the threshold of visual stimulus detection which could be used alone or in combination with existing therapies.
Collapse
Affiliation(s)
- Nevine El Nahas
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elbokl
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Hamid Abd Eldayem
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer M Roushdy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Randa M Amin
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shahinaz M Helmy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Zaki Akl
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Aya Ahmed Ashour
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shady Samy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alaa Amgad
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer H Emara
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Fatma Fathalla Kenawy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
11
|
Islam M, Cooray G, Benmakhlouf H, Hatiboglu M, Sinclair G. Integrating navigated transcranial magnetic stimulation motor mapping in hypofractionated and single-dose gamma knife radiosurgery: A two-patient case series and a review of literature. Surg Neurol Int 2020; 11:29. [PMID: 32257555 PMCID: PMC7110065 DOI: 10.25259/sni_406_2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background: The aim of the study was to demonstrate the feasibility of integrating navigated transcranial magnetic stimulation (nTMS) in preoperative gamma knife radiosurgery (GKRS) planning of motor eloquent brain tumors. Case Description: The first case was a 53-year-old female patient with metastatic breast cancer who developed focal epileptic seizures and weakness of the left hand. The magnetic resonance imaging (MRI) scan demonstrated a 30 mm metastasis neighboring the right precentral gyrus and central sulcus. The lesion was treated with adaptive hypofractionated GKRS following preoperative nTMS-based motor mapping. Subsequent follow-up imaging (up to 12 months) revealed next to complete tumor ablation without toxicity. The second case involved a previously healthy 73-year-old male who similarly developed new left-handed weakness. A subsequent MRI demonstrated a 26 mm metastatic lesion, located in the right postcentral gyrus and 5 mm from the hand motor area. The extracranial screening revealed a likely primary lung adenocarcinoma. The patient underwent preoperative nTMS motor mapping prior to treatment. Perilesional edema was noted 6 months postradiosurgery; nevertheless, long- term tumor control was demonstrated. Both patients experienced motor function normalization shortly after treatment, continuing to final follow-up. Conclusion: Integrating preoperative nTMS motor mapping in treatment planning allowed us to reduce dose distributions to perilesional motor fibers while achieving salvage of motor function, lasting seizure freedom, and tumor control. These initial data along with our review of the available literature suggest that nTMS can be of significant assistance in brain radiosurgery. Prospective studies including larger number of patients are still warranted.
Collapse
Affiliation(s)
- Mominul Islam
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Gerald Cooray
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, İstanbul, Turkey
| | - Mustafa Hatiboglu
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey.,Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, Berkshire.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Yang X, Zhang K. Navigated transcranial magnetic stimulation brain mapping: Achievements, opportunities, and prospects. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Malone LA, Sun LR. Transcranial Magnetic Stimulation for the Treatment of Pediatric Neurological Disorders. Curr Treat Options Neurol 2019; 21:58. [PMID: 31720969 DOI: 10.1007/s11940-019-0600-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that is used for the treatment of migraine and major depression in adults and is now being evaluated for use in other disorders. The purpose of this review is to summarize the physiology underlying TMS, the safety and tolerability in pediatric patients, and the evidence for TMS efficacy in the treatment of pediatric neurologic disorders. RECENT FINDINGS Studies investigating rTMS for adolescent depression, hemiparesis due to pediatric stroke, autism, and tics/Tourette syndrome have demonstrated some therapeutic benefit. rTMS has been insufficiently studied for migraine in children despite benefits demonstrated for adult migraine. Evidence for rTMS in childhood epilepsy and ADHD remains mixed. Repetitive transcranial magnetic stimulation is emerging as a safe, tolerable, and potentially effective therapeutic strategy in a number of pediatric neurological disorders, though high-quality, randomized controlled trials are needed. Ongoing studies should focus on optimization of treatment protocols, development of biomarkers to identify children who will benefit from the technique, and identification of the most appropriate indicators of response.
