1
|
Shamji MH, Temblay JN, Cheng W, Byrne SM, Macfarlane E, Switzer AR, Francisco NDC, Olexandra F, Jacubczik F, Durham SR, Ashton-Rickardt PG. Antiapoptotic serine protease inhibitors contribute to survival of allergenic T H2 cells. J Allergy Clin Immunol 2018; 142:569-581.e5. [PMID: 29106998 PMCID: PMC5920800 DOI: 10.1016/j.jaci.2017.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The mechanisms that regulate maintenance of persistent TH2 cells and potentiate allergic inflammation are not well understood. OBJECTIVE The function of serine protease inhibitor 2A (Spi2A) was studied in mouse TH2 cells, and the serine protease inhibitor B3 (SERPINB3) and SERPINB4 genes were studied in TH2 cells from patients with grass pollen allergy. METHODS Spi2A-deficient TH2 cells were studied in in vitro culture or in vivo after challenge of Spi2A knockout mice with ovalbumin in alum. Expression of SERPINB3 and SERPINB4 mRNA was measured in in vitro-cultured TH2 cells and in ex vivo CD27-CD4+ cells and innate lymphoid cell (ILC) 2 from patients with grass pollen allergy by using quantitative PCR. SERPINB3 and SERPINB4 mRNA levels were knocked down in cultured CD27-CD4+ cells with small hairpin RNA. RESULTS There were lower levels of in vitro-polarized TH2 cells from Spi2A knockout mice (P < .005) and in vivo after ovalbumin challenge (P < .05), higher levels of apoptosis (Annexin V positivity, P < .005), and less lung allergic inflammation (number of lung eosinophils, P < .005). In vitro-polarized TH2 cells from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .05) compared with unpolarized CD4 T cells. CD27-CD4+ from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with CD27+CD4+ cells. ILC2 expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with ILC1. Knockdown of either SERPINB3 or SERPINB4 mRNA (both P < .005) levels resulted in decreased viability of CD27-CD4+ compared with control transduced cells. CONCLUSION The Serpins Spi2A in mice and SERPINB3 and SERPINB4 in allergic patients control the viability of TH2 cells. This provides proof of principle for a therapeutic approach for allergic disease through ablation of allergic memory TH2 cells through SERPINB3 and SERPINB4 mRNA downregulation.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Jeff N Temblay
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Wei Cheng
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Susan M Byrne
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ellen Macfarlane
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Amy R Switzer
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Natalia D C Francisco
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | - Fabian Jacubczik
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
First genomic analysis of dendritic cells from lung and draining lymph nodes in murine asthma. Int J Genomics 2015; 2015:638032. [PMID: 25811019 PMCID: PMC4355561 DOI: 10.1155/2015/638032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023] Open
Abstract
Asthma is the consequence of allergic inflammation in the lung compartments and lung-draining lymph nodes. Dendritic cells initiate and promote T cell response and drive it to immunity or allergy. However, their modes of action during asthma are poorly understood. In this study, an allergic inflammation with ovalbumin was induced in 38 mice versus 42 control animals. After ovalbumin aerosol challenge, conventional dendritic cells (CD11c/MHCII/CD8) were isolated from the lungs and the draining lymph nodes by means of magnetic cell sorting followed by fluorescence-activated cell sorting. A comparative transcriptional analysis was performed using gene arrays. In general, many transcripts are up- and downregulated in the CD8− dendritic cells of the allergic inflamed lung tissue, whereas few genes are regulated in CD8+ dendritic cells. The dendritic cells of the lymph nodes also showed minor transcriptional changes. The data support the relevance of the CD8− conventional dendritic cells but do not exclude distinct functions of the small population of CD8+ dendritic cells, such as cross presentation of external antigen. So far, this is the first approach performing gene arrays in dendritic cells obtained from lung tissue and lung-draining lymph nodes of asthmatic-like mice.
