1
|
Maronpot R, Ramot Y, Nyska A, Sproul C, Moore R, Bolon B, Hayashi SM. Oral chronic toxicity and carcinogenicity study of alpha-glycosyl isoquercitrin (AGIQ) in Sprague Dawley rats. Regul Toxicol Pharmacol 2023; 140:105343. [PMID: 36773715 DOI: 10.1016/j.yrtph.2023.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
alpha-Glycosyl isoquercitrin (AGIQ) is a flavonoid that possesses antioxidant and tumor suppressive capabilities and is marketed as a food additive in Japan. The aim of this study was to assess the potential for oral chronic toxicity and carcinogenicity of AGIQ in male and female Sprague Dawley rats following up to 5.0% dietary exposure. In the chronic toxicity study, rats were exposed to AGIQ or vehicle for one year with a 6-month interim termination point; for the carcinogenicity study, rats were treated for 24 months. No signs of AGIQ-related toxicity clinically or histologically were observed for up to one year except for yellow discoloration of bone. In the carcinogenicity study, a statistically significant increase in the incidence of malignant glioma of the brain or spinal cord was observed in female rats exposed to 5.0% AGIQ compared to those exposed to control feed. A Scientific Advisory Panel of experienced neuropathologists reviewed the gliomas (routine stains and glial cell markers) and concluded that the gliomas were a rare, spontaneous, rat-specific neoplasm: malignant microglial tumor. The lesions could not definitively be attributed to AGIQ exposure and have limited implications with respect to predicting human cancer risk.
Collapse
Affiliation(s)
- Robert Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Yuval Ramot
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel.
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Tel Aviv and Tel Aviv University, Israel.
| | - Christopher Sproul
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | - Rebecca Moore
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | | | - Shim-Mo Hayashi
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
2
|
Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023; 28:molecules28041533. [PMID: 36838522 PMCID: PMC9966428 DOI: 10.3390/molecules28041533] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The Vaccinium L. (Ericaceae) genus consists of a globally widespread and diverse genus of around 4250 species, of which the most valuable is the Vaccinioidae subfamily. The current review focuses on the distribution, history, bioactive compounds, and health-related effects of three species: cranberry, blueberry, and huckleberry. Several studies highlight that the consumption of Vaccinium spp. presents numerous beneficial health-related outcomes, including antioxidant, antimicrobial, anti-inflammatory, and protective effects against diabetes, obesity, cancer, neurodegenerative diseases and cardiovascular disorders. These plants' prevalence and commercial value have enhanced in the past several years; thus, the generated by-products have also increased. Consequently, the identified phenolic compounds found in the discarded leaves of these plants are also presented, and their impact on health and economic value is discussed. The main bioactive compounds identified in this genus belong to anthocyanins (cyanidin, malvidin, and delphinidin), flavonoids (quercetin, isoquercetin, and astragalin), phenolic acids (gallic, p-Coumaric, cinnamic, syringic, ferulic, and caffeic acids), and iridoids.
Collapse
|
3
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
4
|
Vaneková Z, Rollinger JM. Bilberries: Curative and Miraculous - A Review on Bioactive Constituents and Clinical Research. Front Pharmacol 2022; 13:909914. [PMID: 35847049 PMCID: PMC9277355 DOI: 10.3389/fphar.2022.909914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilberry (Vaccinium myrtillus L.) fruits are an important part of local diets in many countries and are used as a medicinal herb to treat various disorders. Extracts from fruits are often a part of eye health-promoting supplements, whereas extracts from leaves are advertised for type 2 diabetes mellitus and glycemic control. This review provides an overview of the current knowledge of the phytochemical contents of bilberry fruits and leaves and their bioactivities, critically summarizes origins of the health claims and the outcome of clinical trials, with special attention towards those published in the past 10 years. Overall, the three most referenced indications, which are type 2 diabetes mellitus, vision disorders and circulatory diseases, all include contradictory results with no clear conclusion as to the benefits and recommended dosages. Moreover, the indications for vision disorders and diabetes originate from unproven or false claims that have been repeated in research since the 20th century without consistent fact-checking. Beneficial clinical results have been attested for the treatment of dyslipidemia and chronic inflammatory disorders when applied as dietary supplementation of fresh bilberries or as anthocyanin-rich bilberry fruit extracts. However, there is a general lack of double-blinded controlled research with larger sample sizes.
