1
|
Priyadarshini S, Goyal K, R R, Gupta S, Roy A, Biswas R, Patra S, Chauhan P, Wadhwa K, Singh G, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Sinha JK, Bansal P, Rani B, Walia C, Sivaprasad GV, Ojha S, Nelson VK, Jha NK. Polypharmacology and Neuroprotective Effects of Gingerol in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-024-04484-y. [PMID: 39982688 DOI: 10.1007/s12035-024-04484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/22/2024] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that results in brain shrinkage and the death of brain cells. The search for new treatment agents with many targets is now crucial due to the insufficient effectiveness, and adverse effects, including pharmacokinetic issues of traditional AD medications. Although phytochemicals have anti-disease characteristics and thus are widely used and accepted by people, researchers have also determined some of their most beneficial functions. Sesquiterpenes, volatile oils, and aromatic ketones (gingerols) are abundant in ginger. The most pharmacologically active components of ginger are considered to be gingerols. These gingerols are the compounds that impart spicy characteristics to the plant. Besides, gingerols readily undergo dehydration and produce another class of compounds, shogaols. These gingerols, shogaols, and other compounds, like zingerone, are mainly responsible for their distinctive aroma and pharmacological effects. This review aims to delineate the therapeutic potentials of gingerol in different AD models by assessing available literature reporting its effect on various cellular and molecular pathways. Although ginger is well recognized as a non-toxic nutraceutical, existing clinical research lacks robust evidence to support its efficacy in treating NDs, including AD. Clinical studies did not provide sufficient data that supports its use in treating various NDs including AD. Therefore, further research is essential to establish the safety and effectiveness of ginger and its constituents, ultimately paving the way for its development as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Sakthi Priyadarshini
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Keshav Goyal
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Uttar Pradesh, Mathura, India
| | - Aatreyi Roy
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Ritabrata Biswas
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Marg, New Delhi, 110021, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | | | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Vinod Kumar Nelson
- Department of Natural Products and Drug Discovery, Centre for global health research, Saveetha medical college and Hospital, Saveetha institute of medical and technical sciences, Chennai, Tamil Nadu, India.
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
Kalra S, Bhatia S, Harrasi AA, Mohan S, Sachdeva H, Sharma D, Budhwar V, Choudhary M, Malik R. Ethnopharmacological Perspective for Treatment of Epilepsy: An Updated Review. SCIENTIFICA 2024; 2024:8052659. [PMID: 39610870 PMCID: PMC11602530 DOI: 10.1155/2024/8052659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
Plants have been used as healing agents since humanity began. This review presents the plant profiles inhabiting the world regarding their traditional usage by various tribes/ethnic groups for the treatment of epilepsy. The bibliographic investigation was carried out by analyzing standard reference textbooks, Science Direct, Google Scholar, Scopus, Medline, Web of Science, and PubMed databases. Search terms and keywords used for the search were epilepsy, medicinal plants for epilepsy, herbal remedies used in the treatment of epilepsy, and traditional antiepilepsy medication. This review article was prepared by including the biological names of plants/their parts/extracts/compounds/doses/models/results. Further, experimentally explored 15 potential medicinal plants have also been explored in detail. The present review was prepared by including 114 plants from 3 books, 83 research, and 59 review articles. This review indicates that the list of medicinal plants presented in this review might be useful to researchers for preliminary screening of potential antiepileptic agents.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119, India
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Oman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Ahmed Al Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Oman
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 82912, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
| | - Himanshu Sachdeva
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Vikas Budhwar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Manjusha Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rohit Malik
- Department of Pharmacology, ICFAI School of Pharmaceutical Sciences, The ICFAI University, Jaipur, Rajasthan, India
- Department of Pharmacology, SRM Modi Nagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| |
Collapse
|
3
|
