1
|
Rees KA, McCamy KM, Danao CI, Winzer-Serhan UH. Augmented hippocampal up-regulation of immune modulators following a peripheral immune challenge in a hemizygous mouse model of the 15q13.3 microdeletion. Cytokine 2025; 191:156951. [PMID: 40300236 DOI: 10.1016/j.cyto.2025.156951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The strongest known genetic risk factor for generalized epilepsy is the human hemizygous 15q13.3 microdeletion (MD). This 1.5 Mb MD encompasses six genes, including CHRNA7 encoding the alpha7 subunit that forms the homo-pentameric nicotinic acetylcholine receptor, a known regulator of the immune system. In the CNS, hyper activation of neuroimmune responses contributes to increased seizure susceptibility. In a mouse model with a hemizygous deletion of the orthologous region (Df(h15q13)/+) (Het), we previously demonstrated increased hippocampal expression of inflammatory cytokines compared to wildtype (WT) mice following a mild peripheral immune challenge. To further characterize neuroimmune responses, hippocampal mRNA expression of the chemokines CXCL2 and CXCL10, and the Gap junction protein connexin 43 (GJA1), all of which are implicated in neuronal hyperexcitability, were determined along with additional immune related targets. Three hours after a lipopolysaccharide (LPS, 0.1 mg/kg) or polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg) injection (i.p.), hippocampi were collected, mRNA extracted, and cDNA prepared for qPCR. The results demonstrate extensive upregulation of CXCL2 and CXCL10 expression by LPS and Poly(I:C) (up to 200-fold CXCL2, up to 600-fold CXCL10) (p < 0.0001) with genotype x treatment interactions for CXCL2 by LPS (p < 0.007). Responses to treatment were far smaller in magnitude for all other targets. LPS and Poly(I:C) induced statistically similar increases for Toll-like receptor (TLR)2, TLR4, HMGB1, and C3, but Poly(I:C) had stronger effects on GJA1, TLR3, C1qA and MARCO expression. Remarkably, TLR3 was the only target with significant downregulation of expression after Poly(I:C) (p < 0.0001). In addition, genotype x treatment interactions were detected for TLR3, TLR4, HMGB1, and C1qA (p < 0.02). Thus, a peripheral immune challenge caused extensive increases for CXCL2 and CXCL10, and the genotype-treatment interactions that was seen for several targets, underscored the augmented neuroinflammatory response in mice carrying the MD. Of note is the dramatic upregulation of CXCL10 by low dose Poly(I:C). CXCL10 causes hyperexcitability via neuronal CXCR3 activation. Thus, even an asymptomatic viral infection may increase seizure susceptibility. In summary, a peripheral immune challenge causes strong upregulation of hippocampal inflammatory mediators implicated in neuronal excitability which is particularly detrimental for individuals with high seizure susceptibility, such as carriers of the 15q13.3 MD.
Collapse
Affiliation(s)
- Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Conner I Danao
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
2
|
Zeballos L, García-Peral C, Ledesma MM, Auzmendi J, Lazarowski A, López DE. Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy. Int J Mol Sci 2025; 26:2331. [PMID: 40076950 PMCID: PMC11900993 DOI: 10.3390/ijms26052331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1-Glypican-1; Sdc3-Syndecan-3; Vgf-Nerve Growth Factor Inducible; Cpne5-Copine 5; Agap2-Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8-Dipeptidyl Peptidase 8) and the downregulation of two (Ralb-RAS-like proto-oncogene B-and S100b-S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Laura Zeballos
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos García-Peral
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Martín M. Ledesma
- Unidad de Conocimiento Traslacional, Hospital de Alta Complejidad del Bicentenario Esteban Echeverría, Monte Grande B1842, Argentina;
- Hospital de Alta Complejidad en Red El Cruce Dr. N. C. Kirchner SAMIC, Florencio Varela B1888, Argentina
| | - Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz M2290, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
| | - Dolores E. López
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
4
|
Yadav V, Nayak S, Guin S, Mishra A. Impact of Oxidative Stress and Neuroinflammation on Sarco/Endoplasmic Reticulum Ca 2+-ATPase 2b Downregulation and Endoplasmic Reticulum Stress in Temporal Lobe Epilepsy. ACS Pharmacol Transl Sci 2025; 8:173-188. [PMID: 39816806 PMCID: PMC11730250 DOI: 10.1021/acsptsci.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases. However, the link between SERCA2b and neuroinflammation in epilepsy remains undetermined. This study aimed to establish the relationship between SERCA2b, oxidative stress, and neuroinflammation in epilepsy to elucidate the underlying molecular mechanism in epileptogenesis. Neuroinflammation and oxidative stress were induced in N2a cells using lipopolysaccharide (LPS) and hydrogen peroxide (H2O2). However, experimental temporal lobe epilepsy (TLE) was induced in mice using pilocarpine. Further, effects of oxidative stress and neuroinflammation on SERCA2b and ER stress markers were assessed at protein and mRNA levels. Calcium imaging was employed to determine intracellular calcium levels. SERCA2b expression significantly decreased after LPS, H2O2, and pilocarpine exposure at both mRNA and protein levels, mediated by upregulating neuroinflammation. This downregulation of SERCA2b was associated with increased production of reactive oxygen species and elevated intracellular calcium levels, leading to elevated ER stress markers. Our findings highlight a link between oxidative stress, neuroinflammation and SERCA2b in TLE. The results suggest that targeting SERCA2b could restore calcium homeostasis and ER stress processes, potentially providing a therapeutic option for TLE. This study underscores the importance of SERCA2b in the pathophysiology of epilepsy and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | - Sandeep Guin
- Department of Pharmacology and Toxicology, National Institute of
Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari,
Kamrup, Assam 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of
Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari,
Kamrup, Assam 781101, India
| |
Collapse
|
5
|
Wang W, Ma L, Liu M, Zhao Y, Ye W, Li X. Assessing the impact of circulating inflammatory cytokines and proteins as drivers and therapeutic targets in epilepsy: A Mendelian randomization study. Epilepsy Behav 2024; 157:109868. [PMID: 38823075 DOI: 10.1016/j.yebeh.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Previous research has demonstrated that neuroinflammation is a key element in the progress of epilepsy. Nevertheless, it is currently unidentified which inflammatory factors and proteins increase or decrease the risk of epilepsy. METHODS We adopted Mendelian randomization techniques to explore the causal relationship between circulating inflammatory factors and proteins and various epilepsy. Our principal approach was inverse variance weighting, supplemented by several sensitivity analyses to guarantee the robustness of our findings. RESULTS Studies have identified associations between epilepsy and specific inflammatory factors and proteins: three inflammatory factors and six proteins are linked to epilepsy in general; one inflammatory factor and four proteins are associated with focal epilepsy with no documented lesions; two inflammatory factors and three proteins are related to focal epilepsy, excluding cases with hippocampal sclerosis; two inflammatory factors and two proteins are connected to juvenile myoclonic epilepsy; two inflammatory factors and five proteins are linked to juvenile absence epilepsy; four inflammatory proteins are associated with childhood absence epilepsy; two inflammatory factors are related to focal epilepsy overall; two inflammatory factors and two proteins are connected to generalized epilepsy; and two inflammatory proteins are linked to generalized epilepsy with tonic-clonic seizures. Additionally, six inflammatory factors may play a downstream role in focal epilepsy. CONCLUSION Our study uncovers various inflammatory factors and proteins that influence the risk of epilepsy, offering instructive insights to the diagnosis and therapy of the condition.
Collapse
Affiliation(s)
- Wencai Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Luyao Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Menghao Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yongqiang Zhao
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Wei Ye
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Xianfeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
6
|
Wang W, Ma L, Liu M, Zhao Y, Ye W, Li X. Unraveling the links between circulating bioactive factors and epilepsy: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38256. [PMID: 39259090 PMCID: PMC11142776 DOI: 10.1097/md.0000000000038256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 09/12/2024] Open
Abstract
Epidemiological research has shown that a variety of circulating bioactive factors are associated with epilepsy, including macrophage colony-stimulating factor, interleukin-1β, and tumor necrosis factor-α. To further investigate the associations between epilepsy and 41 inflammatory cytokines, this Mendelian randomization was performed. This study presents genome-wide association study summary data on 41 inflammatory cytokines and epilepsy. Epilepsy incorporates generalized and focal epilepsy. A two-sample Mendelian randomization method was used. In order to analyze causal relationships between exposures and outcomes, the inverse variance-weighted method was mainly used. The findings suggested that increased levels of interleukin-1 receptor antagonists and interleukin-5 may be significantly associated with increased risks of focal epilepsy (beta: 0.080, P = .043; beta: 0.083, P = .015). In addition, regulated upon activation normal T cell expressed and secreted factor and Macrophage colony-stimulating factor may be significantly associated with generalized epilepsy (beta: 0.110, P = .042; beta: -0.114, P = .024). Furthermore, inflammatory cytokines such as interleukin-10, interleukin-1β, interleukin-1Ra, interleukin-7, tumor necrosis factor-α, and interferon-γ may be identified as the result of focal epilepsy (beta: 0.152, P = .031; beta: 0.214, P = .037; beta: 0.214, P = .047; beta: 0.222, P = .031; beta: 0.224, P = .025; beta: 0.161, P = .018). This study suggests that interleukin-5 and interleukin-1 receptor antagonists are potentially correlated factors with focal epilepsy etiology, macrophage colony-stimulating factor and regulated upon activation normal T cell expressed and secreted factor are potentially correlated factors with generalized epilepsy etiology, while several inflammatory cytokines possibly contribute to focal epilepsy development downstream.