Collapse
Affiliation(s)
- Laura A Malone
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Lisa R Sun
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA.
| |
Collapse
|
14
|
Functional and structural asymmetry in primary motor cortex in Asperger syndrome: a navigated TMS and imaging study. Brain Topogr 2019; 32:504-518. [PMID: 30949863 PMCID: PMC6477009 DOI: 10.1007/s10548-019-00704-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Motor functions are frequently impaired in Asperger syndrome (AS). In this study, we examined the motor cortex structure and function using navigated transcranial magnetic stimulation (nTMS) and voxel-based morphometry (VBM) and correlated the results with the box and block test (BBT) of manual dexterity and physical activity in eight boys with AS, aged 8–11 years, and their matched controls. With nTMS, we found less focused cortical representation areas of distinct hand muscles in AS. There was hemispheric asymmetry in the motor maps, silent period duration and active MEP latency in the AS group, but not in controls. Exploratory VBM analysis revealed less gray matter in the left postcentral gyrus, especially in the face area, and less white matter in the precentral area in AS as compared to controls. On the contrary, in the right leg area, subjects with AS displayed an increased density of gray matter. The structural findings of the left hemisphere correlated negatively with BBT score in controls, whereas the structure of the right hemisphere in the AS group correlated positively with motor function as assessed by BBT. These preliminary functional (neurophysiological and behavioral) findings are indicative of asymmetry, and co-existing structural alterations may reflect the motor impairments causing the deteriorations in manual dexterity and other motor functions commonly encountered in children with AS.
Collapse
|
15
|
Saari J, Kallioniemi E, Tarvainen M, Julkunen P. Oscillatory TMS-EEG-Responses as a Measure of the Cortical Excitability Threshold. IEEE Trans Neural Syst Rehabil Eng 2019; 26:383-391. [PMID: 29432109 DOI: 10.1109/tnsre.2017.2779135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive tool to perturb brain activity. In TMS studies, the stimulation intensity (SI) is commonly normalized to the resting motor threshold (rMT) that produces muscle responses in 50% of stimulations applied to the motor cortex (M1). Since rMT is influenced by spinal excitability and coil-to-cortex distance, responses recorded from the cortex, instead of a peripheral muscle, could provide a more accurate marker for cortical excitability. Combining TMS with electroencephalography (EEG) enables the measurement of brain-wide cortical reactivity to TMS. We quantified TMS-induced changes in oscillatory power and the phase of EEG with event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). We studied the SI-dependency of ERSP and ITC responses by stimulating the dominant M1 of ten healthy volunteers using single-pulse TMS with 150 pulses at 60%, 80%, 100%, and 120% of rMT. We found SI-dependent ERSP and ITC responses in M1, most notably with the wide-band (8-70 Hz) early ITC responses averaged 20-60 ms after TMS. With approximately linear SI-dependence, the early ITC response was consistent between SIs (intraclass correlation = 0.78, ). Our results reveal the potential of oscillatory EEG responses, in place of rMT, as a measure of the cortical excitability threshold in M1.
Collapse
|
16
|
Charalambous CC, Liang JN, Kautz SA, George MS, Bowden MG. Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation. J Vis Exp 2019. [PMID: 30855569 DOI: 10.3791/58944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Distal leg muscles receive neural input from motor cortical areas via the corticospinal tract, which is one of the main motor descending pathway in humans and can be assessed using transcranial magnetic stimulation (TMS). Given the role of distal leg muscles in upright postural and dynamic tasks, such as walking, a growing research interest in the assessment and modulation of the corticospinal tracts relative to the function of these muscles has emerged in the last decade. However, methodological parameters used in previous work have varied across studies making the interpretation of results from cross-sectional and longitudinal studies less robust. Therefore, use of a standardized TMS protocol specific to the assessment of leg muscles' corticomotor response (CMR) will allow for direct comparison of results across studies and cohorts. The objective of this paper is to present a protocol that provides the flexibility to simultaneously assess the bilateral CMR of two main ankle antagonistic muscles, the tibialis anterior and soleus, using single pulse TMS with a neuronavigation system. The present protocol is applicable while the examined muscle is either fully relaxed or isometrically contracted at a defined percentage of maximum isometric voluntary contraction. Using each subject's structural MRI with the neuronavigation system ensures accurate and precise positioning of the coil over the leg cortical representations during assessment. Given the inconsistency in CMR derived measures, this protocol also describes a standardized calculation of these measures using automated algorithms. Though this protocol is not conducted during upright postural or dynamic tasks, it can be used to assess bilaterally any pair of leg muscles, either antagonistic or synergistic, in both neurologically intact and impaired subjects.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine; Department of Health Sciences and Research, Medical University of South Carolina;
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada Las Vegas; Department of Health Professions, Medical University of South Carolina
| | - Steve A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina; Ralph H. Johnson VA Medical Center
| | - Mark S George
- Ralph H. Johnson VA Medical Center; Department of Psychiatry, Medical University of South Carolina