Akotkar L, Aswar U, Ganeshpurkar A, Rathod K, Bagad P, Gurav S. Phytoconstituents Targeting the Serotonin 5-HT 3 Receptor: Promising Therapeutic Strategies for Neurological Disorders. ACS Pharmacol Transl Sci 2024; 7:1694-1710. [PMID: 38898946 PMCID: PMC11184608 DOI: 10.1021/acsptsci.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The 5-hydroxytryptamine-3 receptor (5-HT3R), a subtype of serotonin receptor, is a ligand-gated ion channel crucial in mediating fast synaptic transmission in the central and peripheral nervous systems. This receptor significantly influences various neurological activities, encompassing neurotransmission, mood regulation, and cognitive processing; hence, it may serve as an innovative target for neurological disorders. Multiple studies have revealed promising results regarding the beneficial effects of these phytoconstituents and extracts on conditions such as nausea, vomiting, neuropathic pain depression, anxiety, Alzheimer's disease, cognition, epilepsy, sleep, and dyskinesia via modulation of 5-HT3R in the pathophysiology of neurological disorder. The review delves into a detailed exploration of in silico, in vitro, and in vivo studies and clinical studies that discussed phytoconstituents acting on 5-HT3R and attenuates difficulties in neurological diseases. The diverse mechanisms by which plant-derived phytoconstituents influence 5-HT3R activity offer exciting avenues for developing innovative therapeutic interventions. Besides producing an agonistic or antagonistic effect, some phytoconstituents exert modulatory effects on 5-HT3R activity through multifaceted mechanisms. These include γ-aminobutyric acid and cholinergic neuronal pathways, interactions with neurokinin (NK)-1, NK2, serotonergic, and γ-aminobutyric acid(GABA)ergic systems, dopaminergic influences, and mediation of calcium ions release and inflammatory cascades. Notably, the phytoconstituent's capacity to reduce oxidative stress has also emerged as a significant factor contributing to their modulatory role. Despite the promising implications, there is currently a dearth of exploration needed to understand the effect of phytochemicals on the 5-HT3R. Comprehensive preclinical and clinical research is of the utmost importance to broaden our knowledge of the potential therapeutic benefits associated with these substances.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Urmila Aswar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Ankit Ganeshpurkar
- Department
of Pharmaceutical Chemistry, Poona College
of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune411038, India
| | - Kundlik Rathod
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Pradnya Bagad
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Shailendra Gurav
- Department
of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India
| |
Collapse
|
4
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
5
|
Roustaei B, Zarezadeh S, Ghotbi-Ravandi AA. A review on epilepsy, current treatments, and potential of medicinal plants as an alternative treatment. Neurol Sci 2023; 44:4291-4306. [PMID: 37581769 DOI: 10.1007/s10072-023-07010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Epilepsy is considered common neurological diseases that threaten the lives of millions of people all around the world. Since ancient times, different forms of medications have been used to treat this condition. Adverse events associated with treatments and the residence time of available drugs caused to search for safer and more efficient therapies and drugs remain one of the major areas of research interest for scientists. As one of the therapeutics with fewer side effects, plants and their essential oils can be considered replacements for existing treatments. Medicinal plants have proven to be an effective natural source of antiepileptic drugs; most of them have their mechanism of action by affecting GABA receptors in different paths. Cannabis indica and Cymbopogon winterianus are well-known plant species with antiepileptic activities. The current review presenting a list of plants with antiepileptic effects aims to pave the way for finding alternative drugs with fewer side effects for scientists.
Collapse
Affiliation(s)
- Bahar Roustaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
6
|
Birhan YS. Medicinal plants utilized in the management of epilepsy in Ethiopia: ethnobotany, pharmacology and phytochemistry. Chin Med 2022; 17:129. [PMCID: PMC9675240 DOI: 10.1186/s13020-022-00686-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is a common central nervous system (CNS) disorder that affects 50 million people worldwide. Patients with status epilepticus (SE) suffer from devastating comorbidities and a high incidence of mortalities. Antiepileptic drugs (AEDs) are the mainstream treatment options for the symptomatic relief of epilepsy. The incidence of refractory epilepsy and the dose-dependent neurotoxicity of AEDs such as fatigue, cognitive impairment, dizziness, attention-deficit behavior, and other side effects are the major bottlenecks in epilepsy treatment. In low- and middle-income countries (LMICs), epilepsy patients failed to adhere to the AEDs regimens and consider other options such as complementary and alternative medicines (CAMs) to relieve pain due to status epilepticus (SE). Plant-based CAMs are widely employed for the treatment of epilepsy across the globe including Ethiopia. The current review documented around 96 plant species (PS) that are often used for the treatment of epilepsy in Ethiopia. It also described the in vivo anticonvulsant activities and toxicity profiles of the antiepileptic medicinal plants (MPs). Moreover, the phytochemical constituents of MPs with profound anticonvulsant effects were also assessed. The result reiterated that a lot has to be done to show the association between herbal-based epilepsy treatment and in vivo pharmacological activities of MPs regarding their mechanism of action (MOA), toxicity profiles, and bioactive constituents so that they can advance into the clinics and serve as a treatment option for epilepsy.