Collapse
Affiliation(s)
- Wencai Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Luyao Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Menghao Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yongqiang Zhao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wei Ye
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xianfeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
7
|
Yu Y, Sun FJ. Research progress on the role of inflammatory mediators in the pathogenesis of epilepsy. IBRAIN 2024; 11:44-58. [PMID: 40103702 PMCID: PMC11911113 DOI: 10.1002/ibra.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 03/20/2025]
Abstract
Epilepsy is an abnormal neurologic disorder distinguished by the recurrent manifestation of seizures, and the precise underlying mechanisms for its development and progression remain uncertain. In recent years, the hypothesis that inflammatory mediators and corresponding pathways contribute to seizures has been supported by experimental results. The potential involvement of neuroinflammation in the development of epilepsy has garnered growing interest. This review centers attention on the involvement of inflammatory mediators in the emergence and progression of epilepsy within recent years, focusing on both clinical research and animal models, to enhance comprehension of the intricate interplay between brain inflammation and epileptogenesis.
Collapse
Affiliation(s)
- Yue Yu
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Fei-Ji Sun
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
- Department of Neurosurgery The First Affiliated Hospital of Chongqing Medical and pharmaceutical college Chongqing China
| |
Collapse
|
8
|
Altyar AE, Afzal M, Ghaboura N, Alharbi KS, Alenezi SK, Sayyed N, Kazmi I. Barbaloin Protects Pentylenetetrazol-Induced Cognitive Deficits in Rodents via Modulation of Neurotransmitters and Inhibition of Oxidative-Free-Radicals-Led Inflammation. Pharmaceuticals (Basel) 2024; 17:699. [PMID: 38931365 PMCID: PMC11206990 DOI: 10.3390/ph17060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Epilepsy is defined by an excessive level of activity in the neurons and coordinated bursts of electrical activity, resulting in the occurrence of seizure episodes. The precise cause of epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve neuroinflammation, oxidative stress, and malfunction of the neurotransmitter system. OBJECTIVE The goal of this investigation was to assess barbaloin's protective properties with respect to pentylenetetrazol (PTZ)-)-induced cognitive deficits in rats via antioxidative, anti-inflammatory, and neurotransmitter-modulating effects. METHODS Wistar rats were subjected to PTZ [40 mg/kg (i.p.)], which induced cognitive decline. Behavior assessment using a kindling score, open-field test (OFT), novel object recognition test (NORT), and assays for superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), acetylcholinesterase (AChE), caspase-3, nitric oxide (NO), interleukins-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, nuclear factor kappa-B (NF-κB), Bcl-2 and Bax, and neurotransmitter levels [GABA, DA, NE, and serotonin (5-HT)] were performed. RESULTS The treatment of rats with barbaloin resulted in behavior improvement and significant changes in the levels of GSH, SOD, CAT, MDA, AChE, NO, IL-6, IL-1β, TNF-α, NF-κB, caspase-3, Bcl-2, and Bax compared to the PTZ control group. Barbaloin treatment resulted in notable changes in neurotransmitter levels (GABA, NE, 5-HT, DA) compared to the PTZ group. CONCLUSIONS The ongoing study has gathered evidence indicating that the injection of barbaloin has resulted in significant improvements in cognitive performance in rats. This is achieved by inhibiting oxidative stress, enhancing the activity of natural antioxidant enzymes, reducing cytokine levels, and increasing the levels of neurotransmitters in the brain. These results were detected in comparison to a PTZ control and can be attributed to the potent anti-inflammatory and antioxidant capabilities of barbaloin, which could be linked to its neuroprotective properties. Barbaloin may potentially increase cognitive decline and boost neuronal survival by altering the expression of Bax, caspase-3, Bcl-2.
Collapse
Affiliation(s)
- Ahmad Essam Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Mirzapur-Pole, Saharanpur 247121, India;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box. 80200, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Kaur A, Raji, Verma V, Goel RK. Strategic pathway analysis for dual management of epilepsy and comorbid depression: a systems biology perspective. In Silico Pharmacol 2024; 12:36. [PMID: 38699778 PMCID: PMC11061056 DOI: 10.1007/s40203-024-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Depression is a common psychiatric comorbidity among patients with epilepsy (PWE), affecting more than a third of PWE. Management of depression may improve quality of life of epileptic patients. Unfortunately, available antidepressants worsen epilepsy by reducing the seizure threshold. This situation demands search of new safer target for combined directorate of epilepsy and comorbid depression. A system biology approach may be useful to find novel pathways/markers for the cure of both epilepsy and associated depression via analyzing available genomic and proteomic information. Hence, the system biology approach using curated 64 seed genes involved in temporal lobe epilepsy and mental depression was applied. The interplay of 600 potential proteins was revealed by the Disease Module Detection (DIAMOnD) Algorithm for the treatment of both epilepsy and comorbid depression using these seed genes. The gene enrichment analysis of seed and diamond genes through DAVID suggested 95 pathways. Selected pathways were refined based on their syn or anti role in epilepsy and depression. In conclusion, total 8 pathways and 27 DIAMOnD genes/proteins were finally deduced as potential new targets for modulation of selected pathways to manage epilepsy and comorbid depression. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00208-1.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Raji
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Varinder Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| |
Collapse
|
10
|
Sun Q, Gao J, An R, Wang M, Wang Y. Probing molecular pathways: Illuminating the connection between COVID-19 and Alzheimer's disease through the endocannabinoid system dynamics. J Med Virol 2024; 96:e29590. [PMID: 38619024 DOI: 10.1002/jmv.29590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Qingyuan Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyang Gao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ran An
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menggeer Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
11
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
12
|
Sun H, Ma D, Hou S, Zhang W, Li J, Zhao W, Shafeng N, Meng H. Exploring causal correlations between systemic inflammatory cytokines and epilepsy: A bidirectional Mendelian randomization study. Seizure 2024; 114:44-49. [PMID: 38039807 DOI: 10.1016/j.seizure.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammation plays a role in the development and advancement of epilepsy, but the relationship between inflammatory cytokines and epilepsy is still not well understood. Herein, we use two-sample Mendelian randomization (MR) to examine the causal association between systemic inflammatory cytokines and epilepsy. METHODS We conducted a bidirectional two-sample MR analysis based on genome-wide association study data of 41 serum cytokines from 8293 Finnish individuals with various epilepsy subtypes from the International League against Epilepsy Consortium. RESULTS Our study showed that three inflammatory cytokines were associated with epilepsy, five were associated with generalized epilepsy, four were associated with focal epilepsy, one was associated with focal epilepsy-documented lesion negative, three were associated with juvenile absence epilepsy, one was associated with childhood absence epilepsy, two were associated with focal epilepsy-documented lesion other than hippocampal sclerosis, and two were associated with juvenile myoclonic epilepsy. Furthermore, the expression of systemic inflammatory cytokines was unaffected by genetically predicted epilepsy. CONCLUSION This study suggested that several inflammatory cytokines are probably the factors correlated with epilepsy. Additional research is required to ascertain if these biomarkers have therapeutic potential to prevent or manage epilepsy.