1
|
Wang Z, Yuan Y, Shi Y, Hong Y. Subtleties of tetracycline removal during growth of microalgae-fungi consortia: Mechanistic insights from perspectives of extra- and intracellular metabolites. BIORESOURCE TECHNOLOGY 2025; 426:132352. [PMID: 40054753 DOI: 10.1016/j.biortech.2025.132352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/12/2025]
Abstract
This study focused on tetracycline (TC) as the target antibiotic and utilized the emerging microbial system microalgae-fungi consortia to treat it. Results indicate that consortia composed of microalgae Chlorella sp. HL and fungi HW12 (Aspergillus caespitosus) (HL-HW12) exhibited the optimum TC removal (93.00 %, residual concentration: 2.73 mg/L) and biomass harvesting efficiency (92.69 %) among the five kinds of constructed microalgae-fungi consortia. Mechanism analysis indicated that outside the cell, microalgae-fungi consortia strengthened TC removal and biomass harvesting by augmenting the contents of proteins, polysaccharides, fulvic acids, and humic acids. While within the cell, microalgae-fungi consortia adjusted the abundance of critical metabolites in the amino acid metabolism, nucleotide metabolism, and other metabolic pathways to cope with the coercion of TC and facilitated its elimination. This study not only provides good TC microbial treatment systems but also comprehensively reveals the TC removal and metabolic response mechanisms by microalgae-fungi consortia.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yaqian Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Shi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Wen A, Wang H, Yuan S, Yu H, Guo Y, Yao W. Underestimation of tetracycline antibiotic residues in chicken meat: The role of protein binding. Food Chem 2025; 463:141057. [PMID: 39236388 DOI: 10.1016/j.foodchem.2024.141057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Interesting variations in the analyte content were observed in chicken samples contaminated with tetracycline antibiotics (TCs) following pretreatment with various enzymatic hydrolysis before quantification by conventional analytical methods. Compared with untreated samples, the detectable contents of three TCs in protease-treated samples were 1.51 to 2.05 times higher, whereas lipase treatment did not significantly influence the contents. The marked changes following protease treatment confirmed the presence of protein-associated antibiotics. Infrared spectroscopy analysis indicated that the formation of protein-bound antibiotics resulted from non-covalent interactions between TCs and proteins. Further dissociation experiments determined that the intermolecular forces involved hydrogen bonding, hydrophobic interactions, and electrostatic attraction. Molecular docking substantiated these forces and detailed the binding mechanism at the molecular level. Moreover, the masking effect of protein binding on the determination of TCs was also evidenced in an additional 30 positive chicken samples, suggesting that the actual residue levels of TCs in protein-rich foodstuffs are underestimated.
Collapse
Affiliation(s)
- Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Huihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University.
| |
Collapse
|
3
|
Li Z, Yu X, Zhu Y, Sui Q. Experimentally derived partitioning coefficients of carbamazepine and sulfadiazine in landfill refuse-leachate phase: Effects of refuse and leachate properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:128-133. [PMID: 39029406 DOI: 10.1016/j.wasman.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pharmaceuticals have been detected at high concentrations in landfill leachate and refuse, which may pose potential long-term environmental impacts. The interaction of pharmaceuticals between leachate and refuse contributes to their retention through in situ sorption, thereby mitigating this impact. However, limited efforts have been made to describe the distribution characteristics of pharmaceuticals in the refuse-leachate phase. In this study, two refuse and three leachate samples were used to obtain partitioning coefficients (Kd) for two typical pharmaceuticals, carbamazepine (CBZ) and sulfadiazine (SD), with campus soil as a comparison. Landfill refuse exhibited higher Kd values (12.36 ± 0.90 and 19.76 ± 1.96 mL/g for CBZ and 1.90 ± 0.34 and 6.27 ± 0.58 mL/g for SD in two samples, respectively) than campus soil (3.73 ± 1.31 mL/g for CBZ and 0.81 ± 0.26 mL/g for SD), influenced by refuse properties such as higher organic matter (OM) content and specific surface area (SSA). The influence of leachate pH on Kd values depended on the electrostatic interaction between the species of target pollutants and negatively charged refuse. The effect of humic acid (HA) was related to its binding with target pollutants in solution and its competition with them for sorption sites. Electrostatic repulsion, hydrogen bonding and π-π interaction were the proposed mechanisms in SD sorption on refuse, while hydrogen bonding participated in the sorption of CBZ. The results will help aid the understanding of the distribution of pharmaceuticals in the refuse-leachate system and improve corresponding management strategies.
