1
|
Fréville M, Bernardi O, Ramé C, Froment P, Dupont J. Vitamin E alleviates glyphosate-based herbicide-induced progesterone secretion inhibition and oxidative stress increase in chicken primary granulosa cells. Poult Sci 2024; 103:104194. [PMID: 39214058 PMCID: PMC11402039 DOI: 10.1016/j.psj.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Glyphosate-based herbicides (GBH) are the most extensively used herbicides worldwide. Despite a presumed nondangerousness for animals, several studies reported negative effects after a GBH exposure in several animal models including birds, notably on reproductive functions. Several studies concerning the advantages of Vitamin E (VE) for antioxidant activity but also growth and reproduction have been reported in birds. However, it remains unclear whether VE could alleviate the negative effect of GBHs on chicken ovarian cells. Here we exposed chicken primary granulosa cells (GCs) from F1 and F3/4 follicles to growing doses of GBH (0.036, 0.36, 3.6, and 36 gly eq/L), with or without VE supplementation (1 mg/L) and investigated cell viability, proliferation, oxidative stress and steroidogenesis. GBH exposure did not affect F1 and F3 GCs viability but it increased cell proliferation only in F1 GCs and this effect was not altered by VE. In both F1 and F3/4 GCs, GBH exposure increased total oxidant status (TOS), reduced total antioxidant status (TAS) and consequently increased index of oxidative stress (OSI) in dose dependent manner. This latter effect for GBH 36 mg eq gly/L was totally abolished in response to VE. In both F1 and F3/4 GCs, GBH exposure reduced progesterone secretion in a dose dependent manner and this effect with GBH 0.36 and 1.8 mg eq glyphosate/L was alleviated by VE. However, we did not observe any effect of GBH and VE on the gene expression of several components of the steroidogenesis process. Taken together, these results show that GBH may have endocrine disruptor effects, and that these effects might be alleviated by antioxidant VE supplementation.
Collapse
Affiliation(s)
- Mathias Fréville
- CNRS, IFCE, INRAE Animal Physiology Department, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Ophélie Bernardi
- CNRS, IFCE, INRAE Animal Physiology Department, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE Animal Physiology Department, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE Animal Physiology Department, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE Animal Physiology Department, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
2
|
Azzi M, Laib I, Bouafia A, Medila I, Tliba A, Laouini SE, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Antimutagenic and anticoagulant therapeutic effects of Ag/Ag 2O nanoparticles from Olea europaea leaf extract: mitigating metribuzin-induced hepato-and nephrotoxicity. Front Pharmacol 2024; 15:1485525. [PMID: 39508051 PMCID: PMC11538059 DOI: 10.3389/fphar.2024.1485525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Silver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity. Objective This study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization. Methodology Ag/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs' protective effects. Results Physicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels. Conclusion Ag/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
Collapse
Affiliation(s)
- Manel Azzi
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ifriqya Medila
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ali Tliba
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Huda Alsaeedi
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
4
|
Elkattan AN, El-saadany S, Azzazy M, Okda TM, Mamdouh M, Ahmed O, El-Far AH, ElKhayat M, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, El Daous H. Ameliorative effect of licorice extract against the detrimental effect of glyphosate-based pesticide: Toxicity and health. Heliyon 2024; 10:e31623. [PMID: 38831822 PMCID: PMC11145546 DOI: 10.1016/j.heliyon.2024.e31623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
This study sheds the light on the potential of licorice (Glycyrrhiza glabra) root aqueous extract as a cornerstone for mitigating and detoxifying the residues of the widely used agricultural Glyphosate-based pesticides (GBPs). This study examined the GBPs toxic effects on kidney, liver, thyroid functions, and apoptosis using 50 adult male albino rats. All rats were divided into 5 groups, with 10 each. Control: served as untreated rats. GBP: rats were treated with 1 mL glyphosate solution 24 % orally for three weeks. The glyphosate-treated rats were gavaged with licorice root aqueous extractsolution (100, 200, and 300 mg/mLdistilled water, respectively) daily for three weeks. Licorice root aqueous extract solution (300 mg/mL distilled water) yielded notable reductions in liver, kidney enzymes, albumin, and AFP levels within the serum. Immunological tests, including immunohistochemical evaluations of caspase-3 and TNF-α expressions revealed a dose-dependent attenuation of apoptosis and inflammation with licorice intervention. This will provide a valuable perspective for agricultural practices future and paving the way for a more sustainable approach for using GBPs in animal agriculture industries.
