1
|
Ding X, Liang S, Zhang T, Zhang M, Fang H, Tian J, Liu J, Peng Y, Zheng L, Wang B, Feng W. Surface Modification of Gold Nanoparticle Impacts Distinct Lipid Metabolism. Molecules 2025; 30:1727. [PMID: 40333646 PMCID: PMC12029855 DOI: 10.3390/molecules30081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Gold nanomaterials have garnered significant attention in biomedicine owing to their tunable size and morphology, facile surface modification capabilities, and distinctive optical properties. The surface functionalization of these nanoparticles can enhance their safety and efficacy in nanomedical applications. In this study, we examined the biological effects of gold nanoparticles (GNPs) with three distinct surface modifications (polyethylene glycol, chitosan, and polyethylenimine) in murine models, elucidating their mechanisms of action on hepatic tissue at both the transcriptomic and metabolomic levels. Our findings revealed that PEG-modified GNPs did not significantly alter any major metabolic pathway. In contrast, CS-GNPs markedly affected the metabolic pathways of retinol, arachidonic acid, linoleic acid, and glycerophospholipids (FDR < 0.05). Similarly, PEI-GNPs significantly influenced the metabolic pathways of retinol, arachidonic acid, linoleic acid, and sphingolipids (FDR < 0.05). Through a comprehensive analysis of the regulatory information within these pathways, we identified phosphatidylcholine compounds as potential biomarkers that may underlie the differential biological effects of the three functionalized GNPs. These findings provide valuable experimental data for evaluating the biological safety of functionalized GNPs.
Collapse
Affiliation(s)
- Xinyu Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Yuyuan Peng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| |
Collapse
|
2
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Althaher AR, Jarrar Y, Al-Ibadah MA, Balasmeh R, Jarrar Q, Abulebdah D. Effects of Calamintha incana (Sm.) Helder Ethanolic Extract on the mRNA Expression of Drug-metabolizing cyp450s in the Mouse Livers. Microrna 2024; 13:63-70. [PMID: 38265404 DOI: 10.2174/0122115366268781231205103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Alteration in the expression and activity of drug-metabolizing enzymes (DMEs) can alter the pharmacokinetics and hence the response of the drug. Some chemicals found in herbs and fruits affect the expression of DMEs. Calamintha incana is commonly used in Middle Eastern Arabic countries. There is no report regarding the influence of Calamintha incana on the hepatic expression of DMEs. AIMS The current investigation aimed to investigate the effect of Calamintha incana consumption on the mRNA expression of major hepatic drug-metabolizing cytochrome (cyp) P450 genes in mice. METHODS The chemical composition of the ethanoic extract was analyzed using liquid chromatography/ mass spectrometry. Then, 21 BALB/c mice were used for the in vivo experiment. The mice were divided into three groups, each consisting of seven mice. The first group (low-dose group) was treated with 41.6 mg/kg of Calamintha incana extract and the second group was administered the high-dose (125 mg/kg) of the extract for one month. The mice in the third "control" group administrated the vehicle 20% polyethylene glycol 200. Then, the expression of cyp3a11, cyp2c29, cyp2d9, and cyp1a1 was analyzed using the real-time polymerase chain reaction. The relative liver weights of the mice and the hepatic pathohistological alterations were assessed. RESULTS The ethanolic extract of Calamintha incana contained 27 phytochemical compounds. The most abundant compounds were linolenic acid, myristic acid, and p-cymene. It was found that the low dose of Calamintha incana extract upregulated significantly (P < 0.05) the expression of cyp3a11 by more than ten folds in the liver of treated mice. Furthermore, the histological analysis showed that low- and high-dose administration of the C. incana did not cause pathological alterations. CONCLUSION It can be concluded from these findings that consumption of low doses of Calamintha incana upregulated the mRNA expression of mouse cyp3a11 without causing histopathological alterations in the livers. Further studies are needed to determine the influence of Calamintha incana on the pharmacokinetics and response of drugs metabolized by cyp3a11.
