1
|
Li H, Chang Y, Jin T, Zhang M. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int 2025; 25:139. [PMID: 40211301 PMCID: PMC11987362 DOI: 10.1186/s12935-025-03769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/28/2025] [Indexed: 04/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous cancer with substantial recurrence potential. Currently, surgery and chemotherapy are the main treatments for this disease. However, chemotherapy is often limited by several factors, including low bioavailability, significant systemic toxicity, inadequate targeting, and multidrug resistance. Immune checkpoint inhibitors (ICIs), including those targeting programmed death protein-1 (PD-1) and its ligand (PD-L1), have been proven effective in the treatment of various tumours. In particular, in the treatment of TNBC with PD-1/PD-L1 inhibitors, both monotherapy and combination chemotherapy, as well as targeted drugs and other therapeutic strategies, have broad therapeutic prospects. In addition, these inhibitors can participate in the tumour immune microenvironment (TIME) through blocking PD-1/PD-L1 binding, which can improve immune efficacy. This article provides an overview of the use of PD-1/PD-L1 inhibitors in the treatment of TNBC and the progress of multiple therapeutic studies. To increase the survival of TNBC patients, relevant biomarkers for predicting the efficacy of PD-1/PD-L1 inhibitor therapy have been explored to identify new strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Hongshu Li
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China
| | - Ying Chang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China.
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China.
| | - Meihua Zhang
- Department of Ultrasound Medicine, Yanbian University Hospital, Yanji, 133000, P. R. China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China.
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China.
| |
Collapse
|
2
|
Ullern A, Holm K, Røssevold AH, Andresen NK, Bang C, Lingjærde OC, Naume B, Hov JR, Kyte JA. Gut microbiota diversity is prognostic and associated with benefit from chemo-immunotherapy in metastatic triple-negative breast cancer. Mol Oncol 2025; 19:1229-1243. [PMID: 39545921 PMCID: PMC11977656 DOI: 10.1002/1878-0261.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
The gut microbiota influences multiple aspects of human health and disease. Several studies have indicated an association between the gut microbiota and response to immune checkpoint inhibitors in various cancers, but there is scarce data from breast cancer. The randomized ALICE trial demonstrated improved progression-free survival (PFS) from adding the programmed cell death 1 ligand 1 (PD-L1) inhibitor atezolizumab (atezo) to immunomodulating chemotherapy (chemo) in metastatic triple-negative breast cancer (mTNBC), even for PD-L1negative disease. Herein, we investigated the microbiota composition and dynamics in the ALICE patients and their association with clinical outcome, by analyzing fecal samples collected at baseline and after 8 weeks. We applied 16S (V3-V4) rRNA sequencing to characterize the diversity and taxonomic composition. Kaplan-Meier and Cox proportional hazard models were used for time-to-event analyses. We found that high alpha diversity by Faith's phylogenetic diversity (PD) at baseline was associated with prolonged PFS in the total study population and in the atezo-chemo arm, but not in the placebo-chemo arm. Moreover, Faith's PD appeared to be predictive of benefit from atezolizumab. Patients with high Faith's PD exhibited a PFS hazard ratio of 0.34 (P = 0.018) in favor of the atezo-chemo arm, compared to 0.83 (P = 0.62) in the low Faith's PD group. Faith's PD was significantly reduced during treatment. At baseline, Bifidobacterium was significantly overrepresented in patients without clinical benefit in the atezo-chemo arm, but not in the placebo-chemo arm. These findings suggest that alpha diversity by Faith's PD should be further investigated as a prognostic and predictive biomarker in patients with mTNBC receiving chemo-immunotherapy.