| | - Mark G Bowden
- Department of Health Sciences and Research, Medical University of South Carolina; Ralph H. Johnson VA Medical Center; Division of Physical Therapy, Medical University of South Carolina
| |
Collapse
|
17
|
Rejnö-Habte Selassie G, Pegenius G, Viggedal G, Hallböök T, Thordstein M. Navigated transcranial magnetic stimulation for preoperative cortical mapping of expressive language in children: Development of a method. Epilepsy Behav 2018; 87:180-187. [PMID: 30093270 DOI: 10.1016/j.yebeh.2018.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022]
Abstract
We adjusted an object-naming task with repetitive navigated transcranial magnetic stimulation (rnTMS) originally developed for preoperative cortical language mapping in adults in order for it to be used in children. Two series of pictures were chosen for children above and below 10 years of age, respectively. Firstly, the series of pictures and the preferred speed of presentation were assessed for their applicability in children of different ages and abilities. Secondly, these series were used with rnTMS preoperatively in five children with epilepsy. Naming errors induced by the stimulation comprised no response, delayed response, semantic error, phonological error, and self-correction. Language laterality was compared with the results of a dichotic listening test and with neuropsychological tests with respect to general laterality, and general language abilities were considered with respect to the results of stimulation. One participant had below normal general language abilities, two had below-normal rapid naming, and three had slow and indistinct articulation. Laterality was only clear in two of the participants. All children required breaks of various durations during the process, and individual adjustments of the interpicture interval and other stimulation parameters were also made. We conclude that, after adjustment, rnTMS combined with an object-naming task can be useful for preoperative language mapping in children.
Collapse
Affiliation(s)
| | - Göran Pegenius
- Unit of Clinical Neurophysiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gerd Viggedal
- Department of Pediatrics, Queen Silvia Children's Hospital and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tove Hallböök
- Department of Pediatrics, Queen Silvia Children's Hospital and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Thordstein
- Unit of Clinical Neurophysiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
18
|
Charalambous CC, Dean JC, Adkins DL, Hanlon CA, Bowden MG. Characterizing the corticomotor connectivity of the bilateral ankle muscles during rest and isometric contraction in healthy adults. J Electromyogr Kinesiol 2018; 41:9-18. [PMID: 29715530 DOI: 10.1016/j.jelekin.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
The investigation of the corticomotor connectivity (CMC) to leg muscles is an emerging research area, and establishing reliability of measures is critical. This study examined the measurement reliability and the differences between bilateral soleus (SOL) and tibialis anterior (TA) CMC in 21 neurologically intact adults. Using single pulse transcranial magnetic stimulation (TMS), each muscle's CMC was assessed twice (7 ± 2 days apart) during rest and active conditions. CMC was quantified using a standardized battery of eight measures (4/condition): motor threshold during resting (RMT), motor evoked potential amplitude and latency (raw and normalized to height) in both conditions, contralateral silent period (CSP) during active. Using two reliability metrics (intraclass correlation coefficient and coefficient of variation of method error; good reliability: ≥0.75 and ≤15, respectively) and repeated-measures ANOVA, we investigated the reliability and Muscle X Body Side interaction. For both muscles, RMT, resting raw and normalized latencies, and active raw latency demonstrated good reliability, while CSP had good reliability only for TA. Amplitude did not demonstrate good reliability for both muscles. SOL CMC was significantly different from TA CMC for all measures but CSP; body side had no significant effect. Therefore, only certain measures may reliably quantify SOL and TA CMC while different CMC (except CSP) between SOL and TA suggests dissimilar corticospinal drive to each muscle regardless of the side.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Jesse C Dean
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna L Adkins
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen A Hanlon
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark G Bowden
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Ravindra VM, Sweney MT, Bollo RJ. Recent developments in the surgical management of paediatric epilepsy. Arch Dis Child 2017; 102:760-766. [PMID: 28096104 DOI: 10.1136/archdischild-2016-311183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 11/08/2022]
Abstract
Among the 1% of children affected by epilepsy, failure of pharmacological therapy and early age of seizure onset can lead to worse long-term cognitive outcomes, mental health disorders and impaired functional status. Surgical management often improves functional and cognitive outcomes in children with medically refractory epilepsy, especially when seizure remission is achieved. However, surgery remains underused in children with drug-resistant epilepsy, creating a large treatment gap. Several recent innovations have led to considerable improvement in surgical technique, including the recent development of minimally invasive diagnostic and therapeutic techniques such as stereotactic EEG, transcranial magnetic stimulation, MRI-guided laser ablation, as well as novel paradigms of neurostimulation. This article discusses the current landscape of surgical innovation in the management of paediatric epilepsy, leading to a paradigm shift towards minimally invasive therapy and closing the treatment gap in children suffering from drug-resistant seizures.