Collapse
Affiliation(s)
- Arwa R Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | | | - Ruba Balasmeh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Isra University, Amman, Jordan
| | - Dina Abulebdah
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
4
|
Pei X, Tang S, Jiang H, Zhang W, Xu G, Zuo Z, Ren Z, Chen C, Shen Y, Li C, Li D. Paeoniflorin recued hepatotoxicity under zinc oxide nanoparticles exposure via regulation on gut-liver axis and reversal of pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166885. [PMID: 37678520 DOI: 10.1016/j.scitotenv.2023.166885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The risks of Zinc oxide nanoparticles (ZnO NPs) applications in biological medicine, food processing industry, agricultural production and the biotoxicity brought by environmental invasion of ZnO NPs both gradually troubled the public due to the lack of research on detoxification strategies. TFEB-regulated autophagy-pyroptosis pathways were found as the crux of the hepatotoxicity induced by ZnO NPs in our latest study. Here, our study served as a connecting link between preceding toxic target and the following protection mechanism of Paeoniflorin (PF). According to a combined analysis of network pharmacology/molecular docking-intestinal microbiota-metabolomics first developed in our study, PF alleviated the hepatotoxicity of ZnO NPs from multiple aspects. The hepatic inflammatory injury and hepatocyte pyroptosis in mice liver exposed to ZnO NPs was significantly inhibited by PF. And the intestinal microbiota disorder and liver metabolic disturbance were rescued. The targets predicted by bioinformatics and the signal trend in subacute toxicological model exhibited the protectiveness of PF related to the SIRT1-mTOR-TFEB pathway. These evidences clarified multiple protective mechanisms of PF which provided a novel detoxification approach against ZnO NPs, and further provided a strategy for the medicinal value development of PF.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zhenhui Ren
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
5
|
Al-Kazimi N, Jarrar Y, Abdul-Wahab G, Alsayed AR, Madani A, Abulebdah D, Musleh RS, Jarrar Q, Al-Ameer HJ, Al-Awaida W, Abdullah E. Effects of intermittent fasting on the histology and mRNA expression of major drug-metabolizing cyp450s in the liver of diabetic mice. Libyan J Med 2023; 18:2270188. [PMID: 37883503 PMCID: PMC11018316 DOI: 10.1080/19932820.2023.2270188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction:There is a variation in drug response among patients who practice intermittent fasting. Alteration in the expression of drug-metabolizing enzymes (DMEs) can affect the pharmacokinetics and drug response.Aims: This research aimed to determine the effect of intermittent fasting on the mRNA expression of major drug-metabolizing cyp450s in the liver of diabetic mice.Methods: Thirty-two male Balb/c mice were divided into four groups; control, nonfasting diabetic, non-diabetic fasting, and diabetic fasting mice. Insulin-dependent diabetes was induced in mice by a single high-dose (250 mg/kg) streptozocin. Mice of non-diabetic and diabetic fasting groups were subjected to 10-day intermittent fasting for 17 hours daily. Then, the mRNA expression of mouse phase I DMEs cyp1a1, cyp2c29, cyp2d9, and cyp3a11 was analyzed using real-time polymerase chain reaction. In addition, the liver of mice in all groups was examined for pathohistological alterations.Results: Diabetes downregulated the mRNA expression of hepatic drug-metabolizing cyp450s in diabetic mice, while intermittent fasting significantly (P < 0.05) increased it. Also, cyp2d9 and cyp3a11 were upregulated in the liver of diabetic fasting mice. These alterations in the gene expression were correlated with the pathohistological alterations, where livers of diabetic mice showed dilatation in the blood sinusoids and inflammatory cells leukocyte infiltrations. Whereas livers of diabetic fasting mice showed almost comparable histological findings to control mice.Conclusions: Intermittent fasting can protect the liver against diabetes-induced hepatotoxicity and the down-regulation of DME genes in the diabetic liver. These results can explain, at least partly, the inter-individual variation in the drug response during practicing fasting.