Collapse
Affiliation(s)
- Zuzana Vaneková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
6
|
Tosoc JPS, Nuñeza OM, Sudha T, Darwish NHE, Mousa SA. Anticancer Effects of the Corchorus olitorius Aqueous Extract and Its Bioactive Compounds on Human Cancer Cell Lines. Molecules 2021; 26:molecules26196033. [PMID: 34641577 PMCID: PMC8513029 DOI: 10.3390/molecules26196033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Corchorus olitorius is a common, leafy vegetable locally known as “Saluyot” in the Philippines. Several studies have reported on its various pharmacological properties, such as antioxidant, anti-inflammatory, analgesic, and anticancer properties. However, little is known about its effects on angiogenesis. This study aimed to evaluate the anticancer properties, such as the antiproliferative, anti-angiogenic, and antitumor activities, of the C. olitorius aqueous extract (CO) and its bioactive compounds, chlorogenic acid (CGA) and isoquercetin (IQ), against human melanoma (A-375), gastric cancer (AGS), and pancreatic cancer (SUIT-2), using in vitro and in ovo biological assays. The detection and quantification of CGA and IQ in CO were achieved using LC-MS/MS analysis. The antiproliferative, anti-angiogenic, and antitumor activities of CO, CGA, and IQ against A-375, AGS, and SUIT-2 cancer cell lines were evaluated using MTT and CAM assays. CGA and IQ were confirmed to be present in CO. CO, CGA, and IQ significantly inhibited the proliferation of A-375, AGS, and SUIT-2 cancer cells in a dose-dependent manner after 48 h of treatment. Tumor angiogenesis (hemoglobin levels) of A-375 and AGS tumors was significantly inhibited by CO, CGA, IQ, and a CGA–IQ combination. The growth of implanted A-375 and AGS tumors was significantly reduced by CO, CGA, IQ, and a CGA–IQ combination, as measured in tumor weight. Our investigation provides new evidence to show that CO has promising anticancer effects on various types of human cancer cells. CO and its compounds are potential nutraceutical products that could be used for cancer treatment.
Collapse
Affiliation(s)
- John Paul Sese Tosoc
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines;
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (N.H.E.D.); (S.A.M.)
- Correspondence: ; Tel.: +63-083-520-7969
| | - Olga Macas Nuñeza
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (N.H.E.D.); (S.A.M.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (N.H.E.D.); (S.A.M.)
- Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (N.H.E.D.); (S.A.M.)
| |
Collapse
|
7
|
Mahapatra D, Donahue DA, Nyska A, Hayashi SM, Koyanagi M, Maronpot RR. alpha-Glycosyl Isoquercitrin (AGIQ) and its lack of carcinogenicity in rasH2 mice. Food Chem Toxicol 2021; 151:112103. [PMID: 33771599 DOI: 10.1016/j.fct.2021.112103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
alpha-Glycosyl Isoquercitrin (AGIQ), is used in Japan as a food additive and was granted generally recognized as safe (GRAS) status in 2005 (FEMA) and 2007 (FDA). The safety and toxicity information for AGIQ is sparse and therefore, the carcinogenicity potential of AGIQ was examined in the CByB6F1-Tg(HRAS)2Jic (rasH2) model. One hundred female and male rasH2 mice, each, were allocated to one of four designated dose groups; 0 (control)%, 1.5%, 3.0% or 5.0% AGIQ. Animals were administered the diets for six months and an additional 10 females and 10 males, each, were administered a positive control, N-methyl-N-nitrosourea (MNU). Body weights and clinical observations were collected. A full screen necropsy, organ weights, clinical chemistry, urinalysis and histopathology were performed. The positive control animals elicited appropriate responses specific to this strain (rasH2) of mice. There were statistically significant sporadic non-dose-dependent changes in clinical chemistries without corresponding pathological correlation. No microscopic AGIQ-related findings were noted; the range of pathology observations were all considered background findings, either specific to rasH2 mice or common to inbred strains of mice. Therefore, under the study conditions, the no-observed-adverse-effect level (NOAEL) was determined to be more than 5.0% (7215.4 mg/kg BW/day in male mice and 14685.5 mg/kg/day in female mice).