Collapse
Affiliation(s)
- Vijay M Ravindra
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Utah School of Medicine, Primary Children's Hospital, Slat Lake City, Utah, USA
| | - Matthew T Sweney
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Robert J Bollo
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Utah School of Medicine, Primary Children's Hospital, Slat Lake City, Utah, USA
| |
Collapse
|
20
|
Safety of Transcranial Magnetic Stimulation in Children: A Systematic Review of the Literature. Pediatr Neurol 2017; 68:3-17. [PMID: 28216033 PMCID: PMC5346461 DOI: 10.1016/j.pediatrneurol.2016.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data and best practice recommendations for transcranial magnetic stimulation (TMS) use in adults are largely available. Although there are fewer data in pediatric populations and no published guidelines, its practice in children continues to grow. METHODS We performed a literature search through PubMed to review all TMS studies from 1985 to 2016 involving children and documented any adverse events. Crude risks were calculated per session. RESULTS Following data screening we identified 42 single-pulse and/or paired-pulse TMS studies involving 639 healthy children, 482 children with central nervous system disorders, and 84 children with epilepsy. Adverse events occurred at rates of 3.42%, 5.97%, and 4.55% respective to population and number of sessions. We also report 23 repetitive TMS studies involving 230 central nervous system and 24 children with epilepsy with adverse event rates of 3.78% and 0.0%, respectively. We finally identified three theta-burst stimulation studies involving 90 healthy children, 40 children with central nervous system disorder, and no epileptic children, with adverse event rates of 9.78% and 10.11%, respectively. Three seizures were found to have occurred in central nervous system disorder individuals during repetitive TMS, with a risk of 0.14% per session. There was no significant difference in frequency of adverse events by group (P = 0.988) or modality (P = 0.928). CONCLUSIONS Available data suggest that risk from TMS/theta-burst stimulation in children is similar to adults. We recommend that TMS users in this population follow the most recent adult safety guidelines until sufficient data are available for pediatric specific guidelines. We also encourage continued surveillance through surveys and assessments on a session basis.
Collapse
|
21
|
The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin 2016; 46:125-33. [PMID: 27229765 DOI: 10.1016/j.neucli.2016.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023] Open
Abstract
The surgical removal of brain tumours in so-called eloquent regions is frequently associated with a high risk of causing disabling postoperative deficits. Among the preoperative techniques proposed to help neurosurgical planning and procedure, navigated transcranial magnetic stimulation (nTMS) is increasingly performed. A high level of evidence is now available in the literature regarding the anatomical and functional accuracy of this mapping technique. This article presents the principles and facts demonstrating the value of using nTMS in clinical practice to preserve motor or language functions from deleterious lesions secondary to brain tumour resection or epilepsy surgery.
