1
|
Pan Y, Yang H, Chen T, Jin J, Ruan L, Hu L, Chen L. Extracellular vesicles metabolic changes reveals plasma signature in stage-dependent diabetic kidney disease. Ren Fail 2022; 44:1840-1849. [DOI: 10.1080/0886022x.2022.2118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Youjin Pan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Qingdao, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan City, P. R. China
| | - Hui Yang
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tucan Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jian Jin
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Ruan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Hu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Qingdao, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan City, P. R. China
| |
Collapse
|
2
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
3
|
Luo Z, Liu H, Yu Y, Gropler RJ, Klein RS, Tu Z. Synthesis and evaluation of highly selective quinazoline-2,4-dione ligands for sphingosine-1-phosphate receptor 2. RSC Med Chem 2022; 13:202-207. [PMID: 35308025 PMCID: PMC8864552 DOI: 10.1039/d1md00357g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
A series of twenty-nine new quinazoline-2,4-dione compounds were synthesized and their IC50 values for binding toward sphingosine-1-phosphate receptor 2 (S1PR2) were determined using a [32P]S1P binding assay. Seven compounds 2a, 2g, 2h, 2i, 2j, 2k, and 5h exhibit high S1PR2 binding potencies (IC50 values < 50 nM) and four of these new compounds 2g, 2i, 2j, and 2k have IC50 values (<10 nM) of 6.3, 5.7, 4.8, and 2.6 nM, and are highly selective for S1PR2 over other S1PR subtypes, S1PR1, 3, 4, and 5. Compounds 2a and 2i were chosen for C-11 radiosynthesis through O-[11C]methylation of precursors 13 and 2k with good radiochemical yields (35-40%), high chemical and radiochemical purity (>98%), and high molar activity (153-222 GBq μmol-1, at the end of bombardment). [11C]2a and [11C]2i were further evaluated by the ex vivo biodistribution study. The results showed that both tracers have low brain uptake, preventing their potential for neuroimaging application. Further explorations of this class of S1PR2 PET tracers in peripheral tissue diseases are underway.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
- School of Biomedical Engineering, ShanghaiTech University Shanghai 201210 China
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine St. Louis MO 63110 USA
- Department of Neuroscience, Washington University School of Medicine St. Louis MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
4
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:655639. [PMID: 34222276 PMCID: PMC8249723 DOI: 10.3389/fmed.2021.655639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of diabetes is consistently rising worldwide. Diabetic nephropathy is a leading cause of chronic renal failure. The present study aimed to explore the crosstalk among the different cell types inside diabetic glomeruli, including glomerular endothelial cells, mesangial cells, podocytes, and immune cells, by analyzing an online single-cell RNA profile (GSE131882) of patients with diabetic nephropathy. Differentially expressed genes in the glomeruli were processed by gene enrichment and protein-protein interactions analysis. Glomerular endothelial cells, as well as podocytes, play a critical role in diabetic nephropathy. A subgroup of glomerular endothelial cells possesses characteristic angiogenesis genes, indicating that angiogenesis takes place in the progress of diabetic nephropathy. Immune cells such as macrophages, T lymphocytes, B lymphocytes, and plasma cells also contribute to the disease progression. By using iTALK, the present study reports complicated cellular crosstalk inside glomeruli. Dysfunction of glomerular endothelial cells and immature angiogenesis result from the activation of both paracrine and autocrine signals. The present study reinforces the importance of glomerular endothelial cells in the development of diabetic nephropathy. The exploration of the signaling pathways involved in aberrant angiogenesis reported in the present study shed light on potential therapeutic target(s) for diabetic nephropathy.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Nicholson RJ, Pezzolesi MG, Summers SA. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 11:622692. [PMID: 33584550 PMCID: PMC7876379 DOI: 10.3389/fendo.2020.622692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes mellitus that increases one's risk of developing renal failure. Progress toward development of better DKD therapeutics is limited by an incomplete understanding of forces driving and connecting the various features of DKD, which include renal steatosis, fibrosis, and microvascular dysfunction. Herein we review the literature supporting roles for bioactive ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD, renal ceramides are elevated, and genetic and pharmacological ceramide-lowering interventions improve kidney function and ameliorate DKD histopathology. In humans, circulating sphingolipid profiles distinguish human DKD patients from diabetic controls. These studies highlight the potential for ceramide to serve as a central and therapeutically tractable lipid mediator of DKD.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Marcus G. Pezzolesi
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
8
|
Christoffersen C. Apolipoprotein M-A Marker or an Active Player in Type II Diabetes? Front Endocrinol (Lausanne) 2021; 12:665393. [PMID: 34093440 PMCID: PMC8176018 DOI: 10.3389/fendo.2021.665393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Apolipoprotein M (apoM) is a member of the lipocalin superfamily and an important carrier of the small bioactive lipid sphingosine-1-phosphate (S1P). The apoM/S1P complex is attached to all lipoproteins, but exhibits a significant preference for high-density lipoproteins. Although apoM, S1P, and the apoM/S1P complex have been discovered more than a decade earlier, the overall function of the apoM/S1P complex remains controversial. Evidence suggests that the complex plays a role in inflammation and cholesterol metabolism and is important for maintaining a healthy endothelial barrier, regulating the turnover of triglycerides from lipoproteins, and reducing cholesterol accumulation in vessel walls. Recent studies have also addressed the role of apoM and S1P in the development of diabetes and obesity. However, limited evidence is available, and the data published so far deviates. This review discusses the specific elements indicative of the protective or harmful effects of apoM, S1P, and the apoM/S1P complex on type 2 diabetes development. Since drugs targeting the S1P system and its receptors are available and could be potentially used for treating diabetes, this research topic is a pertinent one.
Collapse
Affiliation(s)
- Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Christina Christoffersen,
| |
Collapse
|
9
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
10
|
Gong W, Li J, Chen W, Feng F, Deng Y. Resveratrol Inhibits Lipopolysaccharide-Induced Extracellular Matrix Accumulation and Inflammation in Rat Glomerular Mesangial Cells by SphK1/S1P2/NF-κB Pathway. Diabetes Metab Syndr Obes 2020; 13:4495-4505. [PMID: 33262625 PMCID: PMC7686914 DOI: 10.2147/dmso.s278267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Chronic inflammation plays a key role in the pathogenesis of various diseases such as diabetic nephropathy (DN). Resveratrol (RSV), a natural polyphenol, has been proven to have renoprotective effects. In this study, we used a lipopolysaccharide (LPS)-induced rat glomerular mesangial cells (RMCs) model, to elucidate the renoprotective effect of RSV on sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1P2)/NF-κB activation and the expression of downstream inflammatory mediators, such as intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and fibronectin (FN) protein expression in RMCs. METHODS Cell proliferation was tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT). The protein levels of FN, ICAM-1, iNOS, SphK1, S1P2 and NF-κB p65 in RMCs were detected by Western blot. The DNA-binding activity of NF-κB was detected by electrophoretic mobility shift assay (EMSA). SphK1 activity and S1P content were measured by using sphingosine kinase activity assay kit and ELISA assay, respectively. RESULTS We first found that LPS could stimulate SphK1/S1P axis activation, whereas this occurrence was significantly blocked by RSV pretreatment. RSV obviously repressed LPS-induced upregulated expression of fibronectin (FN), intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) in RMCs. Moreover, RSV markedly reduced SphK1 activity and its protein expression, and attenuated S1P content in LPS-induced RMCs. Furthermore, RSV could block LPS-induced upregulation of NF-κB p65 and DNA-binding activity of NF-κB. And this phenomenon was notably attenuated by SphK1 inhibitor and S1P2 inhibitor. CONCLUSION RSV inhibited LPS-induced RMCs' proliferation and inflammation and FN expression by SphK1/S1P2/NF-κB pathway, suggesting that RSV may be independent of its hypoglycemic effect on preventing or delaying the development of mesangial cell fibrosis.