Collapse
Affiliation(s)
| | - Douglas A Donahue
- Integrated Laboratory Systems, LLC., Research Triangle Park, NC, USA
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - Shim-Mo Hayashi
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | | | | |
Collapse
|
8
|
Tanaka T, Masubuchi Y, Okada R, Nakajima K, Nakamura K, Masuda S, Nakahara J, Maronpot RR, Yoshida T, Koyanagi M, Hayashi SM, Shibutani M. Ameliorating effect of postweaning exposure to antioxidant on disruption of hippocampal neurogenesis induced by developmental hypothyroidism in rats. J Toxicol Sci 2019; 44:357-372. [PMID: 31068541 DOI: 10.2131/jts.44.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Developmental hypothyroidism as a model of autism spectrum disorders disrupts hippocampal neurogenesis through the adult stage. The present study investigated the ameliorating effect of postweaning exposure to antioxidant on the hypothyroidism-induced disruptive neurogenesis. Mated female Sprague-Dawley rats were treated with 0 or 10 ppm 6-propyl-2-thiouracil (PTU) as an anti-thyroid agent in drinking water from gestational day 6 to postnatal day (PND) 21 on weaning. PTU-exposed male offspring were fed either basal diet, diet containing α-glycosyl isoquercitrin (AGIQ) at 5,000 ppm or α-lipoic acid (ALA) at 1,000 ppm as an antioxidant from PND 21 to PND 77. PTU-exposure decreased DCX+ and NeuN+ granule cell lineage subpopulations, synaptic plasticity-related FOS+ granule cells, and hilar PVALB+ and GAD67+ GABAergic interneurons, increased hilar SST+ and CALB2+ interneurons, and upregulated Gria3, Otx2, and antioxidant enzyme genes in the dentate gyrus on PND 77. These results suggest disruption of neurogenesis remained in relation with increase of oxidative stress and compensatory responses to the disruption at the adult stage. AGIQ recovered expression of some antioxidant enzyme genes and was effective for restoration of NeuN+ postmitotic granule cells and PVALB+ and SST+ interneurons. In contrast, ALA was effective for restoration of all interneuron subpopulations, as well as postmitotic granule cells, and upregulated Grin2a that may play a role for the restoration. Both antioxidants recovered expression of Otx2 and AGIQ-alone recovered Gria3, suggesting a reversal of disruptive neurogenesis by compensatory responses. Thus, postweaning antioxidant exposure may be effective for ameliorating developmental hypothyroidism-induced disruptive neurogenesis by restoring the function of regulatory system.
Collapse
Affiliation(s)
- Takaharu Tanaka
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Rena Okada
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Kazuki Nakamura
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Sosuke Masuda
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
9
|
Michalcova K, Roychoudhury S, Halenar M, Tvrda E, Kovacikova E, Vasicek J, Chrenek P, Baldovska S, Sanislo L, Kren V, Kolesarova A. In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:752-757. [PMID: 31271108 DOI: 10.1080/03601234.2019.1633214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isoquercitrin is a dietary bioflavonoid used as a food supplement. We studied the mechanism underlying its effect in human ovarian cancer cells using OVCAR-3 cell line. Viability, survival, apoptosis, release of human transforming growth factor-β1 (TGF-β1) and TGF-β1 receptor, and intracellular reactive oxygen species (ROS) generation by OVCAR-3 cells were examined after isoquercitrin treatment at concentrations 5, 10, 25, 50, and 100 μg mL-1. AlamarBlue assay revealed that isoquercitrin did not cause any significant change (P > 0.05) in cell viability as compared to control. Apoptotic assay using flow cytometry did not find any significant change (P > 0.05) in the proportion of live, dead and apoptotic cells as compared to control. ELISA also showed that the release of human TGF-β1 and TGF-β1 receptor were not significantly (P > 0.05) affected by isoquercitrin as compared to control. Chemiluminescence assay demonstrated that lower concentrations (5, 10, and 25 μg mL-1) were able to exhibit beneficial effects by inhibiting the generation of intracellular ROS. In contrast, elevated concentrations of 50 and 100 μg mL-1 led to oxidative stress (P < 0.05). We concluded that the beneficial effect of isoquercitrin on ovarian cancer cells may be mediated by an antioxidative pathway that involves inhibition of intracellular ROS generation, thereby limiting oxidative stress.