Collapse
|
22
|
Säisänen L, Julkunen P, Kemppainen S, Danner N, Immonen A, Mervaala E, Määttä S, Muraja-Murro A, Könönen M. Locating and Outlining the Cortical Motor Representation Areas of Facial Muscles With Navigated Transcranial Magnetic Stimulation. Neurosurgery 2016; 77:394-405; discussion 405. [PMID: 26035404 DOI: 10.1227/neu.0000000000000798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) has become established as an accurate noninvasive technique for mapping the functional motor cortex for the representation areas of upper and lower limb muscles but not yet for facial musculature. OBJECTIVE To characterize the applicability and clinical impact of using nTMS to map cortical motor areas of facial muscles in healthy volunteers and neurosurgical tumor patients. METHODS Eight healthy volunteers and 12 patients with tumor were studied. The motor threshold (MT) was determined for the abductor pollicis brevis and mentalis muscles. The lateral part of the motor cortex was mapped with suprathreshold stimulation intensity, and motor evoked potentials were recorded from several facial muscles. The patient protocol was modified according to the clinical indication. RESULTS In all healthy subjects, motor evoked potentials were elicited in the mentalis (mean latency, 13.4 milliseconds) and orbicularis oris (mean latency, 12.6 milliseconds) muscles. At 110% of MT of the mentalis, the motor evoked potentials of facial muscles were elicited mainly in the precentral gyrus but also from one gyrus anterior and posterior to it. The cortical areas applicable for mapping were limited by an artifact attributable to direct peripheral nerve stimulation. The mapping protocol was successful in 10 of 12 tumor patients at locating the representation area of the lower facial muscles. The MT of the facial muscles was significantly higher than that of the abductor pollicis brevis. CONCLUSION nTMS is an applicable and clinically beneficial noninvasive method to preoperatively map the cortical representation areas of the facial muscles in the lower part of the face. Instead of using the MT of the abductor pollicis brevis, the stimulus intensity during mapping should be proportioned to the MT of a facial muscle.
Collapse
Affiliation(s)
- Laura Säisänen
- *Institute of Clinical Medicine, Faculty of Health Sciences and §Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; ‡Departments of Clinical Neurophysiology, #Neurosurgery, and **Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; ¶Department of Clinical Neurophysiology, NordLab Kajaani and ‖Kainuu Social and Health Care Joint Authority, Kainuu Central Hospital, Kajaani, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alternative Stimulation Intensities for Mapping Cortical Motor Area with Navigated TMS. Brain Topogr 2016; 29:395-404. [DOI: 10.1007/s10548-016-0470-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
24
|
Kallioniemi E, Pitkänen M, Säisänen L, Julkunen P. Onset Latency of Motor Evoked Potentials in Motor Cortical Mapping with Neuronavigated Transcranial Magnetic Stimulation. Open Neurol J 2015; 9:62-9. [PMID: 26535068 PMCID: PMC4627389 DOI: 10.2174/1874205x01509010062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/12/2023] Open
Abstract
Cortical motor mapping in pre-surgical applications can be performed using motor evoked potential (MEP) amplitudes evoked with neuronavigated transcranial magnetic stimulation. The MEP latency, which is a more stable parameter than the MEP amplitude, has not so far been utilized in motor mapping. The latency, however, may provide information about the stress in damaged motor pathways, e.g. compression by tumors, which cannot be observed from the MEP amplitudes. Thus, inclusion of this parameter could add valuable information to the presently used technique of MEP amplitude mapping. In this study, the functional cortical representations of first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles were mapped in both hemispheres of ten healthy righthanded volunteers. The cortical muscle representations were evaluated by the area and centre of gravity (CoG) by using MEP amplitudes and latencies. As expected, the latency and amplitude CoGs were congruent and were located in the centre of the maps but in a few subjects, instead of a single centre, several loci with short latencies were observed. In conclusion, MEP latencies may be useful in distinguishing the cortical representation areas with the most direct pathways from those pathways with prolonged latencies. However, the potential of latency mapping to identify stressed motor tract connections at the subcortical level will need to be verified in future studies with patients.