Collapse
Affiliation(s)
- Nour Al-Kazimi
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ghasaq Abdul-Wahab
- Department of Oral Surgery and Periodontology, College of Dentistry, Al-Mustansiriya University, Baghdad, Iraq
| | - Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Abdalla Madani
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Dina Abulebdah
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rami Salem Musleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Qais Jarrar
- Department of pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Eman Abdullah
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| |
Collapse
|
6
|
Luo J, Zhang M, Deng Y, Li H, Bu Q, Liu R, Yu J, Liu S, Zeng Z, Sun W, Gui G, Qian X, Li Y. Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114704. [PMID: 36898311 DOI: 10.1016/j.ecoenv.2023.114704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Studies on the general toxicity of copper nanoparticles (Cu NPs) have been conducted extensively, but their effects on reproductive toxicity remain unclear. In this study, we evaluated the toxic effect of Cu NPs on pregnant rats and their litter. The comparative in vivo toxicity of Cu ions, Cu NPs, and Cu microparticles (MPs) was studied in a 17-day repeated oral-dose experiment at the doses of 60, 120, and 180 mg/kg/day in pregnant rats. The pregnancy rate, mean live litter size, and number of dams decreased when exposed to Cu NPs. Moreover, Cu NPs caused a dose-dependent increase in ovarian Cu levels. The metabolomics results showed that Cu NPs caused reproductive dysfunction by altering sex hormones. In addition, in vivo and in vitro experiments showed that the ovarian cytochrome P450 enzymes (CYP450), responsible for hormone production, were significantly upregulated, whereas the enzymes responsible for hormone metabolism were significantly inhibited, resulting in a metabolic imbalance in some ovarian hormones. Furthermore, the results revealed that the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways significantly participated in the regulation of ovarian CYP enzyme expression. Overall, the results of the in vivo and in vitro toxicity experiments with Cu ions, Cu NPs, and Cu MPs suggested that toxicity from nanoscale Cu particles poses a more serious reproductive threat than microscale Cu as Cu NPs could directly damage the ovary and affect the metabolism of ovarian hormones.
Collapse
Affiliation(s)
- Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of Safe and Efficient Application of Guizhou Province Feed Forage, Tongren 554300, China
| | - Mingzhi Zhang
- Meishan Food and Drug Inspection and Testing Center, Meishan 611330, China
| | - Yang Deng
- Chengdu Animal Genetic Resources Protection Center, Chengdu 611130, China
| | - Haohuan Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglong Bu
- Department of Pet Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of Safe and Efficient Application of Guizhou Province Feed Forage, Tongren 554300, China
| | - Jiansheng Yu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China
| | - Shanshan Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren 554300, China
| | - Wei Sun
- College of Agriculture, Tongren Polytechnic College, Tongren 554300, China
| | - Ganbei Gui
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Department of Pet Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Xicheng Qian
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Khattabi AM, Al-Dabash S, Mahmoud NN. Quercetin Loaded Silica and Gold - Coated Silica Nanoparticles: Characterization, Evaluation and Comparison of Their in vitro Characteristics. J Pharm Sci 2023; 112:1698-1704. [PMID: 37001860 DOI: 10.1016/j.xphs.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Herein, silica nanoparticles (NPs) and gold-silica NPs were loaded with the anti-cancer agent quercetin (QC) to produce silica NPs-QC and gold coated silica NPs-QC, respectively. The nanosystems were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR). Drug encapsulation efficiency (EE), loading capacity (LC) and release rate were measured using UV spectrophotometer. The drug was encapsulated in silica NPs in a high percentage (71%) and reduced by about 16% after gold coating. The mean particle size increased after coating and QC loading with a polydispersity index (PDI) between (∼ 0.2 - 0.6) and negative zeta potential (-13 to - 15 mV). The intensity of FTIR peaks of silica NPs has been significantly decreased upon gold coating indicating a successful attachment of the gold thin layer. The drug release was slightly faster from coated compared to uncoated NPs but both slower than free QC. The percentages of their cell toxicity were almost the same but lower than free QC and generally were higher against HeLa cells compared to fibroblast cells. Both nanosystems could be considered as promising nanocarriers with reasonable EE, slower release rate and lower toxicity compared to the free drug.