Collapse
Affiliation(s)
- Andreas Ullern
- Department of Clinical Cancer ResearchOslo University HospitalNorway
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Kristian Holm
- Institute of Clinical MedicineUniversity of OsloNorway
- Research Institute of Internal MedicineOslo University Hospital RikshospitaletNorway
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalNorway
| | - Andreas Hagen Røssevold
- Department of Clinical Cancer ResearchOslo University HospitalNorway
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Nikolai Kragøe Andresen
- Department of Clinical Cancer ResearchOslo University HospitalNorway
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Corinna Bang
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielGermany
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalNorway
- Center for Bioinformatics, Department of InformaticsUniversity of OsloNorway
| | - Bjørn Naume
- Institute of Clinical MedicineUniversity of OsloNorway
- Department of OncologyOslo University HospitalNorway
| | - Johannes R. Hov
- Institute of Clinical MedicineUniversity of OsloNorway
- Research Institute of Internal MedicineOslo University Hospital RikshospitaletNorway
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalNorway
- Section of Gastroenterology, Department of Transplantation MedicineOslo University HospitalNorway
| | - Jon Amund Kyte
- Department of Clinical Cancer ResearchOslo University HospitalNorway
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalNorway
- Faculty of Health SciencesOslo Metropolitan UniversityNorway
| |
Collapse
|
3
|
Shewale H, Kanugo A. Recent Advances in Immunotherapy and Targeted Therapy of Triple Negative Breast Cancer. Curr Pharm Biotechnol 2025; 26:365-391. [PMID: 39092645 DOI: 10.2174/0113892010303244240718075729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024]
Abstract
The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.
Collapse
Affiliation(s)
- Harshada Shewale
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur Maharashtra, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur Maharashtra, 425405, India
- SVKM Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
4
|
Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, Li W, Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies. Mol Cancer 2024; 23:266. [PMID: 39614285 PMCID: PMC11605969 DOI: 10.1186/s12943-024-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical. The effectiveness of PD-1/PD-L1 immunotherapy depends on both tumor-intrinsic factors and the extrinsic cell-cell interactions within the tumor microenvironment (TME). This review systematically summarizes the key findings from clinical trials of ICBs in breast cancer and examines the mechanisms underlying PD-L1 expression regulation. We also highlight recent advances in identifying potential biomarkers for PD-1/PD-L1 therapy and emerging evidence of TME alterations following treatment. Among these, the quantity, immunophenotype, and spatial distribution of tumor-infiltrating lymphocytes stand out as promising biomarkers. Additionally, we explore strategies to enhance the effectiveness of ICBs in breast cancer, aiming to support the development of personalized treatment approaches tailored to the unique characteristics of each patient's tumor.
Collapse
Affiliation(s)
- Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Junwen Peng
- Department of General Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Xintian Wang
- Department of General Surgery, The Second People's Hospital of Tongxiang, Jiaxing, Zhejiang, China
| | - Ping Xing
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Yuxin Ding
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xinyu Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
6
|
Lu X, Gou Z, Chen H, Li L, Chen F, Bao C, Bu H. Gene panel predicts neoadjuvant chemoimmunotherapy response and benefit from immunotherapy in HER2-negative breast cancer. J Immunother Cancer 2024; 12:e009587. [PMID: 39134345 PMCID: PMC11337705 DOI: 10.1136/jitc-2024-009587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND It is encountering the dilemma of lacking precise biomarkers to predict the response to neoadjuvant chemoimmunotherapy (NACI) and determine whether patients should use immune checkpoint inhibitors (ICIs) in early breast cancer (BC). We aimed to develop a gene signature to predict NACI response for BC patients and identify individuals suitable for adding ICIs. PATIENTS AND METHODS Two I-SPY2 cohorts and one West China Hospital cohort of patients treated with NACI were included. Machine learning algorithms were used to identify key genes. Principal component analysis was used to calculate the ImPredict (IP) score. The interaction effects between biomarkers and treatment regimens were examined based on the logistic regression analysis. The relationship between the IP score and immune microenvironment was investigated through immunohistochemistry (IHC) and multiplex IHC. RESULTS The area under the curves of the IP score were 0.935, 0.865, and 0.841 in the discovery cohort, validation cohort 1, and in-house cohort. Marker-treatment interaction tests indicated that the benefits from immunotherapy significantly varied between patients with high and low IP scores (p for interaction <0.001), and patients with high IP scores were more suitable for immunotherapy addition. CONCLUSIONS Our IP model shows favorable performance in predicting NACI response and is an effective tool for identifying BC patients who will benefit from ICIs. It may help clinicians optimize treatment strategies and guide clinical decision-making.