Collapse
Affiliation(s)
- Zixia Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Wang Q, Lechtenfeld OJ, Rietveld LC, Schuster J, Ernst M, Hofman-Caris R, Kaesler J, Wang C, Yang M, Yu J, Zietzschmann F. How aromatic dissolved organic matter differs in competitiveness against organic micropollutant adsorption. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100392. [PMID: 38434492 PMCID: PMC10907174 DOI: 10.1016/j.ese.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to μg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Oliver J. Lechtenfeld
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- ProVIS−Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Luuk C. Rietveld
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Jonas Schuster
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Roberta Hofman-Caris
- KWR Watercycle Research Institute, 3433PE, Nieuwegein, the Netherlands
- Wageningen University and Research, Department of Environmental Technology, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Jan Kaesler
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Frederik Zietzschmann
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
- Berliner Wasserbetriebe, Laboratory, Motardstr. 35, 13629, Berlin, Germany
| |
Collapse
|
5
|
Aolin H, Qin L, Zhu S, Hu X, Yin D. Combined effects of pH and dissolved organic matter on the availability of pharmaceuticals and personal care products in aqueous environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172637. [PMID: 38663604 DOI: 10.1016/j.scitotenv.2024.172637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/30/2024]
Abstract
The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.
Collapse
Affiliation(s)
- Huazhi Aolin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lanxue Qin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Sihan Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Tan KH, Shih YH, Chen WL. Facile preparation of environmental benign LED white light active humic acid nanolayer coated titanium dioxide photocatalyst for bisphenol A degradation. CHEMOSPHERE 2024; 355:141710. [PMID: 38493998 DOI: 10.1016/j.chemosphere.2024.141710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Natural organic matter is a mixture of microbial decomposition products widely found in surface and groundwater. These organic materials have great potential as carbon-based precursors for chemical synthesis. This work demonstrated the development of a green photocatalyst via a facile adsorption process that combined colloidal titanium dioxide (TiO2) with humic acid. The resulting photocatalyst was visible light active and able to completely degrade 5 mg/L of BPA within 6 h under the irradiation of energy-efficient LED white light. The first-order kinetic rate constant of the reaction was determined to be 1.7 × 10-2 min-1. The enhanced photocatalytic activity was attributed to the decreased band gap energy and effective charge separation that limits the photogenerated electron-hole recombination. The outcome of this research opened an opportunity for the development of sustainable functional materials using natural organic matter.
Collapse
Affiliation(s)
- Kok-Hou Tan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| | - Wen-Ling Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan
| |
Collapse
|
7
|
Wang J, Zheng M, Du E, Chu W, Guo H. A Novel Source of Radicals from UV/Dichloroisocyanurate for Surpassing Abatement of Emerging Contaminants Versus Conventional UV/Chlor(am)ine Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18452-18461. [PMID: 36668904 DOI: 10.1021/acs.est.2c06327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV)/chlor(am)ine processes are emerging advanced oxidation processes (AOPs) for water decontamination and raising continuous attention. However, limitations appear in the UV/hypochlorite and UV/monochloramine for removing specific contaminants ascribed to the differences in the sorts and yields of free radicals. Here, this study reports UV/dichloroisocyanurate (NaDCC) as a novel source of radicals. NaDCC was demonstrated to be a well-balanced compound between hypochlorite and monochloramine, and it had significant UV absorption and a medium intrinsic quantum yield. The UV/NaDCC produced more substantial hydroxyl radicals (·OH) and reactive chlorine species (RCSs, including Cl·, ClO·, and Cl2·-) than conventional UV/chlor(am)ine, thereby generating a higher oxidation efficiency. The reaction mechanisms, environmental applicability, and energy requirements of the UV/NaDCC process for emerging contaminants (ECs) abatement were further investigated. The results showed that ·OH and ·NH2 attacked ECs mostly through hydrogen atom transfer (HAT) and radical adduct formation, whereas Cl· destroyed ECs mainly through HAT and single electron transfer, with ClO· playing a certain role through HAT. Kinetic model analyses revealed that the UV/NaDCC outperformed the conventional UV/chlor(am)ine in a variety of water matrices with superior degradation efficiency, significantly saving up to 96% electrical energy per order. Overall, this study first demonstrates application prospects of a novel AOP using UV/NaDCC, which can compensate for the deficiency of the conventional UV/chlor(am)ine AOPs.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| |