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Nilupaer Shafeng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Wang S, Su T, Pang S, Wang J, Lang Y, Zhu M, Cui L. Assessment of the relationship between generalized convulsive epilepsy and systemic inflammatory regulators: a bidirectional Mendelian randomization study. Front Neurol 2023; 14:1206290. [PMID: 37470000 PMCID: PMC10353605 DOI: 10.3389/fneur.2023.1206290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Generalized convulsive epilepsy (GCE), an important subtype of epilepsy, is a syndrome of neuronal dysfunction characterized by diffuse abnormal discharge of neurons within the brain. Compounding evidence suggests a correlation between epilepsy and inflammatory factors, for instance, cyclooxygenase-2, interleukin-1β, and interleukin-6. Elevated levels of inflammatory factors have been observed in patients with epilepsy and several animal models. Therefore, inflammation may be closely associated with the pathogenesis and progression of GCE. However, the cause-and-effect relationship between the two is difficult to determine because of small sample sizes and confounding factors. Methods To test for causality of the 41 cytokines on GCE, we conducted a two-sample Mendelian randomization (MR) based on the largest and latest genome-wide association study (GWAS) involving 290 cases and 453,521 European controls and a GWAS meta-analysis consisting of 41 cytokines from 8,293 individuals. Results R confirmed a bidirectional causal link between cytokines and GCE. Genetically predicted increased levels of hepatocyte growth factor and decreased levels of eotaxin and interleukin-18 are associated with an increased risk of GCE (OR = 1.904, 95% CI = 1.019-3.561, p = 0.044; OR = 0.641, 95% CI = 0.417-0.984, p = 0.042; OR = 0.482, 95% CI = 0.251-0.927, p = 0.046). Furthermore, the presence of GCE is related to an increase in levels of multiple cytokines, such as macrophage inflammatory protein-1α, interleukin-12p70, interleukin-17, interleukin-1 receptor antagonist, and basic fibroblast growth factor (OR = 1.038, 95% CI = 1.005-1.073, p = 0.024; OR = 1.031, 95% CI = 1.009-1.054, p = 0.006; OR = 1.027, 95% CI = 1.002-1.053, p = 0.037; OR = 1.037, 95% CI = 1.003-1.072, p = 0.032; OR = 1.032, 95% CI = 1.000-1.066, p = 0.048; OR = 1.025, 95% CI = 1.003-1.048, p = 0026). Conclusion A bidirectional causal link existed between inflammation and GCE. Detecting significantly altered factor concentrations may be of great significance for screening GCE and predicting their occurrence. Moreover, available pharmacological treatments for GCE are focused primarily on suppressing seizures. In future, altering the concentration of these cytokines in the body through targeted anti-inflammatory therapy to modify the epileptogenic mechanism and prevent the recurrence and refractoriness of GCE may become the key to new treatments.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tengfei Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuyan Pang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
He Y, Zhang H, Ma L, Li J, Wang F, Zhou H, Zhang G, Wen Y. Identification of TIMP1 as an inflammatory biomarker associated with temporal lobe epilepsy based on integrated bioinformatics and experimental analyses. J Neuroinflammation 2023; 20:151. [PMID: 37365625 DOI: 10.1186/s12974-023-02837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epilepsy is the second most prevalent neurological disease. Although there are many antiseizure drugs, approximately 30% of cases are refractory to treatment. Temporal lobe epilepsy (TLE) is the most common epilepsy subtype, and previous studies have reported that hippocampal inflammation is an important mechanism associated with the occurrence and development of TLE. However, the inflammatory biomarkers associated with TLE are not well defined. METHODS In our study, we merged human hippocampus datasets (GSE48350 and GSE63808) through batch correction and generally verified the diagnostic roles of inflammation-related genes (IRGs) and subtype classification according to IRGs in epilepsy through differential expression, random forest, support vector machine, nomogram, subtype classification, enrichment, protein‒protein interaction, immune cell infiltration, and immune function analyses. Finally, we detected the location and expression of inhibitor of metalloproteinase-1 (TIMP1) in epileptic patients and kainic acid-induced epileptic mice. RESULTS According to the bioinformatics analysis, we identified TIMP1 as the most significant IRG associated with TLE, and we found that TIMP1 was mainly located in cortical neurons and scantly expressed in cortical gliocytes by immunofluorescence staining. We detected decreased expression of TIMP1 by quantitative real-time polymerase chain reaction and western blotting. CONCLUSION TIMP1, the most significant IRG associated with TLE, might be a novel and promising biomarker to study the mechanism of epilepsy and guide the discovery of new drugs for its treatment.
Collapse
Affiliation(s)
- Ya He
- Department of Physical Examination Center, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Hongxia Zhang
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Jingang Li
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Fei Wang
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Hui Zhou
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Guangliang Zhang
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
15
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Sánchez-Hernández J, Jiménez A, Organista-Juárez D, Guzmán-Ruiz MA, Guevara-Guzmán R. Cellular and Molecular Mechanisms of Neuroinflammation in Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:131-156. [DOI: 10.1007/978-3-031-36526-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
de Souza Aranha Garcia-Gomes M, Yamamoto PK, Massironi SMG, Galvis-Alonso OY, Mejia J, Zanatto DA, Alexandre-Ribeiro SR, Ienne S, Mori CMC. Alteration of hippocampal Egr3, GABA A receptors, Il-1β, Il6 and Ccl3 expression in audiogenic tremor mice after seizure. Epilepsy Behav 2022; 137:108962. [PMID: 36356419 DOI: 10.1016/j.yebeh.2022.108962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
Neuroinflammation plays a protective role in the brain; however, in neurological diseases such as epilepsy, overactivated neuroinflammation, along with overexpression of inflammatory mediators, can cause neuronal tissue damage, which can trigger seizures due to loss of ionic or neurotransmitter homeostasis. Therefore, we aimed to evaluate mRNA expression levels of proinflammatory cytokines, early growth response factor 3 (Egr3), and GABA A receptors in the hippocampus of naive audiogenic mutant tremor mice, and stimulated tremor mice after a seizure. Gene expression of Il-1β, Il-6, Tnf-α, Ccl2, Ccl3, Egr3, Gabra1, and Gabra4 from hippocampal samples of naive and stimulated tremor mice were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Relative to resistant mice, Ccl3 gene expression was increased and Il6 was decreased in the hippocampus of naïve tremor mice. Thirty minutes after a seizure, Ccl3 and Il-1β mRNA expression were decreased (p < 0.0001; p = 0.0034, respectively) while Il6 was increased (p = 0.0052) in stimulated tremor mice, relative to naïve animals. In addition, Egr3, Gabra1, and Gabra4 mRNA expression was decreased in the hippocampus of naive tremor mice, relative to resistant mice, which increased 30 minutes after a seizure (p = 0.0496; p = 0.0447, and p = 0.0011, respectively), relative to naïve animals. In conclusion, overexpression of Ccl3 in the hippocampus of naive tremor mice, followed by downregulation soon after seizure in stimulated tremor mice, could be involved in changes in the blood-brain barrier (BBB) permeability in epilepsy. Il-1β may be involved in hippocampal downregulation of GABA A receptors of naive tremor mice, characterizing an important mechanism in audiogenic seizures triggering. Hippocampal alterations of proinflammatory cytokines, Egr3, and GABA A receptors in tremor mice reinforce them as an alternative tool to modeling temporal lobe epilepsy.
Collapse
Affiliation(s)
| | - Pedro Kenzo Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | | | | - Jorge Mejia
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Dennis Albert Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | | - Susan Ienne
- Core Facility for Scientific Research - University of São Paulo (CEFAP-USP/GENIAL (Genome Investigation and Analysis Laboratory), Brazil
| | | |
Collapse
|
17
|
Zhang Z, Li Y, Jiang S, Shi F, Shi K, Jin W. Targeting CCL5 signaling attenuates neuroinflammation after seizure. CNS Neurosci Ther 2022; 29:317-330. [PMID: 36440924 PMCID: PMC9804050 DOI: 10.1111/cns.14006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological condition that causes unprovoked, recurrent seizures. Accumulating evidence from clinical and experimental studies indicates that neuroinflammation exacerbates seizure activity. METHODS We investigated the transcriptional changes occurring in specific brain domains of a seizure mouse model, using 10× Genomics spatial transcriptomics. Differential gene expression and pathway analysis were applied to investigate potential signaling targets for seizure, including CCL5/CCR5 pathway. Maraviroc, an FDA-approved C-C chemokine receptor 5 (CCR5) antagonist, was used to verify the impact of CCL5/CCR5 signaling in seizure mice. RESULTS We found distinguished regional transcriptome features in the hippocampus of seizure mice. The hippocampus exhibited unique inflammatory gene signatures, including glia activation, apoptosis, and immune response in seizure mice. Especially, we observed notable expression of C-C chemokine ligand 5 (CCL5) throughout the entire seizure hippocampus. Blockade of CCL5/CCR5 signaling via maraviroc prevented microglia activation and neuron degeneration in seizure mice. CONCLUSIONS This study supports the potential of CCL5/CCR5 signaling for targeting neuroinflammation after seizure.
