1
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
2
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
3
|
Molele RA, Zakariah M, Ibrahim MIA, Mahdy MAA, Fosgate GT, Brown G. Effect of di(n-butyl) phthalate on the blood-testis barrier during puberty onset. Anat Histol Embryol 2023; 52:411-420. [PMID: 36609917 DOI: 10.1111/ahe.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Di(n-butyl) phthalate (DBP) is considered a substance of serious concern because of its reproductive toxicity and endocrine-disrupting properties. Exposure to DBP causes morphological and functional changes in the male reproductive system of birds and mammals. However, there are no detailed reports on the effects of DBP on the Sertoli cell and junctional complexes of the blood-testis barrier (BTB) in birds. The present study investigated dose-related ultrastructural changes in Sertoli cells and junctional complexes of the BTB in adult Japanese quail (Coturnix coturnix japonica) exposed to DBP prior to puberty. A total of 25 Japanese quail were used for the study. Exposure to DBP doses of 50, 200 and 400 mg DBP/kg/d caused dose-related ultrastructural changes in junctional complexes including dilation and separation, while disruption of cytoplasmic membranes and mitochondria was observed in Sertoli cells. There was a significant difference in the sum of vacuoles, vacuole diameter, nuclear width, nuclear length, nuclear area, sum of damaged spherical mitochondria, width of elongated mitochondria and the sum of damaged elongated mitochondria among the five treatment groups (p ˂ 0.05). Prepubertal exposure to DBP at doses of 50, 200 and 400 mg DBP/kg/d for 30 days led to adverse effects in the adult male Japanese quail reproductive system by inducing structural changes in the Sertoli cells and junctional complexes. Such changes might disrupt the BTB and potentially interfere with spermatogenesis. Results indicated that the Sertoli cell is sensitive to DBP exposure and might be an important cellular target for DBP-induced testicular toxicity.
Collapse
Affiliation(s)
- Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Musa Zakariah
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, PMB 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Mohammed I A Ibrahim
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Department of Basic Science, University of West Kordofan, Al-Fulah, Sudan
| | - Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Geoffrey Brown
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Blondet A, Martin G, Paulic L, Perrard MH, Durand P. An in vitro bioassay to assess the potential global toxicity of waters on spermatogenesis: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26606-26616. [PMID: 33495953 DOI: 10.1007/s11356-021-12480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Many toxicants are present in water as a mixture. Male infertility is one of the environmental impacts in developed countries. Using our rat seminiferous tubule culture model, we evaluated the effects of waters of different origins, on several parameters of the seminiferous epithelium. Concentrated culture medium was diluted with the waters to be tested (final concentrations of the tested waters were between 8 and 80%). The integrity of the blood-testis barrier was assessed by the trans-epithelial electric resistance (TEER). The levels of mRNAs specific of Sertoli cells, of cellular junctions, of each population of germ cells, of androgen receptor, of estrogen receptor α, and of aromatase were also studied. We report, here, the results obtained with ten waters, some of them possessing a negative effect on spermatogenesis. The results showed that, according to the tested waters, their effects on the parameters studied might be quite different indicating many different mechanisms of toxicity, including some endocrine-disrupting effects. It has been reported that men with impaired semen parameters have an increased mortality rate suggesting semen quality may provide a fundamental biomarker of overall male health. Hence, we have developed a relevant in vitro bioassay allowing the evaluation of the potential toxicity of different types of waters on male fertility and to assess some aspects of their mechanism of action. In addition to the TEER measure, the number and/or the identity of the studied mRNAs can be largely increased and/or modified, thus enhancing the possibility of using this model as a "warning system."
Collapse
Affiliation(s)
- Antonine Blondet
- Kallistem, Vétagrosup, 1 Avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | - Guillaume Martin
- Kallistem, Vétagrosup, 1 Avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | - Laurent Paulic
- Tame-Water, 3 Rue Jean Jaurès, 85000, La Roche sur Yon, France
| | - Marie-Hélène Perrard
- INSERM U 1208, Institut Cellule Souche et Cerveau, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Philippe Durand
- Kallistem, Vétagrosup, 1 Avenue Bourgelat, 69280, Marcy-l'Etoile, France.