Collapse
|
8
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Gaballah MS, Guo J, Hassanein A, Sobhi M, Zheng Y, Philbert M, Li B, Sun H, Dong R. Removal performance and inhibitory effects of combined tetracycline, oxytetracycline, sulfadiazine, and norfloxacin on anaerobic digestion process treating swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159536. [PMID: 36280067 DOI: 10.1016/j.scitotenv.2022.159536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Combined veterinary antibiotics (CVAs) belonging to different antibiotics classes could cause exacerbated impacts on the anaerobic digestion (AD) process of swine manure. Four different antibiotics "two tetracyclines: tetracycline (TC) and oxytetracycline (OTC), one fluoroquinolones: norfloxacin (Norf), and one sulfonamides: sulfadiazine (SDZ)" were combined to evaluate their removal performances and its inhibition effects on AD. Results indicated that CVAs removal decreased from 84.3 to 63.7 %, with an increase in the initial concentration from 12.5 to 50 mg L-1, where the removal of CVAs occurring in the order OTC > TC > Norf > SDZ. An average of 9.5, 7.5, 9.5, and 32.1 % of the spiked TC, OTC, SDZ, and Norf were remained in the sludge, respectively. With 50 mg L-1 of CVAs, a competitive adsorption phenomenon was found to have a notable impact on biodegradation microorganisms' activity leading a 73.1 % decrease in CH4 production. CVAs caused a temporal inhibition to the acidogenic activity followed by partial inhibition to methanogenic by 66.8 %, and IC50 was 38.5 mg L-1. Moreover, CVAs resulted in acetate accumulation, while 26 % and 48 % lower in TS and COD removal, respectively, were observed. A significant reduction in the relative abundance of bacteria and archaeal genera was also mentioned. The findings of this research would provide a more in-depth understanding of AD's performance in treating swine manure contaminated with combined antibiotics.
Collapse
Affiliation(s)
- Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; National Institute of Oceanography and Fisheries, Marine Environment Division, NIOF, Egypt
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Mperejekumana Philbert
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
10
|
Liu Z, Zhao Y, Zhang B, Wang J, Zhu L, Hu B. Deterministic Effect of pH on Shaping Soil Resistome Revealed by Metagenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:985-996. [PMID: 36603127 DOI: 10.1021/acs.est.2c06684] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soil is recognized as the major reservoir of antibiotic resistance genes (ARGs), harboring the most diverse naturally evolved ARGs on the planet. Multidrug resistance genes are a class of ARGs, and their high prevalence in natural soil ecosystems has recently raised concerns. Since most of these genes express proton motive force (PMF) driven efflux pumps, studying whether soil pH is a determinant for the selection of multidrug efflux pump genes and thus shaping the soil resistome are of great interest. In this study, we collected 108 soils with pH values ranging from 4.37 to 9.69 from multiple ecosystems and profiled the composition of ARGs for metagenomes and metagenome-assembled genomes. We observed the multidrug efflux pump genes enriched in the acidic soil resistome, and their abundances have significant soil pH dependence. This reflects the benefits of high soil proton activity on the multidrug efflux pump genes, especially for the PMF-driven inner membrane transferase. In addition, we preliminary indicate the putative microbial participants in pH shaping the soil resistome by applying ecological analyzing tools such as stepwise regression and random forest model fitting. The decisive influence of proton activity on shaping the resistome is more impactful than any other examined factors, and as the consequence, we revisited the influence of edaphic factors on the soil resistome; i.e., the deterministic selection of resistance mechanisms by edaphic factors could lead to the bottom-up shaping of the ARG composition. Such natural developing mechanisms of the resistome are herein suggested to be considered in assessing human-driven ARG transmissions.