Collapse
Affiliation(s)
- Zhuoran Zhang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Yan Li
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Shihe Jiang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Fu‐Dong Shi
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Kaibin Shi
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wei‐Na Jin
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
18
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
19
|
Gakharia T, Bakhtadze S, Lim M, Khachapuridze N, Kapanadze N. Alterations of Plasma Pro-Inflammatory Cytokine Levels in Children with Refractory Epilepsies. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101506. [PMID: 36291442 PMCID: PMC9600205 DOI: 10.3390/children9101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Paediatric epilepsy is a multifaceted neurological disorder with various aetiologies. Up to 30% of patients are considered drug-resistant. The background impact of interfering inflammatory and neuronal pathways has been closely linked to paediatric epilepsy. The characteristics of the inflamed state have been described not only in epilepsies, which are considered prototypes of an inflammatory pathophysiology, but also in patients with drug-resistant epilepsy, especially in epileptic encephalopathies. The imbalance of different cytokine levels was confirmed in several epileptic models. Chemokines are new targets for exploring neuroimmune communication in epileptogenesis, which control leukocyte migration and have a possible role in neuromodulation. Additionally, prostaglandin E2 (PGE2) is an important effector molecule for central neural inflammatory responses and may influence drug responsiveness. We measured the serum interictal quantitative levels of chemokines (CCL2, CCL4, CCL11) and PGE2 in correlation with the seizure frequency and severity in controlled and intractable childhood epilepsies. Our refractory seizure group demonstrated significantly increased concentrations of eotaxin (CCL11) compared to the controlled epilepsy group. The higher level of CCL11 was correlated with an increased seizure frequency, while the PGE2 levels were associated with the severity of seizure and epilepsy, supporting the findings that proinflammatory cytokines may contribute to epileptogenesis and possibly have a role in developing seizure resistance.
Collapse
Affiliation(s)
- Tatia Gakharia
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
- Correspondence: ; Tel.: +995-592933291
| | - Sophia Bakhtadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ming Lim
- Evelina London Children’s Hospital @ Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Women’s and Children’s Department, Faculty of Life Sciences and Medicine, Kings College London, London SE1 7EH, UK
| | - Nana Khachapuridze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nana Kapanadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
20
|
Jia Y, Tang L, Yao Y, Zhuo L, Qu D, Chen X, Ji Y, Tao J, Zhu Y. Low-intensity exercise combined with sodium valproate attenuates kainic acid-induced seizures and associated co-morbidities by inhibiting NF-κB signaling in mice. Front Neurol 2022; 13:993405. [PMID: 36212646 PMCID: PMC9534325 DOI: 10.3389/fneur.2022.993405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium valproate (VPA) is a broad-spectrum anticonvulsant that is effective both in adults and children suffering from epilepsy, but it causes psychiatric and behavioral side effects in patients with epilepsy. In addition, 30% of patients with epilepsy develop resistance to VPA. At present, regular physical exercise has shown many benefits and has become an effective complementary therapy for various brain diseases, including epilepsy. Therefore, we wondered whether VPA combined with exercise would be more effective in the treatment of seizures and associated co-morbidities. Here, we used a mouse model with kainic acid (KA)-induced epilepsy to compare the seizure status and the levels of related co-morbidities, such as cognition, depression, anxiety, and movement disorders, in each group using animal behavioral experiment and local field potential recordings. Subsequently, we investigated the mechanism behind this phenomenon by immunological means. Our results showed that low-intensity exercise combined with VPA reduced seizures and associated co-morbidities. This phenomenon seems to be related to the Toll-like receptor 4, activation of the nuclear factor kappa B (NF-κB), and release of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and IL-6. In brief, low-intensity exercise combined with VPA enhanced the downregulation of NF-κB-related inflammatory response, thereby alleviating the seizures, and associated co-morbidities.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine, Shanghai University, Shanghai, China
| | - Lele Tang
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- School of Medicine, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
21
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Costagliola G, Depietri G, Michev A, Riva A, Foiadelli T, Savasta S, Bonuccelli A, Peroni D, Consolini R, Marseglia GL, Orsini A, Striano P. Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications. Front Neurol 2022; 13:741244. [PMID: 35359659 PMCID: PMC8961811 DOI: 10.3389/fneur.2022.741244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent studies prompted the identification of neuroinflammation as a potential target for the treatment of epilepsy, particularly drug-resistant epilepsy, and refractory status epilepticus. This work provides a systematic review of the clinical experience with anti-cytokine agents and agents targeting lymphocytes and aims to evaluate their efficacy and safety for the treatment of refractory epilepsy. Moreover, the review analyzes the main therapeutic perspectives in this field. Methods A systematic review of the literature was conducted on MEDLINE database. Search terminology was constructed using the name of the specific drug (anakinra, canakinumab, tocilizumab, adalimumab, rituximab, and natalizumab) and the terms “status epilepticus,” “epilepsy,” and “seizure.” The review included clinical trials, prospective studies, case series, and reports published in English between January 2016 and August 2021. The number of patients and their age, study design, specific drugs used, dosage, route, and timing of administration, and patients outcomes were extracted. The data were synthesized through quantitative and qualitative analysis. Results Our search identified 12 articles on anakinra and canakinumab, for a total of 37 patients with epilepsy (86% febrile infection-related epilepsy syndrome), with reduced seizure frequency or seizure arrest in more than 50% of the patients. The search identified nine articles on the use of tocilizumab (16 patients, 75% refractory status epilepticus), with a high response rate. Only one reference on the use of adalimumab in 11 patients with Rasmussen encephalitis showed complete response in 45% of the cases. Eight articles on rituximab employment sowed a reduced seizure burden in 16/26 patients. Finally, one trial concerning natalizumab evidenced a response in 10/32 participants. Conclusion The experience with anti-cytokine agents and drugs targeting lymphocytes in epilepsy derives mostly from case reports or series. The use of anti-IL-1, anti-IL-6, and anti-CD20 agents in patients with drug-resistant epilepsy and refractory status epilepticus has shown promising results and a good safety profile. The experience with TNF inhibitors is limited to Rasmussen encephalitis. The use of anti-α4-integrin agents did not show significant effects in refractory focal seizures. Concerning research perspectives, there is increasing interest in the potential use of anti-chemokine and anti-HMGB-1 agents.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Greta Depietri
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
- *Correspondence: Alexandre Michev
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Salvatore Savasta
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
23
|
Benavides A, Bell EF, Georgieff MK, Josephson CD, Stowell SR, Feldman HA, Nalbant D, Tereshchenko A, Sola-Visner M, Nopoulos P. Sex-specific cytokine responses and neurocognitive outcome after blood transfusions in preterm infants. Pediatr Res 2022; 91:947-954. [PMID: 33911194 PMCID: PMC8551306 DOI: 10.1038/s41390-021-01536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The objective of this study was to determine sex-specific differences in inflammatory cytokine responses to red blood cell (RBC) transfusion in preterm infants in the neonatal period and their relationship to later neurocognitive status. METHODS Infants with a birth weight <1000 g and gestational age 22-29 weeks were enrolled in the Transfusion of Prematures (TOP) trial. The total number of transfusions was used as a marker of transfusion status. Nineteen cytokines and biomarkers were analyzed from 71 infants longitudinally during the neonatal period. Twenty-six infants completed the Bayley Scales of Infant & Toddler Development, 3rd Edition (Bayley-III) at 12 months' corrected age. RESULTS Nine cytokine levels were significantly elevated in proportion to the number of transfusions received. Of those, one cytokine showed a sex-specific finding (p = 0.004): monocyte chemoattractant protein-1, MCP-1, rose substantially in females (8.9% change per additional transfusion), but not in males (-0.8% change). Higher concentrations of MCP-1 exclusively were associated with worse Bayley-III scores: decreased cognitive raw scores (p = 0.0005) and motor scaled scores (p < 0.0001). CONCLUSIONS This study provides evidence of a sex-specific difference in the inflammatory response to RBC transfusions during neonatal life, with MCP-1 levels rising only in females and inversely correlating with neurocognitive status at 12 months old. IMPACT It is important to understand the risk factors for abnormal neurodevelopment in preterm infants, including anemia and RBC transfusion, in order to improve outcomes and provide potential targets for therapy. Our study investigates and provides the first evidence of sex-specific differences in inflammatory cytokine responses to RBC transfusions in preterm infants in the neonatal period, and their relationship to later cognitive outcomes. This study critically suggests that different transfusion thresholds may have a sex-specific effect on neurodevelopment: females have worse cognitive outcomes with increased number of transfusions, while males have worse outcomes with lower number of transfusions.