Collapse
Affiliation(s)
- Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongchao Gou
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunjuan Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xu M, Li S. The opportunities and challenges of using PD-1/PD-L1 inhibitors for leukemia treatment. Cancer Lett 2024; 593:216969. [PMID: 38768681 DOI: 10.1016/j.canlet.2024.216969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Leukemia poses a significant clinical challenge due to its swift onset, rapid progression, and treatment-related complications. Tumor immune evasion, facilitated by immune checkpoints like programmed death receptor 1/programmed death receptor ligand 1 (PD-1/PD-L1), plays a critical role in leukemia pathogenesis and progression. In this review, we summarized the research progress and therapeutic potential of PD-L1 in leukemia, focusing on targeted therapy and immunotherapy. Recent clinical trials have demonstrated promising outcomes with PD-L1 inhibitors, highlighting their role in enhancing treatment efficacy. This review discusses the implications of PD-L1 expression levels on treatment response and long-term survival rates in leukemia patients. Furthermore, we address the challenges and opportunities in immunotherapy, emphasizing the need for personalized approaches and combination therapies to optimize PD-L1 inhibition in leukemia management. Future research prospects include exploring novel treatment strategies and addressing immune-related adverse events to improve clinical outcomes in leukemia. Overall, this review provides valuable insights into the role of PD-L1 in leukemia and its potential as a therapeutic target in the evolving landscape of leukemia treatment.
Collapse
Affiliation(s)
- Mengdan Xu
- Department of Breast Cancer, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China; Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, China; Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, China.
| |
Collapse
|
8
|
Privitera GF, Alaimo S, Caruso A, Ferro A, Forte S, Pulvirenti A. TMBcalc: a computational pipeline for identifying pan-cancer Tumor Mutational Burden gene signatures. Front Genet 2024; 15:1285305. [PMID: 38645485 PMCID: PMC11026579 DOI: 10.3389/fgene.2024.1285305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Background In the precision medicine era, identifying predictive factors to select patients most likely to benefit from treatment with immunological agents is a crucial and open challenge in oncology. Methods This paper presents a pan-cancer analysis of Tumor Mutational Burden (TMB). We developed a novel computational pipeline, TMBcalc, to calculate the TMB. Our methodology can identify small and reliable gene signatures to estimate TMB from custom targeted-sequencing panels. For this purpose, our pipeline has been trained on top of 17 cancer types data obtained from TCGA. Results Our results show that TMB, computed through the identified signature, strongly correlates with TMB obtained from whole-exome sequencing (WES). Conclusion We have rigorously analyzed the effectiveness of our methodology on top of several independent datasets. In particular we conducted a comprehensive testing on: (i) 126 samples sourced from the TCGA database; few independent whole-exome sequencing (WES) datasets linked to colon, breast, and liver cancers, all acquired from the EGA and the ICGC Data Portal. This rigorous evaluation clearly highlights the robustness and practicality of our approach, positioning it as a promising avenue for driving substantial progress within the realm of clinical practice.