Collapse
Affiliation(s)
- Areen M Khattabi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan.
| | - Sabaa Al-Dabash
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nouf N Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
8
|
Pei X, Liu D, Li J, Li L, Ding X, Zhang W, Li Z, Xu G, Li C, Li D. TFEB coordinates autophagy and pyroptosis as hepatotoxicity responses to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161242. [PMID: 36587696 DOI: 10.1016/j.scitotenv.2022.161242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis. According to the analysis of protein expression and fluorescence localization, the NLRP3 inflammasome assemble and the classical Caspase-1/GSDMD-dependent pyroptosis induced by ZnO NPs was modulated by autophagy. In this process, the adjustment of TFEB expression and nuclear translocation by gene knockout and gene overexpression, further altered the tendency of ZnO NPs-induced pyroptosis via the regulation of autophagy and lysosomal biogenesis. The knockout of TFEB gene exacerbated the pyroptosis via autophagy elimination and lysosome inhibition. While the alleviation of NLRP3 generation and pyroptosis activation was observed after treatment of TFEB gene overexpression. Additionally, the siRNA interference confirmed that TRAF-6 was involved in the TFEB-mediated global regulation of autophagy-lysosome-pyroptosis in response to ZnO NPs. Accordingly, pyroptosis induced by ZnO NPs in hepatocyte could be significantly avoided by TFEB-regulated autophagy and lysosome, further providing new insights for the risk assessment and therapeutic strategy.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Jianjun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zibin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China.
| |
Collapse
|
9
|
Liang Q, Sun M, Ma Y, Wang F, Sun Z, Duan J. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. CHEMOSPHERE 2023; 311:136955. [PMID: 36280121 DOI: 10.1016/j.chemosphere.2022.136955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) have been widely used and mass-producted due to its unique properties. With the life cycle of SiNPs-based products, SiNPs are further released into the air, soil, surface water and sediment, resulting in an increasing risk to humans. SiNPs could enter into the human body through vein, respiratory tract, digestive tract or skin. Moreover, recent evidences have showed that, regardless of exposure pathways, SiNPs could even be traced in liver, which is gradually considered as one of the main organs that SiNPs accumulate. Increasing evidences supported the link between SiNPs exposure and adverse liver effects. However, the research models are diverse and the molecular mechanisms have not been well integrated. In this review, the liver-related studies of SiNPs in vivo and in vitro were screened from the PubMed database by systematic retrieval method. We explored the interaction between SiNPs and the liver, and especially proposed a framework of SiNPs-caused liver toxicity, considering AOP Wiki and existing studies. We identified increased reactive oxygen species (ROS) as a molecular initiating event (MIE), oxidative stress, endoplasmic reticulum stress, lysosome disruption and mitochondrial dysfunction as subsequent key events (KEs), which gradually led to adverse outcomes (AOs) containing liver dysfunction and liver fibrosis through a series of key events about cell inflammation and death such as hepatocyte apoptosis/pyroptosis, hepatocyte autophagy dysfuncton and hepatic macrophages pyroptosis. To our best knowledge, this is the first AOP proposed on SiNPs-related liver toxicity. In the future, more epidemiological studies need to be performed and more biomarkers need to be explored to improve the AOP framework for SiNPs-associated liver toxicity.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Techonology, Baotou, 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
10
|
Pei X, Jiang H, Xu G, Li C, Li D, Tang S. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci 2022; 23:ijms23126724. [PMID: 35743165 PMCID: PMC9223789 DOI: 10.3390/ijms23126724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) with high bioavailability and excellent physicochemical properties are gradually becoming commonplace as a substitute for conventional ZnO materials. The present study aimed to investigate the hepatotoxicity mechanism of ZnO NPs and traditional non-nano ZnO particles, both in vivo and in vitro, and identify the differences in their toxic effects. The results showed that the extent and conditions of zinc ion release from ZnO NPs were inconsistent with those of ZnO. The RNA-seq results revealed that the expression quantity of differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) affected by ZnO NPs was more than in ZnO, and the overall differences in genes or transcripts in the ZnO NPs group were more pronounced than in the ZnO group. Furthermore, the cell inactivation, oxidative stress, mitochondrial damage, and intracellular calcium overload induced by ZnO NPs were more serious than ZnO in HepG2 cells. Moreover, compared with traditional ZnO, the rat liver damage induced by ZnO NPs was more significant, with evidence of higher AST and ALT levels, weaker antioxidant capacity, and more serious histopathological damage (p < 0.05). In summary, the hepatotoxicity of ZnO NPs was more serious than that of conventional ZnO, which is helpful to understand the hepatotoxicity mechanism of Zn compounds in different states and improve the risk assessment of novel nano ZnO products in a variety of applications.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd., Tianjin 300383, China
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China
- Correspondence: (D.L.); (S.T.)