Collapse
Affiliation(s)
- Katarina Michalcova
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Shubhadeep Roychoudhury
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
- Department of Life Science and Bioinformatics , Assam University , Silchar , India
| | - Marek Halenar
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Eva Tvrda
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Eva Kovacikova
- Research Centre AgroBioTech , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Jaromir Vasicek
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
- Research Institute for Animal Production Nitra , National Agricultural and Food Centre , Lužianky , Slovak Republic
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
- Research Institute for Animal Production Nitra , National Agricultural and Food Centre , Lužianky , Slovak Republic
| | - Simona Baldovska
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Luboslav Sanislo
- St. Elizabeth Cancer Institute Hospital , Bratislava , Slovak Republic
| | - Vladimir Kren
- Institute of Microbiology , Czech Academy of Sciences , Prague 4 , Czech Republic
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| |
Collapse
|
10
|
Maronpot RR, Ramot Y, Koyanagi M, Dias N, Cameron D, Eniola S, Nyska A, Hayashi SM. Ten-day and four-week toxicity and toxicokinetics studies of alpha-glycosyl isoquercitrin in juvenile Göttingen minipigs. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319855087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Yuval Ramot
- Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., Osaka, Japan
| | - Nicola Dias
- Envigo CRS Ltd., Huntingdon, Cambridgeshire, UK
| | | | | | - Abraham Nyska
- Consultant in Toxicologic Pathology, Timrat, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., Osaka, Japan
| |
Collapse
|
11
|
Continuous exposure to α-glycosyl isoquercitrin from developmental stage facilitates fear extinction learning in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Murayama H, Eguchi A, Nakamura M, Kawashima M, Nagahara R, Mizukami S, Kimura M, Makino E, Takahashi N, Ohtsuka R, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicol Pathol 2018; 46:530-539. [PMID: 29843569 DOI: 10.1177/0192623318778508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of the diuretic, spironolactone (SR), can inhibit chronic liver diseases. We determined the effects of SR alone or in combination with the antioxidant α-glycosyl isoquercitrin (AGIQ) on hyperlipidemia- and steatosis-related precancerous lesions in high-fat diet (HFD)-fed rats subjected to a two-stage hepatocarcinogenesis model. Rats were fed with control basal diet or HFD, which was administered with SR alone or in combination with an antioxidant AGIQ in drinking water. An HFD increased body weight, intra-abdominal fat (adipose) tissue weight, and plasma lipids, which were reduced by coadministration of SR and AGIQ. SR and AGIQ coadministration also reduced hepatic steatosis and preneoplastic glutathione S-transferase placental form-positive foci, in association with decrease in NADPH oxidase (NOX) subunit p22phox-positive cells and an increase in active-caspase-3-positive cells in the foci. Hepatic gene expression analysis revealed that the coadministration of SR and AGIQ altered mRNA levels of lipogenic enzymes ( Scd1 and Fasn), antioxidant-related enzymes ( Catalase), NOX component ( P67phox), and anti-inflammatory transcriptional factor ( Pparg). Our results indicated that SR in combination with AGIQ had the potential of suppressing hyperlipidemia- and steatosis-related early hepatocarcinogenesis through the reduced expression of NOX subunits.