Collapse
Affiliation(s)
- Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland ; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland ; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland ; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland ; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Pitkänen M, Kallioniemi E, Julkunen P. Extent and Location of the Excitatory and Inhibitory Cortical Hand Representation Maps: A Navigated Transcranial Magnetic Stimulation Study. Brain Topogr 2015; 28:657-665. [PMID: 26133678 DOI: 10.1007/s10548-015-0442-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/24/2015] [Indexed: 01/16/2023]
Abstract
Voluntary muscle action and control are modulated by the primary motor cortex, which is characterized by a well-defined somatotopy. Muscle action and control depend on a sensitive balance between excitatory and inhibitory mechanisms in the cortex and in the corticospinal tract. The cortical locations evoking excitatory and inhibitory responses in brain stimulation can be mapped, for example, as a pre-surgical procedure. The purpose of this study was to find the differences between excitatory and inhibitory motor representations mapped using navigated transcranial magnetic stimulation (nTMS). The representations of small hand muscles were mapped to determine the areas and the center of gravities (CoGs) in both hemispheres of healthy right-handed volunteers. The excitatory representations were obtained via resting motor evoked potential (MEP) mapping, with and without a stimulation grid. The inhibitory representations were mapped using the grid and measuring corticospinal silent periods (SPs) during voluntary muscle contraction. The excitatory representations were larger on the dominant hemisphere compared with the non-dominant (p < 0.05). The excitatory CoGs were more medial (p < 0.001) and anterior (p < 0.001) than the inhibitory CoGs. The use of the grid did not influence the areas or the CoGs. The results support the common hypothesis that the MEP and SP representations are located at adjacent sites. Furthermore, the dominant hemisphere seems to be better organized for controlling excitatory motor functions with respect to TMS. In addition, the inhibitory representations could provide further information about motor reorganization and aid in surgery planning when the functional cortical representations are located in abnormal cortical regions.
Collapse
Affiliation(s)
- Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029, KYS, Finland. .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, POB 12200, 00076, Aalto, Finland.
| | - Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029, KYS, Finland.,Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029, KYS, Finland.,Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| |
Collapse
|
26
|
Goodwin BD, Butson CR. Subject-Specific Multiscale Modeling to Investigate Effects of Transcranial Magnetic Stimulation. Neuromodulation 2015; 18:694-704. [PMID: 25953411 DOI: 10.1111/ner.12296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is an effective intervention in noninvasive neuromodulation used to treat a number of neurophysiological disorders. Predicting the spatial extent to which neural tissue is affected by TMS remains a challenge. The goal of this study was to develop a computational model to predict specific locations of neural tissue that are activated during TMS. Using this approach, we assessed the effects of changing TMS coil orientation and waveform. MATERIALS AND METHODS We integrated novel techniques to develop a subject-specific computational model, which contains three main components: 1) a figure-8 coil (Magstim, Magstim Company Limited, Carmarthenshire, UK); 2) an electromagnetic, time-dependent, nonhomogeneous, finite element model of the whole head; and 3) an adaptation of a previously published pyramidal cell neuron model. We then used our modeling approach to quantify the spatial extent of affected neural tissue for changes in TMS coil rotation and waveform. RESULTS We found that our model shows more detailed predictions than previously published models, which underestimate the spatial extent of neural activation. Our results suggest that fortuitous sites of neural activation occur for all tested coil orientations. Additionally, our model predictions show that excitability of individual neural elements changes with a coil rotation of ±15°. CONCLUSIONS Our results indicate that the extent of neuromodulation is more widespread than previous published models suggest. Additionally, both specific locations in cortex and the extent of stimulation in cortex depend on coil orientation to within ±15° at a minimum. Lastly, through computational means, we are able to provide insight into the effects of TMS at a cellular level, which is currently unachievable by imaging modalities.