Collapse
|
3
|
Neumann D, Beermann S, Burhenne H, Glage S, Hartwig C, Seifert R. The dual H3/4R antagonist thioperamide does not fully mimic the effects of the 'standard' H4R antagonist JNJ 7777120 in experimental murine asthma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:983-90. [PMID: 23820873 DOI: 10.1007/s00210-013-0898-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Histamine is detected in high concentrations in the airways during an allergic asthma response. In a murine model of allergic asthma, the histamine H4 receptor (H4R)-selective ligand JNJ 7777120 reduces asthma-like symptoms. A sole antagonistic function of JNJ 7777120 at the murine H4R has, however, been questioned in the literature. Therefore, in the present study, we aimed at analyzing the effects of JNJ 7777120 in comparison to that of the H3/4R-selective antagonist thioperamide. Experimental murine asthma was induced by sensitization and provocation of BALB/c mice with ovalbumine (OVA). JNJ 7777120, thioperamide, or JNJ 5207852, an H3R-selective antagonist which was used to dissect H3R- and H4R-mediated activities of thioperamide, were injected subcutaneously during sensitization and effects were analyzed after provocation. Pharmacokinetic analyses revealed shortest t1/2 values in both plasma and lung tissue and lowest maximal concentration in lung tissue for JNJ 7777120 in comparison to thioperamide and JNJ 5207852. Nevertheless, JNJ 7777120 reduced serum titers of allergen-specific (anti-OVA) IgE, inflammatory infiltrations in lung tissue, and eosinophilia in bronchoalveolar lavage fluid. In contrast, thioperamide reduced only eosinophilia in bronchoalveolar lavage fluid, while anti-OVA IgE concentrations and lung infiltrations remained unaffected. JNJ 5207852 had no effect on these parameters. JNJ 7777120 provides beneficial effects in experimental murine asthma, which, however, could only partially be mimicked by thioperamide, despite more favorable pharmacokinetics. Thus, whether these effects of JNJ 7777120 are entirely attributable to an antagonistic activity at the murine H4R or whether an agonistic activity is also involved has to be reconsidered.
Collapse
Affiliation(s)
- Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
4
|
Opposite effects of mepyramine on JNJ 7777120-induced amelioration of experimentally induced asthma in mice in sensitization and provocation. PLoS One 2012; 7:e30285. [PMID: 22272324 PMCID: PMC3260279 DOI: 10.1371/journal.pone.0030285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background Histamine is detected in high concentrations in the airways during an allergic asthma response. In a murine model of allergic asthma, JNJ 7777120, an antagonist at the histamine H4 receptor, reduces asthmatic symptoms, while the histamine H1 receptor-selective antagonist mepyramine is virtually without effect. In the present study, we analyzed the effect of combined antagonism at the histamine H1 and H4 receptors in a murine asthma model in relation to the timing of their application, i.e. sensitization or provocation. Methodology/Principal Findings Asthma was induced in mice by sensitization and provocation with ovalbumin. JNJ 7777120 and/or mepyramine were injected subcutaneously either during sensitization or during provocation, and typical asthma parameters were analyzed. JNJ 7777120, but not mepyramine, reduced serum concentrations of anti-OVA IgE, inflammatory infiltrations in lung tissue, and eosinophilia in bronchoalveolar-lavage (BAL)-fluids independently of the timing of application. Upon application of JNJ 7777120 plus mepyramine in combination during provocation, mepyramine inhibited the effects of JNJ 7777120. In contrast, when applied during sensitization, mepyramine enhanced the disease-ameliorating effects of JNJ 7777120. Conclusions/Significance Our study indicates that both histamine H1 and H4 receptors play important roles in the course of murine experimental asthma. Unexpectedly, the contribution of these receptors to the pathogenesis differs between the two phases, sensitization or provocation. Since in human asthma, repeated contact to the allergen is not only provocation but also a boost of sensitization, a combined pharmacological targeting of histamine H1 and H4 receptors could be taken into consideration as an option for the prevention of asthma and maybe other allergic diseases.
Collapse
|
5
|
Zimmermann AS, Burhenne H, Kaever V, Seifert R, Neumann D. Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflamm Res 2011; 60:1153-9. [PMID: 21912978 DOI: 10.1007/s00011-011-0379-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/13/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Histamine plays a role in several (patho) physiological processes that are commonly studied in mouse models. However, a systematic quantification of histamine and its metabolite N-methylhistamine in mouse organs has not been reported so far. METHODS Balb/c and C57Bl/6 mice were grouped according to their sex and age. Brains, hearts, lungs, livers, kidneys, stomachs, intestines, thymi, spleens, and lymph nodes were excised, weighed, and homogenized. Histamine and N-methylhistamine were quantified simultaneously by a HPLC-mass spectrometry method. RESULTS In all organs analyzed, histamine and N-methylhistamine were detected; however, with quantitative differences. Histamine was present most abundantly in the stomach, lymph nodes, and thymus. The lowest histamine concentrations were detected in brain, liver, lung, and intestine. In most organs, the histamine concentrations increased age-dependently. Substantial concentrations of N-methylhistamine were detected only in lung, intestine and kidney, while in all other organs it was present only in minor quantities. CONCLUSION HPLC-mass spectrometry is a useful method for the highly sensitive and simultaneous detection of histamine and N-methylhistamine. Histamine is present in virtually all organs, not only in those traditionally associated with histamine-mediated disease. Highest concentrations are found in stomach, lymph node, and thymus; medium concentrations in heart, spleen, and kidney; and lowest concentrations detected in intestine, brain, liver, and lung.