Collapse
Affiliation(s)
- Hirotada Murayama
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ayumi Eguchi
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Misato Nakamura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masahi Kawashima
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Rei Nagahara
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Sayaka Mizukami
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Masayuki Kimura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Emi Makino
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | | | - Ryoichi Ohtsuka
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Mihoko Koyanagi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | - Shim-Mo Hayashi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | | | - Makoto Shibutani
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Toshinori Yoshida
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
13
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Kasamoto S, Maronpot R, Recio L, Hayashi SM. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem Toxicol 2018; 113:218-227. [PMID: 29317330 DOI: 10.1016/j.fct.2017.12.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Sawako Kasamoto
- Public Interest Incorporated Foundation Biosafety Research Center (BSRC), 582-2, Shioshinden, Iwata-shi, Shizuoka 437-1213, Japan
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
14
|
Nakamura M, Eguchi A, Inohana M, Nagahara R, Murayama H, Kawashima M, Mizukami S, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Differential impacts of mineralocorticoid receptor antagonist potassium canrenoate on liver and renal changes in high fat diet-mediated early hepatocarcinogenesis model rats. J Toxicol Sci 2018; 43:611-621. [DOI: 10.2131/jts.43.611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Misato Nakamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Ayumi Eguchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Mari Inohana
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Rei Nagahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Hirotada Murayama
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Masashi Kawashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc
| | | | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
15
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
16
|
Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, Kimura M, Abe H, Hayashi SM, Shibutani M. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. ACTA ACUST UNITED AC 2017; 69:9-16. [DOI: 10.1016/j.etp.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/05/2016] [Accepted: 10/15/2016] [Indexed: 01/28/2023]
|
17
|
Ninety-day toxicity and single-dose toxicokinetics study of alpha-glycosyl isoquercitrin in Sprague-Dawley rats. Food Chem Toxicol 2016; 97:354-366. [DOI: 10.1016/j.fct.2016.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|
18
|
Orfali GDC, Duarte AC, Bonadio V, Martinez NP, de Araújo MEMB, Priviero FBM, Carvalho PO, Priolli DG. Review of anticancer mechanisms of isoquercitin. World J Clin Oncol 2016; 7:189-199. [PMID: 27081641 PMCID: PMC4826964 DOI: 10.5306/wjco.v7.i2.189] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/19/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer.
Collapse
|
19
|
Yao L, Zhang N, Wang C, Wang C. Highly selective separation and purification of anthocyanins from bilberry based on a macroporous polymeric adsorbent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3543-3550. [PMID: 25786117 DOI: 10.1021/jf506107m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Powdered bilberry extract (United States Pharmacopoeia, USP35-NF30), which is prepared from ripe bilberry fruits (Vaccinium myrtillus L.), is the main ingredient of drugs alleviating visual fatigue and diabetic retinopathy because of the rich anthocyanins (purity of 36%). In this study, a method based on a macroporous polymeric adsorbent was established to obtain anthocyanin compounds from bilberry, in which the purity of the anthocyanins was improved to 96%, conducive to further pharmacological research and improvement of the efficiency of the drug. On the basis of the structure of anthocyanins, we designed a series of macroporous polymeric adsorbents based on the copolymerization of divinylbenzene (DVB) and ethylene glycol dimethyl acrylate (EGDMA). In this situation, EGDMA not only regulated the polarity of the adsorbent but also acted as the cross-linking agent to ensure the matrix structure of the adsorbent, which had a high specific surface area and could provide more interaction sites during adsorption with anthocyanins. Among the synthesized polymeric adsorbents with different contents of EGDMA, the one with 20% EGDMA content (DE-20) was demonstrated to exhibit optimal adsorption capacity and selectivity to anthocyanins compared to various commercial adsorbents through static adsorption and desorption experiments. In addition, the optimum condition of the dynamic adsorption-desorption experiment was further explored. The results indicated that the purity of anthocyanins after rinsing with 20% ethanol was determined to be approximately 96% at a desorption ratio of 83%, which was clearly higher than that in powdered bilberry extract. The established separation and purification method of anthocyanins with high purity is expected to be applied in industrial production.
Collapse
Affiliation(s)
- Lijuan Yao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Na Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Chenbiao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunhong Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
20
|
Liu P, Lindstedt A, Markkinen N, Sinkkonen J, Suomela JP, Yang B. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12015-12026. [PMID: 25408277 DOI: 10.1021/jf503521m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) are potential raw materials for food and health care products. Targeted (HPLC-DAD, HPLC-MS, and GC-FID) and nontargeted ((1)H NMR) approaches were applied to study the metabolomic profiles of these leaves. Chlorogenic acid was the major phenolic compound in bilberry leaves and arbutin in lingonberry leaves. Flavonol glycosides were another major group of phenolics in bilberry [5-28 mg/g DM (dry mass)] and lingonberry (15-20 mg/g DM) leaves. Contents of fatty acids were analyzed using GC-FID. The changes in the metabolomics profile during the season were apparent in bilberry but not lingonberry leaves. Negative correlation was found between the contents of lipids and phenolics. The consistency between the key results obtained by targeted and nontargeted analyses suggests nontargeted metabolomic analysis is an efficient tool for fast screening of various leaf materials.
Collapse
Affiliation(s)
- Pengzhan Liu
- Food Chemistry and Food Development, Department of Biochemistry, and ‡Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|