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- grid.449044.90000 0004 0480 6730Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Gawel K, Kukula-Koch W, Banono NS, Nieoczym D, Targowska-Duda KM, Czernicka L, Parada-Turska J, Esguerra CV. 6-Gingerol, a Major Constituent of Zingiber officinale Rhizoma, Exerts Anticonvulsant Activity in the Pentylenetetrazole-Induced Seizure Model in Larval Zebrafish. Int J Mol Sci 2021; 22:7745. [PMID: 34299361 PMCID: PMC8305044 DOI: 10.3390/ijms22147745] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland;
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Marie Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | | | - Lidia Czernicka
- Chair and Department of Food and Nutrition, Medical University of Lublin, Chodzki Str. 4a, 20-093 Lublin, Poland;
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| |
Collapse
|
8
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, Dias DA, Mahomoodally MF, Lobine D, Cruz-Martins N, Kumar M, Calina D. A Pharmacological Perspective on Plant-derived Bioactive Molecules for Epilepsy. Neurochem Res 2021; 46:2205-2225. [PMID: 34120291 DOI: 10.1007/s11064-021-03376-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is a related chronic neurological condition of a predisposition for recurrent epileptic seizures, with various manifestations and causes. Although there are antiepileptic drugs, complementary natural therapies are widely used. The purpose of this systematic review was to analyze the antiepileptic/anticonvulsant pharmacological properties of plant-food derived bioactive molecules. In this regard, a systematic review of the PubMed database was made based on the inclusion criteria. Natural compounds/herbs with scientifically proven antiepileptic properties were selected. Experimental pharmacological studies in vitro and in vivo have shown that flavonoids, alkaloids and terpenoids may have anticonvulsant mechanisms similar to the new generation antiepileptic drugs. The relationships of structure-anticonvulsant effect, pharmacological models, seizure-inducing factors and response, effective dose were also analyzed and discussed. The results of in vitro and in vivo pharmacological studies analyzed in this systematic review support the clinical importance of plant-food-derived bioactive molecules for the complementary treatment of epilepsy. Thus, are opened new perspectives to develop new natural anticonvulsant drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Concepcion, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepcion, Chile
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe, 734003, Tajikistan
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Chintha Lankatillake
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ana Catarina Moreira
- Pulmonology Department, Hospital Garcia de Orta, EPE Almada, 2801-951, Lisboa, Portugal
| | - Daniel A Dias
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| | | | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Echnology, Mumbai, 400019, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
9
|
Pahuja M, Mehla J, Gupta YK. Status analysis of herbal drug therapies in epilepsy: advancements in the use of medicinal plants with anti-inflammatory properties. Comb Chem High Throughput Screen 2021; 25:1601-1618. [PMID: 33605852 DOI: 10.2174/1386207324666210219103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Use of plants and plant products in health care has shown exponential increase in past two decades. INTRODUCTION In-spite of the availability of well-established pharmacotherapy for epilepsy, a large no of population still explores alternative treatments due to refractory seizures, adverse effects of drugs, chronic treatment, inaccessibility of standard therapies in rural areas and the social stigma attached to the disease. Various studies on medicinal plants showed the protective effect of herbals in animal models of epilepsy. METHOD In the present review, a status analysis of the traditional use of various medicinal plants in epilepsy with a special focus on plats having anti-inflammatory potential is recorded. RESULT AND CONCLUSION The shortcomings of research on medicinal plants which needs to be explored further in order to tackle the growing need of safer and effective drugs for epilepsy are discussed. Overall, there is a huge scope of herbal drugs in CNS disorders especially epilepsy, either as an adjunct by reducing the dose and thus side effects of standard anti-epileptic drugs or as standalone agent . Although, there is still an urgent need of well planned randomized controlled clinical trials to validate their efficacy and safety.