Collapse
Affiliation(s)
- Anna Sophie Zimmermann
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
6
|
Wölbeling F, Munder A, Kerber-Momot T, Neumann D, Hennig C, Hansen G, Tümmler B, Baumann U. Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. Immunobiology 2011; 216:901-8. [PMID: 21497410 DOI: 10.1016/j.imbio.2011.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/08/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Following any acute irritation lung function declines rapidly. Reasons for pulmonary deterioration in humans had been attributed to the action of either interleukin-6 or interleukin-8 in the lungs. OBJECTIVES The present study investigates the association between immune response and decline in lung function in a murine bacterial lung infection model. METHODS Upon intratracheal inoculation of C57BL/6J mice with a sublethal dose of Pseudomonas aeruginosa lung function, cytokine, chemokine and cytometry in bronchoalveolar lavage fluid, bacterial counts and lung histology was assessed at 2, 4, 6, 8, 10, 12, 18, 24, 48, 72, 96 and 120 h post inoculation. RESULTS Lung function measured by non-invasive head-out spirometry decreased most strongly between 6 and 10 h post inoculation and required up to 72 h to recover for selected parameters. CFU counts in the lungs peaked at 4h post inoculation with subsequent decline until at 24-48 h post inoculation background levels were reached. Cytokine and chemokine responses could be separated into an early pro-inflammatory phase (2-8h post inoculation; mainly tumor-necrosis factor α (TNFα) and interleukin-1α driven) and a late anti-inflammatory resolution phase (starting at 24h post inoculation; mainly interleukin-10 and interleukin-4 driven). Interleukin-6 levels correlated with the deterioration of lung function. Lung histology showed maximal changes in terms of inflammation and edema between 24 and 48 h post inoculation. CONCLUSIONS In summary, elevated interleukin-6, high local neutrophil counts and lung edema were found to be the most characteristic signs of the transient period of deterioration of lung function.
Collapse
Affiliation(s)
- Florian Wölbeling
- Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hartwig C, Mazzega M, Constabel H, Krishnaswamy JK, Gessner JE, Braun A, Tschernig T, Behrens GMN. Fcgamma receptor-mediated antigen uptake by lung DC contributes to allergic airway hyper-responsiveness and inflammation. Eur J Immunol 2010; 40:1284-95. [PMID: 20148421 DOI: 10.1002/eji.200939900] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During asthma, lung DC capture and process antigens to initiate and maintain allergic Th2 cell responses to inhaled allergens. The aim of the study was to investigate whether allergen-specific IgG, generated during sensitization, can potentiate the acute airway inflammation through Fcgamma receptor (FcgammaR)-mediated antigen uptake and enhance antigen presentation resulting in augmented T-cell proliferation. We examined the impact of antigen presentation and T-cell stimulation on allergic airway hyperresponsiveness and inflammation using transgenic and gene-deficient mice. Both airway inflammation and eosinophilia in bronchoalveolar lavage fluid were markedly reduced in sensitized and challenged FcgammaR-deficient mice. Lung DC of WT, but not FcgammaR-deficient mice, induced increased antigen-specific CD4+ T-cell proliferation when pulsed with anti-OVA IgG immune complexes. Intranasal application of anti-OVA IgG immune complexes resulted in enhanced airway inflammation, eosinophilia and Th2 cytokine release, mediated through enhanced antigen-specific T-cell proliferation in vivo. Finally, antigen-specific IgG in the serum of sensitized mice led to a significant increase of antigen-specific CD4+ T-cell proliferation induced by WT, but not FcgammaR-deficient, lung DC. We conclude that FcgammaR-mediated enhanced antigen presentation and T-cell stimulation by lung DC has a significant impact on inflammatory responses following allergen challenge in asthma.
Collapse
Affiliation(s)
- Christina Hartwig
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|