Collapse
Affiliation(s)
- Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Anna Caruso
- Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo (IOM) Ricerca, Viagrande, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Chidambaram A, Prabhakaran R, Sivasamy S, Kanagasabai T, Thekkumalai M, Singh A, Tyagi MS, Dhandayuthapani S. Male Breast Cancer: Current Scenario and Future Perspectives. Technol Cancer Res Treat 2024; 23:15330338241261836. [PMID: 39043043 PMCID: PMC11271170 DOI: 10.1177/15330338241261836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Male breast cancer (MBC), one of the rare types of cancer among men where the global incidence rate is 1.8% of all breast cancers cases with a yearly increase in a pace of 1.1%. Since the last 10 years, the incidence has been increased from 7.2% to 10.3% and the mortality rate was decreased from 11% to 3.8%. Nevertheless, the rate of diagnoses has been expected to be around 2.6% in the near future, still there is a great lack in studies to characterize the MBC including the developed countries. Based on our search, it is evidenced from the literature that the number of risk factors for the cause of MBC are significant, which includes the increase in age, family genetic history, mutations in specific genes due to various environmental impacts, hormonal imbalance and unregulated expression receptors for specific hormones of high levels of estrogen or androgen receptors compared to females. MBCs are broadly classified into ductal and lobular carcinomas with further sub-types, with some of the symptoms including a lump or swelling in the breast, redness of flaky skin in the breast, irritation and nipple discharge that is similar to the female breast cancer (FBC). The most common diagnostic tools currently in use are the ultrasound guided sonography, mammography, and biopsies. Treatment modalities for MBC include surgery, radiotherapy, chemotherapy, hormonal therapy, and targeted therapies. However, the guidelines followed for the diagnosis and treatment modalities of MBC are mostly based on FBC that is due to the lack of prospective studies related to MBC. However, there are distinct clinical and molecular features of MBC, it is a need to develop different clinical methods with more multinational approaches to help oncologist to improve care for MBC patients.
Collapse
Affiliation(s)
- Anitha Chidambaram
- Department of Biochemistry, PRIST Deemed to be University, Thanjavur, TN, India
| | - Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Malarvili Thekkumalai
- Department of Biochemistry, Center for Distance Education, Bharathidasan University, Tiruchirappalli, TN, India
| | - Ankit Singh
- Department of Community Medicine, United Institute of Medical Sciences, Prayagraj, UP, India
| | - Mayurika S. Tyagi
- Department of Immuno Hematology and Blood Transfusion, Santosh Deemed to be University, Ghaziabad, UP, India
| | | |
Collapse
|
10
|
Venetis K, Sajjadi E, Ivanova M, Peccatori FA, Fusco N, Guerini-Rocco E. Characterization of the immune environment in pregnancy-associated breast cancer. Future Oncol 2023. [PMID: 37376974 DOI: 10.2217/fon-2022-1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pregnancy-associated breast cancer (PrBC) is a rare and clinically challenging condition. Specific immune mechanisms and pathways are involved in maternal-fetal tolerance and tumor-host immunoediting. The comprehension of the molecular processes underpinning this immune synergy in PrBC is needed to improve patients' clinical management. Only a few studies focused on the immune biology of PrBC and attempted to identify bona fide biomarkers. Therefore, clinically actionable information remains extremely puzzling for these patients. In this review article, we discuss the current knowledge on the immune environment of PrBC, in comparison with pregnancy-unrelated breast cancer and in the context of maternal immune changes during pregnancy. A particular emphasis is given to the actual role of potential immune-related biomarkers for PrBC clinical management.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Fedro Alessandro Peccatori
- Fertility & Procreation Unit, Division of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| |
Collapse
|
11
|
Caballero C, Irrthum A, Goulioti T, Cameron D, Norton L, Piccart M. International research to address the challenges of metastatic breast cancer: the AURORA Program (BIG 14-01). NPJ Breast Cancer 2023; 9:42. [PMID: 37221256 DOI: 10.1038/s41523-023-00548-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Affiliation(s)
| | | | | | - David Cameron
- Breast International Group, Brussels, Belgium
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Larry Norton
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - Martine Piccart
- Breast International Group, Brussels, Belgium
- Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
12
|
Vaz SC, Graff SL, Ferreira AR, Debiasi M, de Geus-Oei LF. PET/CT in Patients with Breast Cancer Treated with Immunotherapy. Cancers (Basel) 2023; 15:cancers15092620. [PMID: 37174086 PMCID: PMC10177398 DOI: 10.3390/cancers15092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Significant advances in breast cancer (BC) treatment have been made in the last decade, including the use of immunotherapy and, in particular, immune checkpoint inhibitors that have been shown to improve the survival of patients with triple negative BC. This narrative review summarizes the studies supporting the use of immunotherapy in BC. Furthermore, the usefulness of 2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG) positron emission/computerized tomography (PET/CT) to image the tumor heterogeneity and to assess treatment response is explored, including the different criteria to interpret 2-[18F]FDG PET/CT imaging. The concept of immuno-PET is also described, by explaining the advantages of mapping treatment targets with a non-invasive and whole-body tool. Several radiopharmaceuticals in the preclinical phase are referred too, and, considering their promising results, translation to human studies is needed to support their use in clinical practice. Overall, this is an evolving field in BC treatment, despite PET imaging developments, the future trends also include expanding immunotherapy to early-stage BC and using other biomarkers.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Center for the Unkown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600-2300 RC Leiden, The Netherlands