Collapse
Affiliation(s)
- Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi - 110 029. India
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis-63110, Missouri. United States
| | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110 029. India
| |
Collapse
|
10
|
Zingerone Targets Status Epilepticus by Blocking Hippocampal Neurodegeneration via Regulation of Redox Imbalance, Inflammation and Apoptosis. Pharmaceuticals (Basel) 2021; 14:ph14020146. [PMID: 33670383 PMCID: PMC7918711 DOI: 10.3390/ph14020146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is an intricate neurological disease where the neurons are severely affected, leading to the mortality of millions worldwide. Status epilepticus (SE), induced by lithium chloride (LiCl) and pilocarpine, is the most accepted model for epilepsy. The current work aims to unravel the mechanisms underlying the anti-epileptic efficacy of zingerone (an active ingredient of ginger), which has beneficial pharmacological activities on seizure-induced behavioral, histological, neurochemical, and molecular patterns in mice. Zingerone restored cognitive function by diminishing seizure activity, escape latency, and subsequent hippocampal damage manifested in histology. Seizures are associated with local inflammation, redox imbalance, and neural loss, confirmed by the present study of SE, and was attenuated by zingerone treatment. Nuclear factor-kappa B and its downstream signaling molecules (TNF-α, IL-1β, IL-6, NO, MPO) were activated in the LiCl-and-pilocarpine-induced group leading to inflammatory signaling, which was substantially ameliorated by zingerone treatment. The intrinsic apoptotic process was triggered subsequent to SE, as demonstrated by augmentation of cleaved caspase-3, downregulation of Bcl-2. However, zingerone treatment downregulated caspase-3 and upregulated Bcl-2, increasing cell survival and decreasing hippocampal neural death, deciphering involvement of apoptosis in SE. Therefore, zingerone plays an essential role in neuroprotection, probably by precluding oxidative stress, inflammation, and obstructing the mitochondrial pathway of apoptosis.
Collapse
|
11
|
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res 2021; 35:711-742. [PMID: 32954562 DOI: 10.1002/ptr.6858] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/25/2022]
Abstract
Zingiber officinale Rosc. (Zingiberacae), commonly known as ginger, is a perennial and herbaceous plant with long cultivation history. Ginger rhizome is one of the most popular food spices with unique pungent flavor and is prescribed as a well-known traditional Chinese herbal medicine. To date, over 160 constituents, including volatile oil, gingerol analogues, diarylheptanoids, phenylalkanoids, sulfonates, steroids, and monoterpenoid glycosides compounds, have been isolated and identified from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially gastrointestinal-protective, anti-cancer, and obesity-preventive effects. In addition, gingerol analogues such as 6-gingerol and 6-shogaol can be rapidly eliminated in the serum and detected as glucuronide and sulfate conjugates. Structural variation would be useful to improve the metabolic characteristics and bioactivities of lead compounds derived from ginger. Furthermore, some clinical trials have indicated that ginger can be consumed for attenuating nausea and vomiting during early pregnancy; however, there is not sufficient data available to rule out its potential toxicity, which should be monitored especially over longer periods. This review provides an up-to-date understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Basic Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Simon A, Darcsi A, Kéry Á, Riethmüller E. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal 2020; 177:112820. [PMID: 31476432 DOI: 10.1016/j.jpba.2019.112820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Ginger, the rhizome of Zingiber officinale Roscoe is of great importance in the traditional medicine for the treatment of various diseases. More than 400 constituents have been reported in the plant, the most important ones being the gingerol and shogaol derivatives. Positive effects of ginger extracts and isolated [6]-gingerol have been proved in animal models of anxiety, Alzheimer's disease, Parkinson's disease and epilepsy. Taken in consideration these promising positive effects of ginger and its constituents in the central nervous system, the isolation of gingerol and shogaol derivatives ([6]-gingerol (1), [8]-gingerol (2), [10]-gingerol (3), [6]-shogaol (4), [10]-shogaol (5), 1-dehydro-[6]-gingerdione (6), 1-dehydro-[10]-gingerdione (7)) and investigation of their transcellular passive diffusion across the blood-brain barrier (BBB) were carried out. For this purpose, a Parallel Artificial Membrane Permeability Assay for the Blood-Brain Barrier (PAMPA-BBB) was chosen that had previously been validated for natural compounds. Based on our results, [6]-gingerol, [8]-gingerol and [6]-shogaol were found to be able to penetrate the BBB via passive diffusion, suggesting them to contribute to the positive effects of ginger extracts in the central nervous system.