Collapse
Affiliation(s)
- Ahmed N. Elkattan
- Institute of Graduate Studies and Environmental Research, DamanhourUniversity, 22511, Damanhour, Egypt
| | - Sayad El-saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Mohamed Azzazy
- Plant Ecology, Institute of Desert Studies, Sadat City University, 32897, El Sadat City, Egypt
| | - Tarek M. Okda
- Biochemistry Department, Faculty of Pharmacy, Damanhur University, 22511, Damanhour, Egypt
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, 13736, Mushtuhur, Toukh, Qalioubia, Egypt
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, 13736, Mushtuhur, Toukh, Qalioubia, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt
| | - Manar ElKhayat
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University, 13736, Mushtuhur, Toukh, Qalioubia, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hala El Daous
- Faculty of Veterinary Medicine, Benha University, 13736, Mushtuhur, Toukh, Qalioubia, Egypt
| |
Collapse
|
5
|
Han K, Gao L, Xu H, Li J, Han L, Shen J, Sun W, Gao Y. Analysis of the association between urinary glyphosate exposure and fatty liver index: a study for US adults. BMC Public Health 2024; 24:703. [PMID: 38443890 PMCID: PMC10916137 DOI: 10.1186/s12889-024-18189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition that often goes unrecognized in the population, and many risk factors for this disease are not well understood. Glyphosate (GLY) is one of the most commonly used herbicides worldwide, and exposure to this chemical in the environment is significant. However, studies exploring the association between GLY exposure and NAFLD remain limited. Therefore, the aim of this study was to assess the association between urinary glyphosate (uGLY) level and fatty liver index (FLI) using data from the National Health and Nutrition Examination Survey (NHANES), which includes uGLY measurements. METHODS The log function of uGLY was converted and expressed as Loge(uGLY) with the constant "e" as the base and used for subsequent analysis. The association between Loge(uGLY) (the independent variable) level and FLI (the dependent variable) was assessed by multiple linear regression analysis. Smoothing curve fitting and a generalized additive model were used to assess if there was a nonlinear association between the independent and the dependent variables. A subgroup analysis was used to find susceptible individuals of the association between the independent variable and the dependent variable. RESULTS A final total of 2238 participants were included in this study. Participants were categorized into two groups (< -1.011 and ≥ -1.011 ng/ml) based on the median value of Loge(uGLY). A total of 1125 participants had Loge(uGLY) levels ≥ -1.011 ng/ml and higher FLI. The result of multiple linear regression analysis showed a positive association between Loge(uGLY) and FLI (Beta coefficient = 2.16, 95% CI: 0.71, 3.61). Smoothing curve fitting and threshold effect analysis indicated a linear association between Loge(uGLY) and FLI [likelihood ratio(LLR) = 0.364]. Subgroup analyses showed that the positive association between Loge(uGLY) and FLI was more pronounced in participants who were female, aged between 40 and 60 years, had borderline diabetes history, and without hypertension history. In addition, participants of races/ethnicities other than (Mexican American, White and Black) were particularly sensitive to the positive association between Loge(uGLY) and FLI. CONCLUSIONS A positive linear association was found between Loge(uGLY) level and FLI. Participants who were female, 40 to 60 years old, and of ethnic backgrounds other than Mexican American, White, and Black, deserve more attention.
Collapse
Affiliation(s)
- Kexing Han
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Long Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Honghai Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Jiali Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Lianxiu Han
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Jiapei Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| |
Collapse
|
6
|
Guler A, Hamurcu Z, Ulutabanca H, Cınar V, Nurdinov N, Erdem S, Ozpolat B. Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells. Mol Neurobiol 2024; 61:1061-1079. [PMID: 37676393 DOI: 10.1007/s12035-023-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.
Collapse
Affiliation(s)
- Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Halil Ulutabanca
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Neurosurgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Venhar Cınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nursultan Nurdinov
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Faculties of Medicine and Dentistry, Ahmet Yesevi University, Turkestan, Kazakhstan
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Methodist Neil Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Guler A, Tufan E, Doganyigit Z, Rassoulzadegan M. Partial changes in apoptotic pathways in hippocampus and hypothalamus of Cc2d1a heterozygous. Metab Brain Dis 2023; 38:531-541. [PMID: 36454503 DOI: 10.1007/s11011-022-01125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Alterations in the apoptosis pathway have been linked to changes in serotonin levels seen in autistic patients. Cc2d1a is a repressor of the HTR1A gene involved in the serotonin pathway. The hippocampus and hypothalamus of Cc2d1a ± mice were analyzed for the expression of apoptosis markers (caspase 3, 8 and 9). Gender differences were observed in the expression levels of the three caspases consistent with some altered activity in the open-field assay. The number of apoptotic cells was significantly increased. We concluded that apoptotic pathways are only partially affected in the pathogenesis of the Cc2d1a heterozygous mouse model. A) Apoptosis is suppressed because the cell does not receive a death signal, or the receptor cannot activate the caspase 8 pathway despite the death signal. B) Since Caspase 8 and Caspase 3 expression is downregulated in our mouse model, the mechanism of apoptosis is not activated.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey.
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.
| | - Halime Dana
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ahsen Guler
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Esra Tufan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Bozok University Medical Faculty, 66100, Yozgat, Turkey
| | - Minoo Rassoulzadegan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
- INSERM-CNRS, IRCAN, Universite Cote d'Azur (UCA), 06107, Nice, France
| |
Collapse
|