| | - Stephanie L Graff
- Division of Hematology/Oncology, Lifespan Cancer Institute, Providence, RI 02903, USA
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Arlindo R Ferreira
- Católica Medical School, Universidade Católica Portuguesa, 2635-631 Lisbon, Portugal
| | - Márcio Debiasi
- Breast Cancer Unit, Champalimaud Center for the Unkown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600-2300 RC Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, P.O. Box 217-7500 AE Enschede, The Netherlands
- Department of radiation Science & Technology, Delft University of Technology, P.O. Postbus 5 2600 AA Delft, The Netherlands
| |
Collapse
|
13
|
Gante I, Ribeiro JM, Mendes J, Gomes A, Almeida V, Regateiro FS, Caramelo F, Silva HC, Figueiredo-Dias M. One Step Nucleic Acid Amplification (OSNA) Lysate Samples Are Suitable to Establish a Transcriptional Metastatic Signature in Patients with Early Stage Hormone Receptors-Positive Breast Cancer. Cancers (Basel) 2022; 14:5855. [PMID: 36497336 PMCID: PMC9736102 DOI: 10.3390/cancers14235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The One Step Nucleic Acid Amplification (OSNA) is being adopted worldwide for sentinel lymph nodes (SLNs) staging in breast cancer (BC). As major disadvantage, OSNA precludes prognostic information based on structural evaluation of SLNs. Our aim is to identify biomarkers related to tumor-microenvironment interplay exploring gene expression data from the OSNA remaining lysate. This study included 32 patients with early stage hormone receptors-positive BC. Remaining OSNA lysates were prepared for targeted RNA-sequencing analysis. Identification of differentially expressed genes (DEGs) was performed by DESeq2 in R and data analysis in STATA. The results show that, in metastatic SLNs, several genes were upregulated: KRT7, VTCN1, CD44, GATA3, ALOX15B, RORC, NECTIN2, LRG1, CD276, FOXM1 and IGF1R. Hierarchical clustering analysis revealed three different clusters. The identified DEGs codify proteins mainly involved in cancer aggressiveness and with impact in immune response. The overexpression of the immune suppressive genes VTCN1 and CD276 may explain that no direct evidence of activation of immune response in metastatic SLNs was found. We show that OSNA results may be improved incorporating microenvironment-related biomarkers that may be useful in the future for prognosis stratification and immunotherapy selection. As OSNA assay is being implemented for SLNs staging in other cancers, this approach could also have a wider utility.
Collapse
Affiliation(s)
- Inês Gante
- Gynecology Department, Coimbra Hospital and Universitary Centre (CHUC), 3004-561 Coimbra, Portugal
- University of Coimbra, Gynecology University Clinic, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Martins Ribeiro
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Mendes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Gomes
- Department of Pathology, Coimbra Hospital and Universitary Centre (CHUC), 3004-561 Coimbra, Portugal
| | - Vânia Almeida
- Department of Pathology, Coimbra Hospital and Universitary Centre (CHUC), 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Frederico Soares Regateiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Allergy and Clinical Immunology Unit, Coimbra Hospital and Universitary Centre (CHUC), 3004-561 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Henriqueta Coimbra Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Gynecology Department, Coimbra Hospital and Universitary Centre (CHUC), 3004-561 Coimbra, Portugal
- University of Coimbra, Gynecology University Clinic, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
15
|
Lu X, Gou Z, Yu L, Bu H. A novel risk model based on immune response predicts clinical outcomes and characterizes immunophenotypes in triple-negative breast cancer. Am J Cancer Res 2022; 12:3913-3931. [PMID: 36119814 PMCID: PMC9442003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly heterogeneous in prognosis. The current TNM staging system shows its limitation in accurate risk evaluation. Immune response and immune cell abundances in the tumor immune microenvironment (TIME) are critical for cancer progression, clinical outcome and therapeutic response in TNBC. However, there is a lack of an effective risk model based on the overall transcriptional alterations relevant to different immune responses. In this study, multiple bioinformatics and statistical approaches were used to develop an immune-related risk (IRR) signature based on the differentially expressed genes between the immune-active and immune-inactive samples. The IRR model showed great performance in risk stratification, immune landscape evaluation and immunotherapy response prediction. Compared with the low-IRR group, the high-IRR group exhibited a poorer prognosis, less cytotoxic cell infiltration, higher M2/M1 ratio and upregulated glycolytic activity. Moreover, the high-IRR group showed more resistance to immunotherapy than the low-IRR group. Our study reveals that the IRR model may be a promising tool to help clinicians assess risk and optimize treatment for TNBC patients.