Collapse
Affiliation(s)
- Amanda Benavides
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Edward F. Bell
- University of Iowa Carver College of Medicine, Department of Pediatrics
| | - Michael K. Georgieff
- University of Minnesota Medical School, Department of Pediatrics, Division of Neonatology
| | - Cassandra D. Josephson
- Emory University School of Medicine, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta,Emory University School of Medicine, Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine
| | - Sean R. Stowell
- Harvard Medical School, Brigham and Women’s Hospital, Department of Pathology, Joint Program in Transfusion Medicine
| | - Henry A. Feldman
- Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics
| | - Demet Nalbant
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Pharmaceutics and Translational Therapeutics
| | | | - Martha Sola-Visner
- Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics
| | - Peggy Nopoulos
- University of Iowa Carver College of Medicine, Department of Psychiatry,University of Iowa Carver College of Medicine, Department of Pediatrics,University of Iowa Carver College of Medicine, Department of Neurology
| |
Collapse
|
24
|
Aulická S, Česká K, Šána J, Siegl F, Brichtová E, Ošlejšková H, Hermanová M, Hendrych M, Michu EP, Brázdil M, Slabý O, Nestrašil I. Cytokine-chemokine profiles in the hippocampus of patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy Res 2022; 180:106858. [PMID: 35026708 DOI: 10.1016/j.eplepsyres.2022.106858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is the most common drug-resistant epilepsy. Despite major advances in epilepsy research, the epileptogenesis of the MTLE-HS is not well understood. The altered neuroimmune response is one of the pathomechanisms linked to progressive epileptogenesis in MTLE-HS, and understanding its role may help design future cures for pharmaco-resistant MTLE-HS. Here, the neuroimmune function was evaluated by the assessment of cytokine-chemokine profiles in brain samples from the hippocampus of patients with MTLE-HS. METHODS Brain samples from patients with MTLE-HS collected during epileptosurgical resection (n = 21) were compared to those obtained from autopsy controls (n = 13). The typing of HS was performed according to ILAE consensus classification, and patients were additionally sorted into subgroups based on the severity of neuronal depletion (Wyler grading system). Differences between patients with MTLE-HS with and without a history of febrile seizures were also assessed. RNA was isolated from native samples, and real-time gene expression analysis of cytokine-chemokine profiles, i.e., levels of IL-1β, IL-6, IL-10, IL-18, CCL2, CCL3, CCL4, and STAT3, was carried out by qRT-PCR methodology. RESULTS Upregulation of IL-1β (p = 0.001), IL-18 (p = 0.0018), CCL2 (p = 0,0377), CCL3 (p < 0.001), and CCL4 (p < 0.001) in MTLE-HS patients was detected when compared to the post-mortem hippocampal samples collected from autopsy controls. The STAT3 expression was higher in more severe neuronal loss and glial scaring determined by different Wyler grades in HS patients. Furthermore, cytokine-chemokine profiles were not different in MTLE-HS patients with or without febrile seizures. CONCLUSION The upregulation of specific cytokines and chemokines in MTLE-HS provides evidence that the neuroinflammatory process contributes to MTLE epileptogenesis. History of febrile seizures did not alter the immune profiles. Specific immune mediators and related immune pathways represent potential therapeutic targets for seizure control and pharmacoresistancy prevention in MTLE associated with hippocampal sclerosis.
Collapse
Affiliation(s)
- Stefania Aulická
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic; Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Katarina Česká
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Šána
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - František Siegl
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Eva Brichtová
- Department of Neurosurgery, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Hermanová
- Department of Pathology, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Hendrych
- Department of Pathology, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elleni Ponechal Michu
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
26
|
Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021; 26:molecules26216380. [PMID: 34770789 PMCID: PMC8588504 DOI: 10.3390/molecules26216380] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrases (CAs) are a group of ubiquitously expressed metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. Thus, they are involved in those physiological and pathological processes in which cellular pH buffering plays a relevant role. The inhibition of CAs has pharmacologic applications for several diseases. In addition to the well-known employment of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently been demonstrated that CAIs could be considered as valid therapeutic agents against obesity, cancer, kidney dysfunction, migraine, Alzheimer's disease and epilepsy. Epilepsy is a chronic brain disorder that dramatically affects people of all ages. It is characterized by spontaneous recurrent seizures that are related to a rapid change in ionic composition, including an increase in intracellular potassium concentration and pH shifts. It has been reported that CAs II, VII and XIV are implicated in epilepsy. In this context, selective CAIs towards the mentioned isoforms (CAs II, VII and XIV) have been proposed and actually exploited as anticonvulsants agents in the treatment of epilepsy. Here, we describe the research achievements published on CAIs, focusing on those clinically used as anticonvulsants. In particular, we examine the new CAIs currently under development that might represent novel therapeutic options for the treatment of epilepsy.
Collapse
|
27
|
Wickström R, Ygberg S, Lindefeldt M, Dahlin M. Altered cytokine levels in cerebrospinal fluid following ketogenic diet of children with refractory epilepsy. Epilepsy Res 2021; 177:106775. [PMID: 34597959 DOI: 10.1016/j.eplepsyres.2021.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Ketogenic diet is an effective treatment which has the potential to achieve a significant seizure reduction in drug-resistant epilepsy. The mechanism behind this effect is unclear, but one hypothesis is that the mechanism is anti-inflammatory. In this prospective study on pediatric patients we compared levels of cytokines and chemokines in the cerebrospinal fluid before and after three months on treatment to evaluate a possible anti-inflammatory effect. We analyzed 34 cytokines and chemokines in the cerebrospinal fluid of pediatric patients (n = 21) with refractory epilepsy by a multiplex assay. Beta-hydroxybutyric acid was measured in blood and cerebrospinal fluid. Seizure frequency in relation to diet treatment was assessed. For 9 different cytokines (CCL 7, CCL 21, CCL 22, CCL 25, CCL 27, IL-2, IL-10, CX3CL1 and MIF), a significant decrease ranging from 7 to 27% was seen after three months as compared to levels before the diet. In contrast, no cytokine displayed a significant increase during diet. A seizure reduction ≥ 50 % was seen in 15/21 patients (71 %) but no significant differences in cytokine decreases were found between responders and non-responders during treatment. A non-significant trend towards higher initial pre-treatment levels of cytokines was seen in responders, which were reduced following treatment. The levels of betahydroxybutyric acid were not related to seizure response. We conclude that while it is not possible to state a primary anti-inflammatory effect by dietary treatment from these data, an unequivocal immunological effect is seen and may be a part of the mechanism of ketogenic dietary treatment.
Collapse
Affiliation(s)
- Ronny Wickström
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Ygberg
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
28
|
Preventive Effects of Sinigrin Against the Memory Deterioration in the Pentylenetetrazole-Kindled Male Wistar Rats: Possible Modulation of NLRP3 Pathway. Neuromolecular Med 2021; 24:311-319. [PMID: 34542833 DOI: 10.1007/s12017-021-08690-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Mainly found in brussels sprouts, broccoli, and black mustard seeds, sinigrin (2-propenyl glucosinolate) has enjoyed some attention currently for its effects on health and disease prevention. The present research design is aimed at investigating the effects of sinigrin on inflammation, oxidative stress (OS) and memory. Randomly, six groups of male Wistar rats were categorized into the control and experimental groups. The experimental groups were treated with sinigrin (10 and 20 mg/kg, orally). The control positive group was given the pentylenetetrazole (PTZ) treatment and the control negative one was given normal saline. All groups were kindled by the sub-threshold dose (35 mg/kg, i.p.) of PTZ for 12 times in one month. When the kindling procedure was done, the seizure behaviors and the behavioral function were evaluated. For cognitive parameters, the shuttle box test was employed. When the experiment was terminated, the rats were euthanized and their blood serum as well as brain samples were isolated for respective measuring of OS and gene expression parameters. The treatment with sinigrin significantly delayed the appearance of the seizure symptoms in comparison to that of the PTZ group. It also significantly increased the memory parameters like retention latency and the total time having been spent in the light compartment in the epileptic rats. In addition, sinigrin increased the superoxide dismutase and catalase levels. Treatment with sinigrin suppressed the Il1b and Nlrp3 gene expression at hippocampal level. In sum, sinigrin prevents inflammation, OS and memory impairment against the PTZ-kindling epilepsy in rats.
Collapse
|
29
|
Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, Castillo MAM, Porcu L, Cattani F, Ruocco A, Aronica E, Allegretti M, Brandolini L, Vezzani A. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021; 158:105468. [PMID: 34358616 DOI: 10.1016/j.nbd.2021.105468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
CXCL1, a functional murine orthologue of the human chemokine CXCL8 (IL-8), and its CXCR1 and CXCR2 receptors were investigated in a murine model of acquired epilepsy developing following status epilepticus (SE) induced by intra-amygdala kainate. CXCL8 and its receptors were also studied in human temporal lobe epilepsy (TLE). The functional involvement of the chemokine in seizure generation and neuronal cell loss was assessed in mice using reparixin (formerly referred to as repertaxin), a non-competitive allosteric inhibitor of CXCR1/2 receptors. We found a significant increase in hippocampal CXCL1 level within 24 h of SE onset that lasted for at least 1 week. No changes were measured in blood. In analogy with human TLE, immunohistochemistry in epileptic mice showed that CXCL1 and its two receptors were increased in hippocampal neuronal cells. Additional expression of these molecules was found in glia in human TLE. Mice were treated with reparixin or vehicle during SE and for additional 6 days thereafter, using subcutaneous osmotic minipumps. Drug-treated mice showed a faster SE decay, a reduced incidence of acute symptomatic seizures during 48 h post-SE, and a delayed time to spontaneous seizures onset compared to vehicle controls. Upon reparixin discontinuation, mice developed spontaneous seizures similar to vehicle mice, as shown by EEG monitoring at 14 days and 2.5 months post-SE. In the same epileptic mice, reparixin reduced neuronal cell loss in the hippocampus vs vehicle-injected mice, as assessed by Nissl staining at completion of EEG monitoring. Reparixin administration for 2 weeks in mice with established chronic seizures, reduced by 2-fold on average seizure number vs pre-treatment baseline, and this effect was reversible upon drug discontinuation. No significant changes in seizure number were measured in vehicle-injected epileptic mice that were EEG monitored in parallel. Data show that CXCL1-IL-8 signaling is activated in experimental and human epilepsy and contributes to acute and chronic seizures in mice, therefore representing a potential new target to attain anti-ictogenic effects.