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
- Correspondence: (D.L.); (S.T.)
| |
Collapse
|
11
|
Khirfan F, Jarrar Y, Al-Qirim T, Goh KW, Jarrar Q, Ardianto C, Awad M, Al-Ameer HJ, Al-Awaida W, Moshawih S, Ming LC. Analgesics Induce Alterations in the Expression of SARS-CoV-2 Entry and Arachidonic-Acid-Metabolizing Genes in the Mouse Lungs. Pharmaceuticals (Basel) 2022; 15:696. [PMID: 35745615 PMCID: PMC9227818 DOI: 10.3390/ph15060696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Paracetamol and nonsteroidal anti-inflammatory drugs are widely used in the management of respiratory viral infections. This study aimed to determine the effects of the most commonly used analgesics (paracetamol, ibuprofen, and diclofenac) on the mRNA expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and arachidonic-acid-metabolizing genes in mouse lungs. A total of twenty eight Balb/c mice were divided into four groups and treated separately with vehicle, paracetamol, ibuprofen, and diclofenac in clinically equivalent doses for 14 days. Then, the expressions of SARS-CoV-2 entry, ACE2, TMPRSS2, and Ctsl genes, in addition to the arachidonic-acid-metabolizing cyp450, cox, and alox genes, were analyzed using real-time PCR. Paracetamol increased the expressions of TMPRSS2 and Ctsl genes by 8.5 and 5.6 folds, respectively, while ibuprofen and diclofenac significantly decreased the expression of the ACE2 gene by more than 2.5 folds. In addition, all tested drugs downregulated (p < 0.05) cox2 gene expression, and paracetamol reduced the mRNA levels of cyp4a12 and 2j5. These molecular alterations in diclofenac and ibuprofen were associated with pathohistological alterations, where both analgesics induced the infiltration of inflammatory cells and airway wall thickening. It is concluded that analgesics such as paracetamol, ibuprofen, and diclofenac alter the expression of SARS-CoV-2 entry and arachidonic-acid-metabolizing genes in mouse lungs.
Collapse
Affiliation(s)
- Fatima Khirfan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Yazun Jarrar
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Tariq Al-Qirim
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Al-Isra University, Amman 11622, Jordan;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mohammad Awad
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| |
Collapse
|
12
|
Zhang X, Wei Y, Li C, Wang W, Zhang R, Jia J, Yan B. Intracellular Exposure Dose-Associated Susceptibility of Steatotic Hepatocytes to Metallic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312643. [PMID: 34884447 PMCID: PMC8657991 DOI: 10.3390/ijms222312643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), mainly characterized by the accumulation of excess fat in hepatocytes, is the most prevalent liver disorder afflicting ~25% of adults worldwide. In vivo studies have shown that adult rodents with NAFLD were more sensitive to metallic nanoparticles (MNPs) than healthy MNPs. However, due to the complex interactions between various cell types in a fatty liver, it has become a major challenge to reveal the toxic effects of MNPs to specific types of liver cells such as steatotic hepatocytes. In this study, we reported the susceptibility of steatotic hepatocytes in cytotoxicity and the induction of oxidative stress to direct exposures to MNPs with different components (silver, ZrO2, and TiO2 NPs) and sizes (20-30 nm and 125 nm) in an oleic acid (OA) -induced steatotic HepG2 (sHepG2) cell model. Furthermore, the inhibitory potential of MNPs against the process of fatty acid oxidation (FAO) were obvious in sHepG2 cells, even at extremely low doses of 2 or 4 μg/mL, which was not observed in non-steatotic HepG2 (nHepG2) cells. Further experiments on the differential cell uptake of MNPs in nHepG2 and sHepG2 cells demonstrated that the susceptibility of steatotic hepatocytes to MNP exposures was in association with the higher cellular accumulation of MNPs. Overall, our study demonstrated that it is necessary and urgent to take the intracellular exposure dose into consideration when assessing the potential toxicity of environmentally exposed MNPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Yongyi Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Chengjun Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Weiyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Rui Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- Correspondence: ; Tel.: +86-20-3714-2113