Collapse
Affiliation(s)
- Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu 610041, China
- Institute of Clinical Pathology, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Zongchao Gou
- Department of Breast Surgery, West China Hospital, Sichuan UniversityChengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu 610041, China
- Institute of Clinical Pathology, West China Hospital, Sichuan UniversityChengdu 610041, China
| |
Collapse
|
16
|
Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin Proteomics 2022; 19:25. [PMID: 35818030 PMCID: PMC9275040 DOI: 10.1186/s12014-022-09362-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and among the leading causes of cancer death in women. It is a heterogeneous group of tumours with numerous morphological and molecular subtypes, making predictions of disease evolution and patient outcomes difficult. Therefore, biomarkers are needed to help clinicians choose the best treatment for each patient. For the last years, studies have increasingly focused on biomarkers obtainable by liquid biopsy. Circulating proteins (from serum or plasma) can be used for inexpensive and minimally invasive determination of disease risk, early diagnosis, treatment adjusting, prognostication and disease progression monitoring. We provide here a review of the main published studies on serum proteins in breast cancer and elaborate on the potential of circulating proteins to be predictive and/or prognostic biomarkers in breast cancer.
Collapse
|
17
|
Ahmed T. Immunotherapy for neuroblastoma using mRNA vaccines. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 4:100033. [DOI: 10.1016/j.adcanc.2022.100033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Giugliano F, Valenza C, Tarantino P, Curigliano G. Immunotherapy for triple negative breast cancer: How can pathologic responses to experimental drugs in early-stage disease be enhanced? Expert Opin Investig Drugs 2022; 31:855-874. [PMID: 35762248 DOI: 10.1080/13543784.2022.2095260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The treatment landscape of early triple negative breast cancer (TNBC) has recently expanded after the Food and Drug Administration (FDA) approval of pembrolizumab in combination with neoadjuvant chemotherapy. The addition of this immune checkpoint inhibitor (ICI) has shown to significantly increased pathological complete response (pCR) rate and event free survival (EFS) in the KEYNOTE-522 phase 3 trial. Several additional studies are ongoing with the goal of further improving outcomes and achieving an optimal integration of ICIs in the treatment of TNBC. AREAS COVERED : The article examines pCR and survival rates in TNBC. It appraises clinical trials investigating neoadjuvant ICIs for TNBC and the improvement of pCR rates (biomarker-driven escalation of treatment, optimization of chemotherapy backbone and addition of locoregional treatments or innovative agents). Insights on the role of pCR as surrogate endpoint and the possibility of enhancing pCR rates for women affected by early TNBC are offered. EXPERT OPINION : The pharmacopoeia of early TNBC is growing and becoming more heterogeneous with the advent of ICIs; to enhance the clinical benefit of patients, it is necessary to develop response endpoints that consider the mechanism of action of experimental drugs, to optimize patient selection through validated biomarkers, and to compare the most promising treatment strategies in randomized clinical trials.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Breast Oncology Center, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Dixon-Douglas J, Loibl S, Denkert C, Telli M, Loi S. Integrating Immunotherapy Into the Treatment Landscape for Patients With Triple-Negative Breast Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35649211 DOI: 10.1200/edbk_351186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive histologic subtype of breast cancer for which, until recently, treatment options have been limited to chemotherapy. In recent years, an improved understanding of the importance of tumor-infiltrating lymphocytes and the tumor microenvironment in TNBC has led to investigation of immune checkpoint inhibitors for treatment. There is now evidence from several randomized controlled trials that supports the addition of immune checkpoint inhibitors to first-line treatment of advanced TNBC and to neoadjuvant chemotherapy for stage II-III TNBC. In parallel, the PARP inhibitors have emerged as a targeted therapy option for patients with HER2-negative breast cancer harboring mutations in BRCA1, BRCA2, and PALB2. Here, we review the recent clinical trials that inform the integration of immune checkpoint inhibitors into treatments for TNBC and discuss ongoing challenges-including patient selection, management of resistance to post-checkpoint inhibitor therapy, and combining immunotherapy with targeted therapies, including PARP inhibitors.