| |
Collapse
|
5
|
Liu W, Wang Z, Hu X. Identification of Competing Endogenous RNA and Micro-RNA Profiles and Regulatory Networks in 4-Nonylphenol-induced Impairment of Sertoli Cells. Front Pharmacol 2021; 12:644204. [PMID: 34084133 PMCID: PMC8167654 DOI: 10.3389/fphar.2021.644204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The xenoestrogens nonylphenols (NPs), which are materials used in the plastic polymer industry, are considered endocrine disruptors in a wide range of organisms. Studies have shown that human health problems, such as infertility and reproductive toxicology, are linked with NPs. However, the mechanism by which NPs interfere with male reproduction is not fully elucidated. Here, we found that 4-NP can result in male reproductive impairment and reduce androgen receptor (AR) protein levels in rat sertoli cells in vitro and in vivo. Moreover, we performed RNA sequencing to assess the differential expression of ceRNAs in rat primary sertoli cells treated with 4-NP. Bioinformatics methods, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database and ceRNA functional network analyses, were used to investigate the sequencing data and gain further understanding of the biological processes. Our analysis revealed a core set of mRNAs (Ar, Atf6 and Cbp), and circRNAs (circ673, circ1377, circ1789, and circPTEN) that were selected and validated by RT-qPCR. In addition, the head-to-tail splicing of circ673, circ1377, circ1789, and circPTEN was identified by Sanger sequencing. These findings provide the first insight into the ceRNA expression profiles of rat sertoli cells and reveal that ceRNAs participate in 4-NP-induced impairment of sertoli cell function, thereby indicating potential therapies for both reproductive toxicology and male infertility.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaopeng Hu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Panax ginseng metabolite (GIM-1) modulates the effects of monobutyl phthalate (MBP) on the GPR30/GPER1 canonical pathway in human Sertoli cells. Reprod Toxicol 2020; 96:209-215. [DOI: 10.1016/j.reprotox.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
|
7
|
Ma T, Hou J, Zhou Y, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Dibutyl phthalate promotes juvenile Sertoli cell proliferation by decreasing the levels of the E3 ubiquitin ligase Pellino 2. Environ Health 2020; 19:87. [PMID: 32738922 PMCID: PMC7395429 DOI: 10.1186/s12940-020-00639-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes juvenile SC proliferation in vivo and in vitro. METHODS Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5 days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells. Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1 receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells. RESULTS In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased. Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3 ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling, leading to the proliferation of TM4 cells. CONCLUSIONS Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
8
|
Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5719-5728. [PMID: 32255618 DOI: 10.1021/acs.est.0c00628] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Maria Persico
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Durand P, Blondet A, Martin G, Carette D, Pointis G, Perrard MH. Effects of a mixture of low doses of atrazine and benzo[a]pyrene on the rat seminiferous epithelium either during or after the establishment of the blood-testis barrier in the rat seminiferous tubule culture model. Toxicol In Vitro 2020; 62:104699. [DOI: 10.1016/j.tiv.2019.104699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
10
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Ding M, Kang Q, Zhang S, Zhao F, Mu D, Zhang H, Yang M, Hu J. Contribution of phthalates and phthalate monoesters from drinking water to daily intakes for the general population. CHEMOSPHERE 2019; 229:125-131. [PMID: 31078027 DOI: 10.1016/j.chemosphere.2019.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 05/24/2023]
Abstract
Although phthalates (PAEs) are ubiquitous in drinking water, and phthalate monoesters (MPAEs) have been recognized as the bioactive metabolites of PAEs, little information is available regarding the occurrence of MPAEs in drinking water and the contributions of PAEs and MPAEs to human exposure. In this study, the concentrations of PAEs and MPAEs in 146 samples of drinking water collected from 24 cities throughout China were determined. The mean concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and di-2-ethylhexyl phthalate (DEHP) were 14.31 ± 26.28, 5.905 ± 11.57, 103.8 ± 310.5, 595.9 ± 1794, and 178.2 ± 422.0 ng/L, respectively. Monomethyl phthalate (MMP), monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-2-ethylhexyl phthalate (MEHP) were detected in drinking water for the first time, at mean concentrations of 12.1 ± 18.0, 2.4 ± 5.8, 11.3 ± 37.2, 36.3 ± 103, and 9.9 ± 18.0 ng/L, respectively. The geometric mean concentrations of MMP, MEP, MiBP, MnBP, and MEHP in urine samples collected from 1040 participants from 16 cities were 10.1, 19.3, 29.6, 47.3, and 3.63 μg/g creatinine, respectively. The concentrations of PAEs and MPAEs in drinking water and daily intakes (DIs) of PAEs from nine cities where drinking water and urine samples were simultaneously collected were used to estimate the contributions from drinking water. The percentages of DMP, DEP, DiBP, DnBP, and DEHP from drinking water accounted for DIs of 0.60%, 0.049%, 1.26%, 2.76%, and 0.56%, respectively. The percentages of MMP, MEP, MiBP, MnBP and MEHP via intake of drinking water accounted for urinary concentrations of 0.86%, 0.032%, 0.14%, 0.089%, and 0.045%, respectively.