Collapse
Affiliation(s)
- Wenyan Gong
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou310000, People’s Republic of China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou510317, People’s Republic of China
| | - Wenying Chen
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Fuzhen Feng
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Yanhui Deng
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou510630, People’s Republic of China
| |
Collapse
|
11
|
Mitrofanova A, Drexler Y, Merscher S, Fornoni A. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. JOURNAL OF CELLULAR SIGNALING 2020; 1:56-69. [PMID: 32914148 PMCID: PMC7480905 DOI: 10.33696/signaling.1.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, including chronic kidney disease. The kidney is a very sensitive organ to alterations in sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular diseases with a special focus on podocytes, a key cellular component of the glomerular filtration barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of podocyte injury in kidney disease.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Luo Z, Liang Q, Liu H, Sumit J, Jiang H, Klein RS, Tu Z. Synthesis and characterization of [ 125I]TZ6544, a promising radioligand for investigating sphingosine-1-phosphate receptor 2. Nucl Med Biol 2020; 88-89:52-61. [PMID: 32791475 DOI: 10.1016/j.nucmedbio.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/14/2020] [Accepted: 07/26/2020] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Sphingosine-1-phosphate receptor 2 (S1PR2) activation exerts a critical role in biological abnormalities and diseases. A suitable radiotracer will advance our understanding of S1PR2 pathophysiology of diseases. The objective of this study is to evaluate the potential of iodine-125 labeled [125I]TZ6544 to be used for screening new compounds binding toward S1PR2, and assessing the changes of S1PR2 expression in the kidney of streptozotocin-induced diabetic rats. METHODS [125I]TZ6544 was synthesized from borate precursor by copper (II)-catalyzed iodization reaction with [125I]NaI. [125I]TZ6544 was characterized using human recombinant S1PR2 cell membrane and biodistribution studies of [125]TZ6544 were performed on Wistar rats that were euthanized at 5 and 30 min post-injection. A rat model of diabetes was induced by IV injection of streptozotocin (55 mg/kg). In vitro autoradiography studies, immunostaining, and enzyme-linked immunosorbent assay (ELISA) analysis were performed in both diabetic and control rats. RESULTS Radiosynthesis of [125I]TZ6544 was achieved successfully with good radiochemical yields of ~47% and high radiochemical purity of >99%. [125I]TZ6544 is a potent ligand in vitro for S1PR2 with Kd value of 4.31 nM. [125I]TZ6544 and [32P]-labeled endogenous S1P provided comparable IC50 values in radioactive competitive binding assays against known S1PR2 ligands. Compared to control, the kidney of diabetic rats had increased uptake of [125I]TZ6544, which could be reduced by a S1PR2 antagonist, JTE-013. Immunostaining and ELISA analysis confirmed that the diabetic rat had increased S1PR2 expression in the kidney. CONCLUSIONS [125I]TZ6544 was synthesized successfully in high yields, and in vitro evaluation suggested [125I]TZ6544 has high potential to be used for screening new S1PR2 compounds and investigating the pathophysiology of S1PR2 functions. The availability of [125I]TZ6544 may facilitate the development of therapeutics and imaging agents targeting S1PR2. ADVANCES IN KNOWLEDGE: [125I]TZ6544 showed increased expression of S1PR2 in diabetic rat kidney and can be used to determine binding potency of S1PR2 compounds.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshi Sumit
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Departments of Medicine, Neuroscience, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Deng Y, Gong W, Li Q, Wu X, Wu L, Zheng X, Chen W, Huang H. Resveratrol inhibits high glucose-induced activation of AP-1 and NF-κB via SphK1/S1P2 pathway to attenuate mesangial cells proliferation and inflammation. J Funct Foods 2019; 55:86-94. [DOI: 10.1016/j.jff.2019.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