Collapse
Affiliation(s)
- Julia Dixon-Douglas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sibylle Loibl
- Goethe University Frankfurt, Germany.,Centre for Haematology and Oncology, Bethanein, Frankfurt, Germany.,German Breast Group, Neu-Isenburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Melinda Telli
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, CA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Llera AS, Abdelhay ESFW, Artagaveytia N, Daneri-Navarro A, Müller B, Velazquez C, Alcoba EB, Alonso I, Alves da Quinta DB, Binato R, Bravo AI, Camejo N, Carraro DM, Castro M, Castro-Cervantes JM, Cataldi S, Cayota A, Cerda M, Colombo A, Crocamo S, Del Toro-Arreola A, Delgadillo-Cisterna R, Delgado L, Dreyer-Breitenbach M, Fejerman L, Fernández EA, Fernández J, Fernández W, Franco-Topete RA, Gabay C, Gaete F, Garibay-Escobar A, Gómez J, Greif G, Gross TG, Guerrero M, Henderson MK, Lopez-Muñoz ME, Lopez-Vazquez A, Maldonado S, Morán-Mendoza AJ, Nagai MA, Oceguera-Villanueva A, Ortiz-Martínez MA, Quintero J, Quintero-Ramos A, Reis RM, Retamales J, Rivera-Claisse E, Rocha D, Rodríguez R, Rosales C, Salas-González E, Sanchotena V, Segovia L, Sendoya JM, Silva-García AA, Trinchero A, Valenzuela O, Vedham V, Zagame L, Podhajcer OL. The Transcriptomic Portrait of Locally Advanced Breast Cancer and Its Prognostic Value in a Multi-Country Cohort of Latin American Patients. Front Oncol 2022; 12:835626. [PMID: 35433488 PMCID: PMC9007037 DOI: 10.3389/fonc.2022.835626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSES Most molecular-based published studies on breast cancer do not adequately represent the unique and diverse genetic admixture of the Latin American population. Searching for similarities and differences in molecular pathways associated with these tumors and evaluating its impact on prognosis may help to select better therapeutic approaches. PATIENTS AND METHODS We collected clinical, pathological, and transcriptomic data of a multi-country Latin American cohort of 1,071 stage II-III breast cancer patients of the Molecular Profile of Breast Cancer Study (MPBCS) cohort. The 5-year prognostic ability of intrinsic (transcriptomic-based) PAM50 and immunohistochemical classifications, both at the cancer-specific (OSC) and disease-free survival (DFS) stages, was compared. Pathway analyses (GSEA, GSVA and MetaCore) were performed to explore differences among intrinsic subtypes. RESULTS PAM50 classification of the MPBCS cohort defined 42·6% of tumors as LumA, 21·3% as LumB, 13·3% as HER2E and 16·6% as Basal. Both OSC and DFS for LumA tumors were significantly better than for other subtypes, while Basal tumors had the worst prognosis. While the prognostic power of traditional subtypes calculated with hormone receptors (HR), HER2 and Ki67 determinations showed an acceptable performance, PAM50-derived risk of recurrence best discriminated low, intermediate and high-risk groups. Transcriptomic pathway analysis showed high proliferation (i.e. cell cycle control and DNA damage repair) associated with LumB, HER2E and Basal tumors, and a strong dependency on the estrogen pathway for LumA. Terms related to both innate and adaptive immune responses were seen predominantly upregulated in Basal tumors, and, to a lesser extent, in HER2E, with respect to LumA and B tumors. CONCLUSIONS This is the first study that assesses molecular features at the transcriptomic level in a multicountry Latin American breast cancer patient cohort. Hormone-related and proliferation pathways that predominate in PAM50 and other breast cancer molecular classifications are also the main tumor-driving mechanisms in this cohort and have prognostic power. The immune-related features seen in the most aggressive subtypes may pave the way for therapeutic approaches not yet disseminated in Latin America. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (Identifier: NCT02326857).