Collapse
Affiliation(s)
- Alexandra Simon
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - András Darcsi
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Ágnes Kéry
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary.
| |
Collapse
|
13
|
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9:10565. [PMID: 31332210 PMCID: PMC6646331 DOI: 10.1038/s41598-019-46715-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Epilepsy, that comprises a wide spectrum of neuronal disorders and accounts for about one percent of global disease burden affecting people of all age groups, is recognised as apasmara in the traditional medicinal system of Indian antiquity commonly known as Ayurveda. Towards exploring the molecular level complex regulatory mechanisms of 63 anti-epileptic Ayurvedic herbs and thoroughly examining the multi-targeting and synergistic potential of 349 drug-like phytochemicals (DPCs) found therein, in this study, we develop an integrated computational framework comprising of network pharmacology and molecular docking studies. Neuromodulatory prospects of anti-epileptic herbs are probed and, as a special case study, DPCs that can regulate metabotropic glutamate receptors (mGluRs) are inspected. A novel methodology to screen and systematically analyse the DPCs having similar neuromodulatory potential vis-à-vis DrugBank compounds (NeuMoDs) is developed and 11 NeuMoDs are reported. A repertoire of 74 DPCs having poly-pharmacological similarity with anti-epileptic DrugBank compounds and those under clinical trials is also reported. Further, high-confidence PPI-network specific to epileptic protein-targets is developed and the potential of DPCs to regulate its functional modules is investigated. We believe that the presented schema can open-up exhaustive explorations of indigenous herbs towards meticulous identification of clinically relevant DPCs against various diseases and disorders.
Collapse
Affiliation(s)
- Neha Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
14
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
15
|
Liu W, Ge T, Pan Z, Leng Y, Lv J, Li B. The effects of herbal medicine on epilepsy. Oncotarget 2018; 8:48385-48397. [PMID: 28423368 PMCID: PMC5564656 DOI: 10.18632/oncotarget.16801] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Traditional herbal medicine plays a significant role in the treatment of epilepsy. Though herbal medicine is widely used in antiepileptic treatment, there is a lack of robust evidence for efficacy and toxicity of most herbs. Besides, the herbal medicine should be subject to evidence-based scrutiny. In this context, we present a review to introduce the effects of herbal medicine on epilepsy. However, hundreds of herbal medicines have been investigated in the available studies. Some commonly used herbal medicines for epilepsy have been listed in our study. The overwhelming majority of these data are based on animal experiments. The lack of clinical data places constraints on the clinical recommendation of herbal medicine. Our study may conduct further studies and provide some insight on the development of anti-epileptic drugs.
Collapse
Affiliation(s)
- Wei Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Zhenxiang Pan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yashu Leng
- Third Hospital of Jilin University, Changchun 130033, PR China
| | - Jiayin Lv
- Third Hospital of Jilin University, Changchun 130033, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
16
|
Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther 2018; 182:56-69. [PMID: 28842272 DOI: 10.1016/j.pharmthera.2017.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age-related neurological disorders (ANDs), including neurodegenerative diseases, are multifactorial disorders with a risk that increases with aging. ANDs are generally characterized by common neuropathological conditions of the central nervous system, such as oxidative stress, neuroinflammation, and protein misfolding. Recently, efforts have been made to overcome ANDs because of the increase in age-dependent prevalence. Ginger, the rhizome of Zingiber officinale Roscoe, is a popular food spice and has a long history of use in traditional medicine for treating various disease symptoms. The structure-activity relationships of ginger phytochemicals show that ginger can be used to treat ANDs by targeting different ligand sites. This review shows that ginger and its constituents, such as 6-gingerol, 6-shogaol, 6-paradol, zingerone, and dehydrozingerone, are effective for ameliorating the neurological symptoms and pathological conditions of ANDs through by modulating cell death or cell survival signaling molecules. From this review, we conclude that the active ingredients in ginger have therapeutic potential in ANDs.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Minsun Jeong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Abolhasanzadeh Z, Ashrafi H, Badr P, Azadi A. Traditional neurotherapeutics approach intended for direct nose to brain delivery. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:116-123. [PMID: 28733193 DOI: 10.1016/j.jep.2017.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nasal delivery systems have a significant role in Persian traditional medicine. Most of them were utilized for central nervous system (CNS)-related disorders. In modern medicine, nasal drug delivery systems for brain delivery are highly regarded. AIM OF THE STUDY Despite recent advances in drug delivery to the (CNS), delivery of therapeutics to the brain remains a major challenge because of the blood brain barrier (BBB). There are several mechanisms which regulate the drug transfer across the BBB. Local administration methods of therapeutic agents are often associated with adverse events, while the intranasal pathway has been suggested as a non-invasive alternative route to deliver drugs to the brain. This route can bypass the BBB and deliver drug molecules directly to the CNS. There are different nasal formulations have been addressed in Persian traditional pharmacopeias. The present review attempt to explore the famous and practical Qarabadin to find ancient nasal dosage forms. MATERIALS AND METHODS With an explore on traditional herbs in google scholar, scopus and science direct, we have found some original and review articles which have demonstrated our findings on the use of traditional herbs for CNS disorders. Four encyclopedia of multi-component formulations, including Qarabadin Salehi (1766), Qarabadin kabir (1781),Qarabadin Ghaderi (18th century), and Qarabadin Azam (1853), were searched for nasal formulations having CNS-related indications. Formulations were categorized based on dosage forms, and also, diseases which they were suggested for. While the names of illnesses were in ancient terminology of Traditional Medicine, they were translated to modern medical terminology by comparing their definitions, signs, and symptoms from two medical systems. Typical samples of each dosage form have been mentioned with details like amount of ingredients, scientific names of plants, and considerations pertaining to preparation or usage. RESULTS Among all traditional nasal formulations, seven types were found that is used for sicknesses relating to CNS including Saoot, Nafookh, Atoos, Nashoogh, Shamoom, Lakhlakheh, and Bakhoor. CONCLUSIONS The findings of this study reveal the physicochemical characteristics of each formulation, route of administration, and type of disease which they are suitable and also present some famous formulations.