Collapse
Affiliation(s)
- Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Valentina Kebede
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Diletta Sorrentino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | | | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Franca Cattani
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Anna Ruocco
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | | | | | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| |
Collapse
|
30
|
Orsini A, Foiadelli T, Costagliola G, Michev A, Consolini R, Vinci F, Peroni D, Striano P, Savasta S. The role of inflammatory mediators in epilepsy: Focus on developmental and epileptic encephalopathies and therapeutic implications. Epilepsy Res 2021; 172:106588. [PMID: 33721708 DOI: 10.1016/j.eplepsyres.2021.106588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
In recent years, there has been an increasing interest in the potential involvement of neuroinflammation in the pathogenesis of epilepsy. Specifically, the role of innate immunity (that includes cytokines and chemokines) has been extensively investigated either in animal models of epilepsy and in clinical settings. Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of epileptic disorders, in which uncontrolled epileptic activity results in cognitive, motor and behavioral impairment. By definition, epilepsy in DEE is poorly controlled by common antiepileptic drugs but may respond to alternative treatments, including steroids and immunomodulatory drugs. In this review, we will focus on how cytokines and chemokines play a role in the pathogenesis of DEE and why expanding our knowledge about the role of neuroinflammation in DEE may be crucial to develop new and effective targeted therapeutic strategies to prevent seizure recurrence and developmental regression.
Collapse
Affiliation(s)
- Alessandro Orsini
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.
| | - Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Rita Consolini
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Federica Vinci
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, "G. Gaslini" Institute, Via Gaslini 5, 16147 Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Gaslini 5, 16147 Genova, Italy
| | - Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
31
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
32
|
ST36 Acupuncture Alleviates the Inflammation of Adjuvant-Induced Arthritic Rats by Targeting Monocyte/Macrophage Modulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9430501. [PMID: 33727948 PMCID: PMC7936911 DOI: 10.1155/2021/9430501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic chronic autoimmune disease characterized by the aggregation of immune cells and secretion of cytokines in the joint synovium, causing hyperblastosis and even bone destruction. Acupuncture has been proven effective in RA treatment. This study aimed to investigate the anti-inflammatory action of acupuncture, specifically, in relation to immune cell interactions and key mediators. Methods Rats with adjuvant-induced arthritics (AIA) were treated with manual acupuncture (MA) at Zusanli (ST36). Joint edema and paw withdrawal latency were monitored to observe the effects on inflammation. The levels of 24 cytokines, chemokines, and growth factors in ankle joints during the treatment (on days 1, 7, 15, and 21) were detected by multiplex immunoassay. A bioinformatics analysis based on a directed weighted mathematical model was used to construct cell communication network diagrams and identify the key cells through calculation. The monocyte/macrophage polarization in inflamed joints was investigated by detecting M1- and M2-phenotypic populations and their related cytokines. Results ST36 MA alleviated paw edema and upregulated the nociceptive threshold of AIA rats. Several innate and adaptive immune cytokines were dynamically regulated by MA, and MA-treated rats showed a significant improvement in symptoms compared with AIA rats by day 21. The immune cell-cell communication networks were intensified with the development of RA but were significantly reduced after treatment with MA. MA was found to specifically regulate monocytes/macrophages in inflamed ankle joints ST36 MA also inhibited M1-phenotype macrophages accompanied by decreased levels of IL-1β. Conclusions ST36 MA showed anti-inflammatory and analgesic effects as well as inhibition of immune cell communication networks in inflamed joints of AIA rats. Inhibiting the polarization of macrophages to the M1-phenotype in inflamed joints may be one of the key mechanisms of MA anti-inflammatory action. This research highlighted a systematic research paradigm for investigating mechanisms of acupuncture action.
Collapse
|
33
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
34
|
Meng F, Yao L. The role of inflammation in epileptogenesis. ACTA EPILEPTOLOGICA 2020; 2:15. [DOI: 10.1186/s42494-020-00024-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
AbstractEpilepsy is a chronic neurological disorder that has an extensive impact on a patient’s life. Accumulating evidence has suggested that inflammation participates in the progression of spontaneous and recurrent seizures. Pro-convulsant incidences can stimulate immune cells, augment the release of pro-inflammatory cytokines, elicit neuronal excitation as well as blood-brain barrier (BBB) dysfunction, and finally trigger the generation or recurrence of seizures. Understanding the pathogenic roles of inflammatory mediators, including inflammatory cytokines, cells, and BBB, in epileptogenesis will be beneficial for the treatment of epilepsy. In this systematic review, we performed a literature search on the PubMed database using the following keywords: “epilepsy” or “seizures” or “epileptogenesis”, and “immunity” or “inflammation” or “neuroinflammation” or “damage-associated molecular patterns” or “cytokines” or “chemokines” or “adhesion molecules” or “microglia” or “astrocyte” or “blood-brain barrier”. We summarized the classic inflammatory mediators and their pathogenic effects in the pathogenesis of epilepsy, based on the most recent findings from both human and animal model studies.
Collapse
|
35
|
Guo Q, Liu Z, Wang M, Guo S, Cong H, Liu L. Analysis on the expression and value of CCL2 and CCL3 in patients with osteoarthritis. Exp Mol Pathol 2020; 118:104576. [PMID: 33197425 DOI: 10.1016/j.yexmp.2020.104576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the clinical value of CC chemokine ligand 2 (CCL2) and CC chemokine ligand 3 (CCL3) in osteoarthritis (OA). A prospective analysis was performed on 126 patients with rheumatoid arthritis of the knee (observation group (OG)) who admitted to Qilu hospital from August 2016 to August 2018 and 135 healthy controls (control group (CG)) who underwent physical examinations during the same period. The concentrations of CCL2 and CCL3 in peripheral blood were compared between the two groups, and the predictive value of the two on the occurrence, efficacy and prognosis of recurrence of OA were analyzed. In addition, an OA rat model was established to detect the relative protein levels of CCL2 and CCL3 in rat knee joint tissues. There were no statistically significant differences between the two groups in baseline data such as age, body mass index (BMI), gender, smoking, drinking, educational level, family medical history and living environment (P > 0.05). CCL2 and CCL3 increased in peripheral blood of patients in the OG (P < 0.05), both of which were positively correlated with rheumatoid factor (RF) (P < 0.001). CCL2 and CCL3 were of good predictive value for the occurrence, efficacy and prognosis of recurrence of OA (P < 0.001). The relative protein levels of CCL2 and CCL3 in bone and joint tissues of OA rats were significantly higher than those of normal rats (P < 0.001). CCL2 and CCL3 are elevated in peripheral blood of OA patients, which have good predictive value for the occurrence, efficacy and prognosis of recurrence of OA, indicating their potential roles as excellent markers for diagnosis and treatment of OA in the future.
Collapse
Affiliation(s)
- Qi Guo
- Department of Orthopaedics, Wei Hai Central Hospital, Wei Hai 264400, PR China
| | - Zengliang Liu
- Department of Orthopaedics, Wei Hai Central Hospital, Wei Hai 264400, PR China
| | - Moxue Wang
- Department of Orthopaedics, Wei Hai Central Hospital, Wei Hai 264400, PR China
| | - Shanqiang Guo
- Department of Orthopaedics, Wei Hai Central Hospital, Wei Hai 264400, PR China
| | - Haibo Cong
- Department of Orthopaedics, Wei Hai Central Hospital, Wei Hai 264400, PR China
| | - Lei Liu
- Department of Orthopaedics, Qilu Hospital Huantai Branch, ZiBo 256400, PR China.
| |
Collapse
|
36
|
Kase N, Terashima M, Ohta A, Niwa A, Honda‐Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK. Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 2020; 10:455-464. [PMID: 33280267 PMCID: PMC7900583 DOI: 10.1002/sctm.20-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an autoinflammatory disorder caused by a homozygous mutations in the PSMB8 gene. The administration of systemic corticosteroids is partially effective, but continuous treatment causes severe side effects. We previously established a pluripotent stem cell (PSC)-derived NNS disease model that reproduces several inflammatory phenotypes, including the overproduction of monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein-10 (IP-10). Here we performed high-throughput compound screening (HTS) using this PSC-derived NNS model to find potential therapeutic candidates and identified CUDC-907 as an effective inhibitor of the release of MCP-1 and IP-10. Short-term treatment of CUDC-907 did not induce cell death within therapeutic concentrations and was also effective on primary patient cells. Further analysis indicated that the inhibitory effect was post-transcriptional. These findings suggest that HTS with PSC-derived disease models is useful for finding drug candidates for autoinflammatory diseases.