Collapse
Affiliation(s)
- Andrea Sabina Llera
- Molecular and Cellular Therapy Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | | | - Nora Artagaveytia
- Hospital de Clínicas Manuel Quintela, Universidad de la República, Montevideo, Uruguay
| | | | | | | | - Elsa B. Alcoba
- Hospital Municipal de Oncología María Curie, Buenos Aires, Argentina
| | - Isabel Alonso
- Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
| | - Daniela B. Alves da Quinta
- Molecular and Cellular Therapy Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Buenos Aires, Argentina
| | - Renata Binato
- Bone Marrow Transplantation Unit, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Natalia Camejo
- Hospital de Clínicas Manuel Quintela, Universidad de la República, Montevideo, Uruguay
| | - Dirce Maria Carraro
- Laboratory of Genomics and Molecular Biology/Centro Internacional de Pesquisa (CIPE), AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Mónica Castro
- Instituto de Oncología Angel Roffo, Buenos Aires, Argentina
| | | | | | | | - Mauricio Cerda
- Integrative Biology Program, Instituto de Ciencias Biomédicas (ICBM), Centro de Informática Médica y Telemedicina, Facultad de Medicina, Instituto de Neurociencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Department of Pathology, Facultad de Medicina y Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Susanne Crocamo
- Oncology Department, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | - Lucía Delgado
- Hospital de Clínicas Manuel Quintela, Universidad de la República, Montevideo, Uruguay
| | - Marisa Dreyer-Breitenbach
- Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Fejerman
- Department of Public Health Sciences and Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Elmer A. Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas [Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE) CONICET/Universidad Católica de Córdoba], Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Ramón A. Franco-Topete
- Organismo Público Descentralizado (OPD), Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carolina Gabay
- Instituto de Oncología Angel Roffo, Buenos Aires, Argentina
| | | | | | - Jorge Gómez
- Texas A&M University, Houston, TX, United States
| | | | - Thomas G. Gross
- Center for Global Health, National Cancer Institute, Rockville, MD, United States
| | | | | | | | | | | | | | - Maria Aparecida Nagai
- Center for Translational Research in Oncology, Cancer Institute of São Paulo (ICESP), Sao Paulo University Medical School, Sao Paulo, Brazil
| | | | | | | | | | - Rui M. Reis
- Molecular Oncology Research Center, Hospital de Câncer de Barretos, Barretos, Brazil
| | - Javier Retamales
- Grupo Oncológico Cooperativo Chileno de Investigación, Santiago, Chile
| | | | - Darío Rocha
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Cristina Rosales
- Hospital Municipal de Oncología María Curie, Buenos Aires, Argentina
| | | | | | | | - Juan Martín Sendoya
- Molecular and Cellular Therapy Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | - Aida A. Silva-García
- Organismo Público Descentralizado (OPD), Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | - Vidya Vedham
- Center for Global Health, National Cancer Institute, Rockville, MD, United States
| | - Livia Zagame
- Instituto Jalisciense de Cancerologia, Guadalajara, Mexico
| | - Osvaldo L. Podhajcer
- Molecular and Cellular Therapy Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| |
Collapse
|