Collapse
Affiliation(s)
- Zohreh Abolhasanzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Phytopharmaceutical Technology and Traditional Medicine Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Rabiei Z. Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Sriranjini SJ, Sandhya K, Mamta VS. Ayurveda and botanical drugs for epilepsy: Current evidence and future prospects. Epilepsy Behav 2015; 52:290-6. [PMID: 26141933 DOI: 10.1016/j.yebeh.2015.05.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
The understanding of epilepsy has progressed since its earliest impression as a disease associated with paranormal and superstitious beliefs. Landmark advances have been made in deciphering the pathophysiological substrates involved in the disease process, and treatment advances have contributed significantly to ameliorating the seizures. However, disease-modifying agents are yet to be discovered. Ayurveda is a system of medicine that stresses a holistic approach to disease, and treatment is focused on disease modification and symptom management. Herbs form the core of Ayurveda medicine; though many of them have been studied for their anticonvulsant activity, very few actually mention the reference of these herbs in Ayurveda literature. Other therapeutic interventions used in Ayurveda are relatively unexplored, and future research will need to focus on this. The current manuscript briefly discusses the understanding of epilepsy as per Ayurveda and reviews herbs that have been studied for their anticonvulsant activity mentioned in Ayurveda literature. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Sitaram Jaideep Sriranjini
- MS Ramaiah Indic Center for Ayurveda and Integrative Medicine, New BEL Road, MSR Nagar, Bengaluru 560054, India.
| | - Kumar Sandhya
- Ramakrishna Ayurvedic Medical College, Ramagondanahalli, Yelahanka, Bengaluru 560064, India
| | - Vernekar Sanjeeva Mamta
- MS Ramaiah Indic Center for Ayurveda and Integrative Medicine, New BEL Road, MSR Nagar, Bengaluru 560054, India
| |
Collapse
|
20
|
Xiao F, Yan B, Chen L, Zhou D. Review of the use of botanicals for epilepsy in complementary medical systems--Traditional Chinese Medicine. Epilepsy Behav 2015; 52:281-9. [PMID: 26052078 DOI: 10.1016/j.yebeh.2015.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023]
Abstract
In traditional Chinese medicine, botanical remedies have been used for centuries to treat seizures. This review aimed to summarize the botanicals that have been used in traditional Chinese medicine to treat epilepsy. We searched Chinese online databases to determine the botanicals used for epilepsy in traditional Chinese medicine and identified articles using a preset search syntax and inclusion criteria of each botanical in the PubMed database to explore their potential mechanisms. Twenty-three botanicals were identified to treat epilepsy in traditional Chinese medicine. The pharmacological mechanisms of each botanical related to antiepileptic activity, which were mainly examined in animal models, were reviewed. We discuss the use and current trends of botanical treatments in China and highlight the limitations of botanical epilepsy treatments. A substantial number of these types of botanicals would be good candidates for the development of novel AEDs. More rigorous clinical trials of botanicals in traditional Chinese medicine for epilepsy treatment are encouraged in the future. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, People's Republic of China
| | - Bo Yan
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, People's Republic of China.
| |
Collapse
|