Kurano M, Tsuneyama K, Morimoto Y, Nishikawa M, Yatomi Y. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice. FASEB J 2019; 33:5181-5195. [PMID: 30629456 DOI: 10.1096/fj.201801748r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because the association between sphingosine 1-phosphate (S1P)/apolipoprotein M (ApoM) and chronic kidney diseases has not been established, we investigated the involvement of S1P/ApoM in the phenotypes of IgA nephropathy in hyper-IgA (HIGA) mice. The overexpression of ApoM in adenoviral gene transfer ameliorated the phenotypes of IgA nephropathy in HIGA mice, whereas the knockdown of ApoM with siRNA caused deterioration. When ApoM-overexpressing HIGA mice were treated with VPC23019, an antagonist against S1P receptor 1 (S1P1) and 3 (S1P3), we observed that the protective effects of ApoM were reversed, whereas JTE013, an antagonist against S1P2, did not inhibit the effects. We also found that S1P bound to albumin accelerated the proliferation of MES13 cells and the fibrotic changes of HK2 cells, which were inhibited by JTE013, whereas S1P bound to ApoM suppressed these changes, which were inhibited by VPC23019. These results suggest that S1P bound to ApoM possesses properties protective against the phenotypes of IgA nephropathy through S1P1 and S1P3, whereas S1P bound to albumin exerts deteriorating effects through S1P2. ApoM may be useful as a therapeutic target to treat or retard the progression of IgA nephropathy.-Kurano, M., Tsuneyama, K., Morimoto, Y., Nishikawa, M., Yatomi, Y. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| |
Collapse
|
15
|
Ahn JH, Kim TJ, Lee JH, Choi JH. Mutant p53 stimulates cell invasion through an interaction with Rad21 in human ovarian cancer cells. Sci Rep 2017; 7:9076. [PMID: 28831167 PMCID: PMC5567302 DOI: 10.1038/s41598-017-08880-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Missense mutations of TP53 are extremely common, and mutant p53 accumulation and gain-of-function play crucial roles in human ovarian cancer. Here, we investigated the role of mutant p53 in cell migration and invasion as well as its underlying molecular mechanisms in human ovarian cancer cells. Overexpression of mutant p53 significantly increased migration and invasion in p53-null SKOV3 cells. In contrast, knockdown of mutant p53 significantly compromised mutant p53-induced cell migration and invasion. Microarray analysis revealed that several migration/invasion-related genes, including S1PR1 (Sphingosine-1-phosphate receptor 1) and THBS1 (Thrombospodin 1), were significantly upregulated in SKOV3 cells that overexpressed mutant p53-R248 (SKOV3R248). We found that Rad21 is involved in the transcriptional regulation of the migration/invasion-related genes induced by mutant p53-R248. Knockdown of Rad21 significantly attenuated the mutant p53-R248-induced invasion and the expressions of S1PR1 and THBS1. Moreover, co-immunoprecipitation and chromatin immunoprecipitation assays revealed that mutant p53 interacts with Rad21 and binds to the Rad21-binding elements in the S1PR1 and THBS1 genes. Finally, downregulation of S1PR1 significantly attenuated the invasion driven by mutant p53-R248. These novel findings reveal that mutant p53-R248 maintains gain-of-function activity to stimulate cell invasion and induces the related gene expressions through an interaction with Rad21 in human ovarian cancer cells.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, South Korea.,Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, 04619, South Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, 04619, South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, South Korea. .,Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
16
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
17
|
Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). Int J Mol Med 2017; 39:243-252. [PMID: 28075451 PMCID: PMC5358714 DOI: 10.3892/ijmm.2017.2855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinase (SphK) is an important signalling enzyme that catalyses the phosphorylation of sphingosine (Sph) to form sphingosine‑1‑phosphate (S1P). The multifunctional lipid, S1P binds to a family of five G protein-coupled receptors (GPCRs). As an intracellular second messenger, S1P activates key signalling cascades responsible for the maintenance of sphingolipid metabolism, and has been implicated in the progression of cancer, and the development of other inflammatory and metabolic diseases. SphK and S1P are critical molecules involved in the regulation of various cellular metabolic processes, such as cell proliferation, survival, apoptosis, adhesion and migration. There is strong evidence supporting the critical roles of SphK and S1P in the progression of diabetes mellitus, including insulin sensitivity and insulin secretion, pancreatic β‑cell apoptosis, and the development of diabetic inflammatory state. In this review, we summarise the current state of knowledge for SphK/S1P signalling effects, associated with the development of insulin resistance, pancreatic β‑cell death and the vascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2050
- Sydney Medical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Advanced Medical and Dental Institute, University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031
| | - Olga A. Sukocheva
- School of Social Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
18
|
Ding HH, Ni WJ, Tang LQ, Wei W. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy. J Recept Signal Transduct Res 2015; 36:411-421. [PMID: 26675443 DOI: 10.3109/10799893.2015.1122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.