Collapse
Affiliation(s)
- Naoya Kase
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Madoka Terashima
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Ohta
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Niwa
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Fumiko Honda‐Ozaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan,Department of Pediatrics and Developmental BiologyGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yuri Kawasaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Tatsutoshi Nakahata
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Nobuo Kanazawa
- Department of DermatologyWakayama Medical UniversityWakayamaJapan
| | - Megumu K. Saito
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| |
Collapse
|
37
|
Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020; 9:cells9102277. [PMID: 33065974 PMCID: PMC7600611 DOI: 10.3390/cells9102277] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to brain injury or inflammation. During the last decade, there has been a growing interest in the roles that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain disorders. However, the reported results have proven controversial, indicating that a disruption of the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the emerging role of CX3CL1 in animal models of some brain disorders.
Collapse
|
38
|
Chen HL, Hsu YC, Chen CH, Wang PJ, Lin CL, Cheng SH, Chang KH. Gout and the risk of epilepsy: A population-based cohort study. Medicine (Baltimore) 2020; 99:e20823. [PMID: 32590769 PMCID: PMC7328940 DOI: 10.1097/md.0000000000020823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gout is a chronic disease related to uric acid metabolism. It involves crystals of uric acid accumulating in the joints, causing joint pain and releasing cytokines that trigger inflammation. Inflammation is a key component in the pathogenesis of epilepsy. Thus, we conducted a cohort study to investigate if epilepsy is associated with gout and determine the risk of epilepsy in patients with gout.The gout cohort was obtained from the Registry of Catastrophic Illnesses Patient Database (RCIPD). We identified 104,238 patients who were aged 20 years or more and newly diagnosed with gout between 2000 and 2011 and 3 outpatient visits or history of gout-specific hospitalization between 2000 and 2011. Patients without gout were frequency matched with the gout cohort at a 2:1 ratio according to age, sex, comorbidities, and year of gout diagnosis.The gout cohort showed a 1.27-fold higher overall crude hazard ratio (HR) for epilepsy compared with the control cohort. After we adjusted the analyses by age, sex, and comorbidities the gout patients displayed an increased risk of epilepsy compared with the control group (adjusted HR = 1.25, 95% confidence interval = 1.15-1.36).This study revealed a significantly higher risk of epilepsy in patients with gout. It provides further evidence for the debate around the effect of gout on brain health.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Miao
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei
| | - Chang-Hsu Chen
- Division of Nephrology, Tungs’ Taichung MetroHarbor Hospital
| | - Pei-Jen Wang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung
| | - Sheng-Han Cheng
- Division of Allergy, Immunology and Rheumatology, Tung's Taichung MetroHarbor Hospital
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| |
Collapse
|
39
|
Sanz P, Garcia-Gimeno MA. Reactive Glia Inflammatory Signaling Pathways and Epilepsy. Int J Mol Sci 2020; 21:ijms21114096. [PMID: 32521797 PMCID: PMC7312833 DOI: 10.3390/ijms21114096] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and epilepsy are interconnected. Brain inflammation promotes neuronal hyper-excitability and seizures, and dysregulation in the glia immune-inflammatory function is a common factor that predisposes or contributes to the generation of seizures. At the same time, acute seizures upregulate the production of pro-inflammatory cytokines in microglia and astrocytes, triggering a downstream cascade of inflammatory mediators. Therefore, epileptic seizures and inflammatory mediators form a vicious positive feedback loop, reinforcing each other. In this work, we have reviewed the main glial signaling pathways involved in neuroinflammation, how they are affected in epileptic conditions, and the therapeutic opportunities they offer to prevent these disorders.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Jaime Roig 11, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963391779; Fax: +34-963690800
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
40
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
41
|
Chaudhry SR, Kinfe TM, Lamprecht A, Niemelä M, Dobreva G, Hänggi D, Muhammad S. Elevated level of cerebrospinal fluid and systemic chemokine CCL5 is a predictive biomarker of clinical outcome after aneurysmal subarachnoid hemorrhage (aSAH). Cytokine 2020; 133:155142. [PMID: 32485621 DOI: 10.1016/j.cyto.2020.155142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pathophysiology of aneurysmal subarachnoid hemorrhage (aSAH) is highly complex. Bleeding from ruptured aneurysm causes increase in intracranial pressure that disrupts blood-brain barrier leading to infiltration of peripheral immune cells. Interactions between the infiltrated leukocytes and the resident brain cells in the injured tissue mainly determine the delayed tissue damage. Recruitment of leukocytes in the injured brain is mainly mediated by the chemokines. Chemokine C-C motif ligand 5 (CCL5) is a potent pro-inflammatory chemokine shown to be upregulated in preclinical SAH studies. However, detailed clinical investigations exploring the association of cerebrospinal fluid (CSF) and systemic CCL5 and post-aSAH complications and clinical outcome are still lacking. This study investigated CSF and systemic CCL5 after aSAH and its association with clinical outcome and post-aSAH complications. METHODS CSF and serum from control and aSAH patients were obtained after centrifugation of the CSF and peripheral blood, and were preserved at -80 °C until quantification by an enzyme-linked immunoassay. Patient pertinent data, post-aSAH complications and clinical outcome (modified Rankin scale [mRS] and Glasgow outcome scale [GOS]) were retrieved from patient records. RESULTS A significant increase in CSF and serum CCL5 levels was observed on post-aSAH day 1 and day 7 compared to control patients. Dichotomization of patients to poor (mRS 3-6 or GOS 1-3) and good (mRS 0-2 or GOS 4-5) clinical outcomes showed significantly higher serum CCL5 levels in patients with good clinical outcome at discharge, but lower CSF CCL5 levels. Interestingly, significantly lower serum CCL5 levels were observed on post-aSAH day 7 in patients who have additional intracerebral bleeding or the patients who developed chronic hydrocephalus or pneumonia. Whereas, CSF CCL5 levels significantly increased on post-aSAH day 1 in patients developing chronic hydrocephalus, delayed ischemic neurological deficits and intraventricular hemorrhage. CSF CCL5 levels on post-aSAH day 1 were correlated with poor clinical outcome, however, serum CCL5 levels on post-aSAH day 7 were correlated with good clinical outcome. CONCLUSION Systemic and CSF CCL5 levels were elevated after aSAH and levels of serum CCL5 on day 7 were associated independently with clinical outcome (GOS and mRS) at discharge. Therapeutic approaches targeting CCL5 might be beneficial in aSAH.
Collapse
Affiliation(s)
- Shafqat Rasul Chaudhry
- Department of Neurosurgery, University Hospital Bonn, University of Bonn, D-53105 Bonn, Germany; Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany; Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, 44000 Islamabad, Pakistan
| | - Thomas Mehari Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
| | - Mika Niemelä
- Department of Neurosurgery, University Hospital Helsinki, University of Helsinki, FI-00029 Helsinki, Finland
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim (CBTM) and European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany; Department of Neurosurgery, University Hospital Bonn, University of Bonn, D-53105 Bonn, Germany; Department of Neurosurgery, University Hospital Helsinki, University of Helsinki, FI-00029 Helsinki, Finland; Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim (CBTM) and European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany.
| |
Collapse
|
42
|
Santillán-Cigales JJ, Mercado-Gómez OF, Arriaga-Ávila V, Landgrave-Gómez J, Guevara-Guzmán R. Daytime-restricted feeding modulates the expression of inflammatory mediators and diminishes reactive astrogliosis and microgliosis following status epilepticus. Brain Res 2020; 1734:146724. [PMID: 32057806 DOI: 10.1016/j.brainres.2020.146724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Jair Santillán-Cigales
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
43
|
Evolution of Different Bacterial Mningoencephalitis: Series of Case Presentations and Literature Review. ARS MEDICA TOMITANA 2020. [DOI: 10.2478/arsm-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bacterial meningitis is one of the most important medical emergencies, a life-threatening condition that leads to death in all the cases in untreated patients. In infants and young children, especially under 5 years old, the most encountered and severe forms are caused by Streptococcus pneumoniae, Neisseria meningitidis and Hemophilus influenzae type b. The risk of neurological impairment after an acute episode of bacterial meningitis is relatively high. Worldwide, prevention through vaccination decreased dramatically incidence and mortality related to these disease. In Romania vaccination for Neisseria meningitides is optional available for just 6 months, vaccination for Streptococcus pneumoniae by one year, and for Haemophylus influenzae type B is available over 10 years.