Collapse
Affiliation(s)
- Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China
| | - Jiaqi Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
11
|
Liu F, Zhao Q, Ding J, Li L, Wang K, Zhou H, Jiang M, Wei J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. ENVIRONMENTAL RESEARCH 2023; 217:114857. [PMID: 36427638 DOI: 10.1016/j.envres.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in the biogeochemical cycles of elements and the regulation of forest ecosystem functions. However, studies on the regional and seasonal characteristics of DOM in cold-temperate montane forests are still not comprehensive. In this study, samples of water, soil, and sediment from different sites in the forest drainage basin were collected, and their DOM was characterized by an excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). The results showed that terrestrial-sourced humic-like substances were the dominant DOM in the studied reservoir and inflowing rivers. The quality and quantity of DOM exhibited spatiotemporal variations with the influence of terrain and monsoonal precipitation. The average concentration of dissolved organic carbon (DOC) in the wet season was 11.62 mg/L, which was higher than that in the dry season (8.18 mg/L). Higher humification index (HIX) values were observed in the wet season and upstream water than in the dry season and reservoir water. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was used to further develop a molecular-level understanding of the in situ degradation process of DOM. The results indicated that photodegradation rather than biodegradation may play a dominant role in the in situ degradation of terrestrial-sourced humic-like substances under natural conditions. The biodegradability of DOM was enhanced after the in situ degradation process. Additionally, a significant decrease in the precursors of disinfectant byproducts in DOM was observed after in situ degradation. To our knowledge, this is the first study of the sources, characteristics, and in situ degradation of DOM in a reservoir in a cold-temperate forest. These findings help better understand the quality, quantity, and biogeochemical process of DOM in the studied reservoir and may contribute to the selection of drinking water treatment technologies for water supply.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
12
|
Zou H, Chen S, Zhang M, Lin H, Teng J, Zhang H, Shen L, Hong H. Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. CHEMOSPHERE 2022; 309:136734. [PMID: 36209866 DOI: 10.1016/j.chemosphere.2022.136734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While magnesium cation (Mg2+) universally coexists with natural organic matter (NOM) in the water environment, influence of Mg2+ on NOM fouling in membrane filtration process is still unclear. This work was therefore performed to investigate effects of Mg2+ on NOM (sodium alginate (SA) as a model substance) fouling and role of Ca2+ in mitigating fouling from Mg2+ in the ultrafiltration (UF) water treatment process. Filtration tests showed two interesting fouling phenomena: (1) membrane fouling caused by combination of Mg2+ and SA maintained at a high value with the increased Mg2+ concentration; (2) the high fouling property of Mg2+ can be significantly improved by the prominent addition of calcium cation (Ca2+). It was found that changes of foulant morphology played essential roles through thermodynamic mechanisms represented by the Flory-Huggins lattice theory. Density functional theory (DFT) calculation showed that the combination of SA and Mg2+ tends to coordinate two terminal carboxyl groups in SA, beneficial to stretching alginate chains and forming a stable gel network at low doses. In addition, intramolecular coordination is difficult to occur between SA and Mg2+ due to the high hydration repulsion radius of Mg2+. Therefore, a dense and thick gel network remained even under high Mg2+concentration. Furthermore, due to the higher binding affinity of Ca2+ over Mg2+, high doses of Ca2+ trigger a transition of the stable SA-Mg2+ gel network to other configurations where flocculation and aggregation occur, thereby reducing the specific filtration resistance. The proposed thermodynamic mechanism satisfactorily explained the above interesting fouling behaviors, facilitating to development of new solutions to control membrane fouling.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shilei Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
13
|
Wang J, Deng J, Du E, Guo H. Reevaluation of radical-induced differentiation in UV-based advanced oxidation processes (UV/hydrogen peroxide, UV/peroxydisulfate, and UV/chlorine) for metronidazole removal: Kinetics, mechanism, toxicity variation, and DFT studies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Periodate activation for degradation of organic contaminants: Processes, performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Wang K, Wang Y, Zhang S, Chen YD, Wang R, Ho SH. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100168. [PMID: 36159736 PMCID: PMC9488017 DOI: 10.1016/j.ese.2022.100168] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Aquatic pollution caused by antibiotics poses a significant threat to human health and the ecosystem. Inspired from "Emmental Cheese" that owns lots of natural pores, we here fabricated a hierarchical cheese-like porous Spirulina residue biochar (KSBC) activated by KHCO3 for efficiently boosting the removal of sulfathiazole (STZ). Through learning form nature that the CO2 produced by bacteria can serve as the natural pore maker (like cheese-making), KHCO3 was thus selected as the gas generating agent in this study. The effect of adding KHCO3 on the surface properties of KSBC was comprehensively investigated. Benefiting from the activation, the KSBC with the mass ratio of 2:1 (2K-SBC) possessed the largest specific surface areas (1100 m2 g-1), which was approximately 81 times that of the original (not activated) Spirulina residue biochar (SBC) (13.56 m2 g-1). Moreover, 2K-SBC exhibited the maximum adsorption capacity for STZ (218.4 mg g-1), dramatically higher than the SBC (25.78 mg g-1). The adsorption kinetics and adsorption isotherms exhibited that the adsorption behavior of 2K-SBC for STZ was consistent with the pseudo-second-order and Langmuir models. Additionally, the adsorption thermodynamics revealed that the adsorption of STZ on 2K-SBC was spontaneous and exothermic. The pore-filling and electrostatic interaction were considered the main mechanism for the adsorption of STZ on 2K-SBC, whereas the π-π electron donor-acceptor (EDA) interaction and hydrogen bond would also partially contribute to the adsorption process.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Yi-di Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| |
Collapse
|