Collapse
Affiliation(s)
- Hai-Hua Ding
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China.,b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei-Jian Ni
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Li-Qin Tang
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei Wei
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| |
Collapse
|
19
|
Chen S, Yang J, Xiang H, Chen W, Zhong H, Yang G, Fang T, Deng H, Yuan H, Chen AF, Lu H. Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Mol Med 2015; 35:1103-8. [PMID: 25673082 DOI: 10.3892/ijmm.2015.2100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
The hyperglycemia-induced production of oxidative stress results in endothelial cell dysfunction. Previous studies have demonstrated that sphingosine-1-phosphate (S1P) regulates an array of biological activities in endothelial cells mediated by sphingosine-1-phosphate receptors (S1PRs). However, the role of S1PR-mediated signaling pathways in hyperglycemia-induced endothelial cell dysfunction is currently unknown. In the present study, we aimed to explore the role of S1PRs in endothelial cell dysfunction. For this purpose, hyperglycemia-induced oxidative stress was examined using human umbilical vein endothelial cells (HUVECs) cultured with either normal (5.6 mM) or high (25 mM) levels of glucose. The levels of reactive oxygen species (ROS) and nitric oxide (NO) were determined by flow cytometric (FCM) analysis and nitrate reductase, respectively. Endothelial morphogenesis assay was performed in three-dimensional Matrigel. The mRNA and protein expression levels of S1PRs in the HUVECs were determined by RT-qPCR and western blot analysis, respectively. In addition, ROS, NO and endothelial morphogenesis assays were conducted using the high glucose-treated endothelial cells transfected with adenoviral vector expressing exogenous S1PR1 gene (pAd-S1PR1) or with adenoviral vector expressing S1PR2-specific shRNA (pAd-shRNA-S1PR2). The expression levels of S1PR1 and S1PR2 in the endothelial cells treated with high levels of glucose decreased and increased, respectively. However, the effects of high levels of glucose on S1PR3 were minimal. In addition, high levels of glucose enhanced ROS generation and markedly reduced NO generation and morphogenetic responses. Nevertheless, all the aforementioned changes were completely reversed by transfection with pAd-S1PR1 or pAd-shRNA-S1PR2, which increased S1PR1 and decreased S1PR2 expression, respectively. It can thus be concluded that S1PR1 and S1PR2 play crucial roles in hyperglycemia-induced endothelial cell dysfunction.
Collapse
Affiliation(s)
- Shuhua Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Yang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hua Zhong
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guoping Yang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Fang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Deng
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Yuan
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Alex F Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
20
|
Guan Z, Singletary ST, Cook AK, Hobbs JL, Pollock JS, Inscho EW. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol 2014; 25:1774-85. [PMID: 24578134 DOI: 10.1681/asn.2013060656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001-10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions.
Collapse
Affiliation(s)
| | | | | | - Janet L Hobbs
- Experimental Medicine, Georgia Regents University, Augusta, Georgia
| | | | | |
Collapse
|
21
|
Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 2014; 18:844-52. [PMID: 24463961 DOI: 10.1007/s10157-014-0933-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is reportedly involved in the pathogenesis of kidney disease; however, the precise role played by S1P in renal disorders still remains controversial. Rho kinase plays an important role in the development of diabetic nephropathy by inducing glomerular and tubulointerstitial fibrosis. Rho kinase is known to be stimulated by S1P through its specific receptor, S1P2 receptor (S1P2). Hence, we investigated whether S1P-S1P2 signaling plays a role in the epithelial-mesenchymal transition (EMT) through Rho kinase activation in renal tubules. METHOD To characterize the distribution of the S1P2, an immunohistochemical examination of the receptor was performed in the kidney of the non-diabetic and diabetic mice. Next, we examined Rho kinase activity as well as E-cadherin and alpha-smooth muscle actin (α-SMA) expression by real-time RT-PCR and western blotting in cultured rat tubular epithelial cells under S1P stimulation with and without a Rho kinase inhibitor and an S1P2 blocker. In addition, the distribution of E-cadherin and α-SMA was examined by immunocytochemistry. RESULT S1P2 was expressed mainly in the renal tubules; expression was intense in collecting ducts and distal tubules compared to other segments. S1P induced activation of Rho kinase through the S1P2, which changed the distribution of E-cadherin and increased the expression of α-SMA. CONCLUSION Rho kinase activation by S1P via S1P2 initiated EMT changes in cultured renal tubular cells. Our results suggest that excessive stimulation of S1P might facilitate renal fibrosis via activation of Rho kinase through S1P2.