We present evolution of a series of three cases with different bacterial meningoencephalitis with severe evolution and prolonged hospitalization. All these cases were reported in unvaccinated children for germs that cause meningitis.
Collapse
|
44
|
Zhao H, Li S, Xie M, Chen R, Lu H, Wen C, Filiano AJ, Xu Z. Risk of epilepsy in rheumatoid arthritis: a meta-analysis of population based studies and bioinformatics analysis. Ther Adv Chronic Dis 2020; 11:2040622319899300. [PMID: 32095225 PMCID: PMC7011323 DOI: 10.1177/2040622319899300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background: An increasing number of studies support an association between rheumatoid
arthritis (RA) and brain disorders. This study aims to determine the
association between RA and epilepsy. Methods: A comprehensive search of databases in both English and Chinese was
performed. Data from the selected studies were extracted and analyzed
independently by two authors. Genes associated with epilepsy and RA were
also collected and analyzed. Results: We included six nationwide population based studies
(n = 7,094,113 cases in total) for the meta-analysis. The
risk of epilepsy was increased in RA patients [risk ratio (RR) = 1.601; 95%
confidence interval (CI): 1.089–2.354; p = 0.017;
n = 3,803,535 cases] and children born to mothers with
RA (RR = 1.475; 95% CI: 1.333–1.633; p < 0.001,
n = 3,290,578 cases). Subgroup analysis and
meta-regression showed the RR of epilepsy in RA was negatively correlated
with age. Furthermore, we found that 433 identified genes in a coexpression
network from the hippocampi of 129 epileptic patients were enriched in the
RA and related Kyoto Encyclopedia of Genes and Genomes pathways, while 13
genes (mainly related to inflammatory cytokines and chemokines) were
identified as potential key genes bridging the RA and epilepsy. Conclusions: Our study, utilizing meta-analysis and bioinformatical data, highlights a
close association between epilepsy and RA. Further studies are still
warranted to expand these findings, especially for a population that is
exposed to RA during fetal and childhood periods.
Collapse
Affiliation(s)
- Huawei Zhao
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Shan Li
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Meijuan Xie
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengping Wen
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, 310053, China
| |
Collapse
|
45
|
Attenuating Neurogenic Sympathetic Hyperreflexia Robustly Improves Antibacterial Immunity After Chronic Spinal Cord Injury. J Neurosci 2019; 40:478-492. [PMID: 31754014 DOI: 10.1523/jneurosci.2417-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) disrupts critical physiological systems, including the cardiovascular and immune system. Plasticity of spinal circuits below the injury results in abnormal, heightened sympathetic responses, such as extreme, sudden hypertension that hallmarks life-threatening autonomic dysreflexia. Moreover, such sympathetic hyperreflexia detrimentally impacts other effector organs, including the spleen, resulting in spinal cord injury-induced immunodeficiency. Consequently, infection is a leading cause of mortality after SCI. Unfortunately, there are no current treatments that prophylactically limit sympathetic hyperreflexia to prevent subsequent effector organ dysfunction. The cytokine soluble tumor necrosis factor α (sTNFα) is upregulated in the CNS within minutes after SCI and remains elevated. Here, we report that commencing intrathecal administration of XPro1595, an inhibitor of sTNFα, at a clinically feasible, postinjury time point (i.e., 3 d after complete SCI) sufficiently diminishes maladaptive plasticity within the spinal sympathetic reflex circuit. This results in less severe autonomic dysreflexia, a real-time gauge of sympathetic hyperreflexia, for months postinjury. Remarkably, delayed delivery of the sTNFα inhibitor prevents sympathetic hyperreflexia-associated splenic atrophy and loss of leukocytes to dramatically improve the endogenous ability of chronic SCI rats to fight off pneumonia, a common cause of hospitalization after injury. The improved immune function with XPro1595 correlates with less noradrenergic fiber sprouting and normalized norepinephrine levels in the spleen, indicating that heightened, central sTNFα signaling drives peripheral, norepinephrine-mediated organ dysfunction, a novel mechanism of action. Thus, our preclinical study supports intrathecally targeting sTNFα as a viable strategy to broadly attenuate sympathetic dysregulation, thereby improving cardiovascular regulation and immunity long after SCI.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) significantly disrupts immunity, thus increasing susceptibility to infection, a leading cause of morbidity in those living with SCI. Here, we report that commencing intrathecal administration of an inhibitor of the proinflammatory cytokine soluble tumor necrosis factor α days after an injury sufficiently diminishes autonomic dysreflexia, a real time gauge of sympathetic hyperreflexia, to prevent associated splenic atrophy. This dramatically improves the endogenous ability of chronically injured rats to fight off pneumonia, a common cause of hospitalization. This preclinical study could have a significant impact for broadly improving quality of life of SCI individuals.
Collapse
|
46
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
47
|
Abstract
Infection can negatively impact brain functions. Here, Duan et al. (2018) show that specific PDGFRβ-expressing cell subtypes of the neurovascular unit release the chemokine CCL2 rapidly after systemic infection, leading to increased neural excitability.
Collapse
Affiliation(s)
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Wu Z, Liu Y, Huang J, Huang Y, Fan L. MiR-206 inhibits epilepsy and seizure-induced brain injury by targeting CCL2. Cytotechnology 2019; 71:809-818. [PMID: 31243650 PMCID: PMC6663963 DOI: 10.1007/s10616-019-00324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
To determine the function of miR-206 in epilepsy. Epileptic rat model was established by intra-amygdala injection of kainic acid (KA). Expression levels of miR-206, C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1β (Il-1β) in hippocampus tissues was measured by reverse transcription-quantitative PCR (RT-qPCR) and western blot. Dual luciferase reporter assay was performed to determine the binding of miR-206 to 3' untranslated region (UTR) of CCL2. Finally, brain waves were recorded and Hematoxylin and eosin (HE) staining and Nissl's staining were performed on the epileptic rat injected with LPS, miR-206 agomir, adeno-associated virus (AAV) expressed CCL2 alone or in combination. Expression of miR-206 was specially decreased in hippocampus tissues compared to cortex in response to KA induced pathologic brain activity. Enforced expression of miR-206 by injection miR-206 agomir not only decreased seizure activity, but also protected KA-induced neuronal loss. And enforced expression of miR-206 suppressed increase of C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1β (Il-1β) which were induced by injection of KA or KA combined with lipopolysaccharide (LPS). Further more, results of dual luciferase reporter assay confirmed CCL2 was a target of miR-206. Finally, co-injection adeno-associated virus (AAV) expressed CCL2 with miR-206 agomir abolished the function of miR-206 agomir. Taken together, our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2. Our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2.
Collapse
Affiliation(s)
- Zhenggang Wu
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China.
| | - Ying Liu
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Jing Huang
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Yujing Huang
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Lin Fan
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| |
Collapse
|
49
|
Ahmadian SR, Ghasemi-Kasman M, Pouramir M, Sadeghi F. Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology 2019; 146:117-127. [DOI: 10.1016/j.neuropharm.2018.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
|
50
|
Geis C, Planagumà J, Carreño M, Graus F, Dalmau J. Autoimmune seizures and epilepsy. J Clin Invest 2019; 129:926-940. [PMID: 30714986 DOI: 10.1172/jci125178] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rapid expansion in the number of encephalitis disorders associated with autoantibodies against neuronal proteins has led to an incremental increase in use of the term "autoimmune epilepsy," yet has occurred with limited attention to the physiopathology of each disease and genuine propensity to develop epilepsy. Indeed, most autoimmune encephalitides present with seizures, but the probability of evolving to epilepsy is relatively small. The risk of epilepsy is higher for disorders in which the antigens are intracellular (often T cell-mediated) compared with disorders in which the antigens are on the cell surface (antibody-mediated). Most autoantibodies against neuronal surface antigens show robust effects on the target proteins, resulting in hyperexcitability and impairment of synaptic function and plasticity. Here, we trace the evolution of the concept of autoimmune epilepsy and examine common inflammatory pathways that might lead to epilepsy. Then, we focus on several antibody-mediated encephalitis disorders that associate with seizures and review the synaptic alterations caused by patients' antibodies, with emphasis on those that have been modeled in animals (e.g., antibodies against NMDA, AMPA receptors, LGI1 protein) or in cultured neurons (e.g., antibodies against the GABAb receptor).
Collapse
Affiliation(s)
- Christian Geis
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jesus Planagumà
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and
| | - Mar Carreño
- Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and.,Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and.,Hospital Clinic, University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|