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| |
Collapse
|
13
|
Kargin D. Changes in Serum Physiological and Biochemical Parameters of Male Swiss Albino Mice After Oral Administration of Metal Oxide Nanoparticles (ZnO, CuO, and ZnO+CuO). Biol Trace Elem Res 2021; 199:4218-4224. [PMID: 33403575 DOI: 10.1007/s12011-020-02560-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 12/06/2022]
Abstract
Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) are widely used in medicine and industrial fields. They have negative effects such as hematoxic, cytotoxic, and genotoxic on animals. This research aimed to investigate the blood physiological and biochemical responses induced by ZnO-NP and CuO-NP individually or in combination in male Swiss albino mice. For purpose, NPs were given to mice with 100 μl of water by oral gavage for 14 days. Three sublethal NP dose groups (1, 5, 25 mg/kg/day) and one control group (only received 100 μl of water) were used in the experiments and serum metabolite (glucose, total protein, total cholesterol, triglyceride, cortisol, blood urea nitrogen, immunoglobulin G, and M), ions (Na, K, Cl, Mg, and Ca), and enzyme (ALT, AST, ALP, and LDH) levels were measured. ZnO-, CuO-, and ZnO+CuO-NPs especially higher doses (5 and 25 mg/kg/day) decreased all serum metabolite (except blood urea nitrogen), ions, and ALP while these nanoparticles increased ALT, AST, LDH, and blood urea nitrogen. These increases/decreases in all serum parameters were generally higher in mice treated with the ZnO+CuO-NP mixture compared to the ZnO-NP and CuO-NP groups alone. The study shows that serum biochemistry profiles can be used as indicators to assess nanoparticle toxicity on lipid, protein, and energy metabolisms, immune and enzyme systems, ion regulation, and tissue functions.
Collapse
Affiliation(s)
- Dicle Kargin
- Department of Nutrition and Dietetics, Institute of Health Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
14
|
Almalki A, Abutaha N, Al-Doaiss AA, Mohammed AZ, Wadaan MA. Cytotoxicity, in vivo toxicity, and chemical composition of the hexane extract of Plectranthus amboinicus (Lour.) Spreng. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48141-48153. [PMID: 33899147 DOI: 10.1007/s11356-021-13796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Cancer is a universal health issue, and many anticancer therapeutic drugs have been isolated from natural products. This study analyzed the cytotoxic and apoptotic activity of Plectranthus amboinicus leaf hexane (PALH) extract in MDA-MB-231 (median inhibitory concentration [IC50] = 39.26 μg/mL) and MCF7 (IC50 = 89.05 μg/mL) breast cancer cell lines. Cells appeared rounded and shrunken, indicating morphological changes due to apoptosis induction. The primary constituent of PALH was phenol, 5-methyl-2-(1-methylethyl) (44%). PALH extract treatment increased the percentage of late apoptotic cells in the MDA-MB231 cell line (58% ± 1.5% at 200 μg/mL) compared to the control group, as evidenced by the activated caspase-3 and caspase-7 identified and captured by fluorescence microscopy. The relative migration rate in MDA-MB-231 cells treated with 10 μg/mL of PALH extract for 48 h was significantly lower compared to the control group. Analysis of acute (2000 mg/kg/BW) and subacute (250 and 500 mg/kg/BW) toxicity of PALH extract in mice showed no mortality or adverse effects in the kidney and liver histology compared to the control group. PALH extract can be considered nontoxic as it does not cause any adverse changes and so can be proposed as a potential breast anticancer agent.
Collapse
Affiliation(s)
- Ahmed Almalki
- National Center for Environmental Technology (NCET) King Abdulaziz City for Science and Technology (KACST), Life Sciences and Environment Research Institute (LSERI), Riyadh, 11442, Saudi Arabia
| | - Nael Abutaha
- Department of Zoology College of Science, Bioproducts Research Chair King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Amin A Al-Doaiss
- Department of Biology College of Science, King Khalid University, Abha, Saudi Arabia
| | - Al-Zahrani Mohammed
- College of Science, Biology Department, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Muhammad A Wadaan
- Department of Zoology College of Science, Bioproducts Research Chair King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|