Collapse
Affiliation(s)
| | - Christopher R Butson
- Marquette University, Milwaukee, WI, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
27
|
Szilágyi T, Száva I, Metz EJ, Mihály I, Orbán-Kis K. Untangling the pathomechanisms of temporal lobe epilepsy—The promise of epileptic biomarkers and novel therapeutic approaches. Brain Res Bull 2014; 109:1-12. [DOI: 10.1016/j.brainresbull.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
|
28
|
Mäkelä JP, Vitikainen AM, Lioumis P, Paetau R, Ahtola E, Kuusela L, Valanne L, Blomstedt G, Gaily E. Functional Plasticity of the Motor Cortical Structures Demonstrated by Navigated TMS in Two Patients with Epilepsy. Brain Stimul 2013; 6:286-91. [DOI: 10.1016/j.brs.2012.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Accepted: 04/28/2012] [Indexed: 12/20/2022] Open
|
29
|
Vitikainen AM, Salli E, Lioumis P, Mäkelä JP, Metsähonkala L. Applicability of nTMS in locating the motor cortical representation areas in patients with epilepsy. Acta Neurochir (Wien) 2013; 155:507-18. [PMID: 23328919 DOI: 10.1007/s00701-012-1609-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is increasingly used for non-invasive functional mapping in preoperative evaluation for brain surgery, and the reliability of navigated TMS (nTMS) motor representation maps has been studied in the healthy population and in brain tumor patients. The lesions behind intractable epilepsy differ from typical brain tumors, ranging from developmental cortical malformations to injuries early in development, and may influence the functional organization of the cortical areas. Moreover, the interictal cortical epileptic activity and antiepileptic medication may affect the nTMS motor threshold. The reliability of the nTMS motor representation localization in epilepsy patients has not been addressed. METHODS We compared the nTMS motor cortical representation maps of hand and arm muscles with the results of invasive electrical cortical stimulation (ECS) in 13 patients with focal epilepsy. The nTMS maps were projected to the cortical surface segmented from preoperative magnetic resonance images (MRI), and the positions of the subdural electrodes were extracted from the postoperative low-dose computed tomography (CT) images registered with preoperative MRI. RESULTS The 3D distance between the average nTMS site and average ECS electrode location was 11 ± 4 mm for the hand and 16 ± 7 mm for arm muscle representation areas. In all patients the representation areas defined with nTMS and ECS were located on the same gyrus, also in patients with abundant interictal epileptic activity on the motor gyrus. CONCLUSIONS nTMS can reliably locate the hand motor cortical representation area with the accuracy needed for pre-surgical evaluation in patients with epilepsy.
Collapse
MESH Headings
- Adolescent
- Adult
- Arm/innervation
- Brain Mapping/methods
- Brain Neoplasms/physiopathology
- Brain Neoplasms/surgery
- Child
- Electric Stimulation
- Electromyography
- Epilepsies, Partial/physiopathology
- Epilepsies, Partial/surgery
- Epilepsy, Frontal Lobe/physiopathology
- Epilepsy, Frontal Lobe/surgery
- Epilepsy, Partial, Motor/physiopathology
- Epilepsy, Partial, Motor/surgery
- Hand/innervation
- Humans
- Image Interpretation, Computer-Assisted/methods
- Imaging, Three-Dimensional
- Magnetic Resonance Imaging/methods
- Male
- Motor Cortex/physiopathology
- Muscle, Skeletal/innervation
- Preoperative Care/methods
- Retrospective Studies
- Somatosensory Cortex/physiopathology
- Tomography, X-Ray Computed/methods
- Transcranial Magnetic Stimulation/methods
- Young Adult
Collapse
Affiliation(s)
- Anne-Mari Vitikainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, P.O. Box 340, 00029, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
30
|
Thordstein M, Saar K, Pegenius G, Elam M. Individual effects of varying stimulation intensity and response criteria on area of activation for different muscles in humans. A study using navigated transcranial magnetic stimulation. Brain Stimul 2013; 6:49-53. [DOI: 10.1016/j.brs.2012.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
|
31
|
|
32
|
Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med 2011; 5:615-28. [PMID: 22003910 PMCID: PMC3227685 DOI: 10.2217/bmm.11.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epilepsy and seizures are very common in the early years of life and are often associated with significant morbidity and mortality. Identification of biomarkers for the early detection of epileptogenicity, epileptogenesis, comorbidities, disease progression and treatment implementation will be very important in implementing more effective therapies. This article summarizes the current needs in the search for new early life epilepsy-related biomarkers and discusses the candidate biomarkers that are under investigation, as well as the challenges associated with the identification and validation of these biomarkers.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center, Room 306, Bronx, NY 10461, USA.
| | | |
Collapse
|
33
|
Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011; 22:233-51, ix. [PMID: 21435574 PMCID: PMC3547606 DOI: 10.1016/j.nec.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.
Collapse
Affiliation(s)
- Umer Najib
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Dylan Edwards
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Non-Invasive Brain Stimulation and the Human Motor Control Laboratory, Burke Medical Research Institute, Inc, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Alexander Rotenberg
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Institut Guttman de Neurorehabilitació, Institut Universitari, Universitat Autonoma de Barcelona, Camí de Can Ruti s/n, 08916 Badalona, Spain
| |
Collapse
|