Collapse
|
22
|
Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol (Lausanne) 2014; 5:127. [PMID: 25126087 PMCID: PMC4115628 DOI: 10.3389/fendo.2014.00127] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay-Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann-Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| |
Collapse
|
23
|
Schwalm S, Pfeilschifter J, Huwiler A. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic Clin Pharmacol Toxicol 2013; 114:44-9. [PMID: 23789924 DOI: 10.1111/bcpt.12103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/16/2013] [Indexed: 12/11/2022]
Abstract
Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität, Frankfurt am Main, Germany; Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
24
|
Huang K, Liu W, Lan T, Xie X, Peng J, Huang J, Wang S, Shen X, Liu P, Huang H. Berberine reduces fibronectin expression by suppressing the S1P-S1P2 receptor pathway in experimental diabetic nephropathy models. PLoS One 2012; 7:e43874. [PMID: 22937115 PMCID: PMC3427312 DOI: 10.1371/journal.pone.0043874] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
The accumulation of glomerular extracellular matrix (ECM) is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN) is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1)-sphingosine 1- phosphate (S1P) signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs) under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR) treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG) and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation.
Collapse
Affiliation(s)
- Kaipeng Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weihua Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Tian Lan
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi Xie
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Peng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaogui Wang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Shen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Liu W, Lan T, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P, Huang H. S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res 2012; 318:936-43. [PMID: 22406263 DOI: 10.1016/j.yexcr.2012.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Accumulation of extracellular matrix including fibronectin in mesangium is one of the major pathologic characteristics in diabetic nephropathy. In the current study, we explored role of sphingosine-1-phosphate (S1P) receptor in fibronectin expression and underlying molecular mechanism. Among five S1P receptors the mRNA level of S1P2 receptor was the most abundant in kidney of diabetic rats and mesangial cells under high glucose condition. S1P augmentation of fibronectin was significantly inhibited by S1P2 receptor antagonist JTE-013 and S1P2-siRNA. S1P-stimulated fibronectin expression was remarkably blocked by ERK1/2 inhibitor PD98059 and p38MAPK inhibitor SB203580. Phospho-ERK1/2 and phospho-p38MAPK level induced by S1P were markedly abrogated by JTE-013 and S1P2-siRNA. In conclusion, S1P2 receptor was significantly up-regulated under diabetic condition. S1P2 receptor mediated fibronectin expression through the activation of S1P-S1P2-MAPK (ERK1/2 and p38MAPK) axis in mesangial cells under high glucose condition, suggesting that it might be a potential therapeutic target for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Weihua Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bautista-Pérez R, Arellano A, Franco M, Osorio H, Coronel I. Sphingosine-1-phosphate induced vasoconstriction is increased in the isolated perfused kidneys of diabetic rats. Diabetes Res Clin Pract 2011; 94:e8-11. [PMID: 21775010 DOI: 10.1016/j.diabres.2011.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/09/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022]
Abstract
We observed that in isolated perfused rat kidneys, sphingosine-1-phosphate produces S1P(2) receptor-mediated vasoconstriction, and this response increased in kidneys of diabetic rats. These results suggest that the antagonists of S1P(2) receptor may have potential as drugs to control diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Rocio Bautista-Pérez
- Department of Nephrology, Instituto Nacional de Cardiologia Ignacio Chavez, México City, Mexico.
| | | | | | | | | |
Collapse
|
27
|
Aarthi JJ, Darendeliler MA, Pushparaj PN. Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 2011; 90:841-54. [PMID: 21248363 DOI: 10.1177/0022034510389178] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
Collapse
Affiliation(s)
- J J Aarthi
- Department of Orthodontics, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, NSW 2010, Australia
| | | | | |
Collapse
|