Collapse
Affiliation(s)
- Mengyu Ding
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiyue Kang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shiyi Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Fanrong Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Di Mu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haifeng Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
DE FREITAS ATA, Figueiredo PINHO C, de AQUINO AM, FERNANDES AAH, Fantin DOMENICONI R, JUSTULIN LA, SCARANO WR. Panax ginseng methabolit (GIM-1) prevents oxidative stress and apoptosis in human Sertoli cells exposed to Monobutyl-phthalate (MBP). Reprod Toxicol 2019; 86:68-75. [DOI: 10.1016/j.reprotox.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
13
|
Capela D, Poissenot K, Dombret C, Keller M, Franceschini I, Mhaouty-Kodja S. Effects of combined exposure of adult male mice to di-(2-ethylexyl)phthalate and nonylphenol on behavioral and neuroendocrine responses. CHEMOSPHERE 2019; 221:573-582. [PMID: 30660913 DOI: 10.1016/j.chemosphere.2019.01.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/05/2023]
Abstract
The present study evaluates the effects of adult exposure to low doses of a mixture of di-(2-ethylexyl)phthalate (DEHP) and nonylphenol (NP) on reproductive neuroendocrine function and behavior. The neural circuitry that processes male sexual behavior is tightly regulated by testosterone and its neural metabolite estradiol. In previous studies, we showed that adult exposure of mice to low doses of each of these widespread environmental contaminants resulted in altered sexual behavior, without any effect on the regulation of the gonadotropic axis. Here, adult C57BL/6J male mice were exposed to DEHP/NP (0.5 or 5 μg/kg body weight/day) for 4 weeks before starting the analyses. Mice treated with DEHP/NP at 0.5 μg/kg/day show altered olfactory preference, and fewer of them emit ultrasonic vocalization compared to the other treatment groups. These mice also exhibit a lower number of mounts and thrusts, increased locomotor activity and unaffected anxiety-state level, along with unaltered testosterone levels and kisspeptin system, a key regulator of the gonadotropic axis. Analysis of the neural circuitry that underlies sexual behavior showed that the number of cells expressing androgen and estrogen receptors is comparable between control and DEHP/NP-exposed males. The comparison of these data with those obtained in males exposed to each molecule separately highlights synergistic effects at the lower dose of contaminants of 0.5 μg/kg/day. In contrast, the effects previously observed for each molecule at 5 μg/kg/day were not detected. A detailed comparison of the effects triggered by separate or combined exposure to DEHP and NP is discussed.
Collapse
Affiliation(s)
- Daphné Capela
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Kevin Poissenot
- UMR Physiologie de la Reproduction & des Comportements, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Tours, Institut Français du Cheval et de l'Equitation, Nouzilly 37380, France
| | - Carlos Dombret
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Matthieu Keller
- UMR Physiologie de la Reproduction & des Comportements, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Tours, Institut Français du Cheval et de l'Equitation, Nouzilly 37380, France
| | - Isabelle Franceschini
- UMR Physiologie de la Reproduction & des Comportements, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Tours, Institut Français du Cheval et de l'Equitation, Nouzilly 37380, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine, Institut de Biologie Paris-Seine, 75005 Paris, France.
| |
Collapse
|
14
|
Xie F, Chen X, Weng S, Xia T, Sun X, Luo T, Li P. Effects of two environmental endocrine disruptors di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) on human sperm functions in vitro. Reprod Toxicol 2019; 83:1-7. [DOI: 10.1016/j.reprotox.2018.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/26/2022]
|
15
|
Szczepańska N, Marć M, Kudłak B, Simeonov V, Tsakovski S, Namieśnik J. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:282-289. [PMID: 29857233 DOI: 10.1016/j.ecoenv.2018.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the greatest amounts of contaminants are released are plastic containers (with emission rate falling down from 3273 to 2280 ng/g of material at 6 h of conditioning in elevated temperature).
Collapse
Affiliation(s)
- Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, pl. Kopernika 11a, 45-040 Opole, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Vasil Simeonov
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stefan Tsakovski
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Szczepańska N, Kudłak B, Tsakovski S, Yotova G, Nedyalkova M, Simeonov V, Dołęga A, Namieśnik J. Modeling and MANOVA studies on toxicity and endocrine potential of packaging materials exposed to different extraction schemes. ENVIRONMENTAL RESEARCH 2018; 165:294-305. [PMID: 29777920 DOI: 10.1016/j.envres.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 05/25/2023]
Abstract
The stability of the linings of packaging that is in contact with the goods stored has been of major concern during decades of the development of packaging materials. In this work, an attempt was undertaken to assess the applicability of using two bioassays (Microtox® and XenoScreen YES/YAS) in estimating the stability of packaging (cans, caps, multilayer material) and the impact of their degradation on the toxicity of some simulated media. The assessment of the impact of packaging storage conditions (temperature, disinfection, preservation, extracting and washing solvents) was planned and performed with i) regression modeling of the experimental effects on the ecotoxicity readings, ii) ANOVA and MANOVA estimation of the experimental conditions as significant factors affecting the toxicity results and iii) FTIR analysis of the packages. It is shown that the effects of temperature and extraction solvents could be quantitatively assessed by the agreement between all methods applied. It can be stated that temperature and acidity as well as the alcohol content in the sensitive media have the greatest impact on the toxicity of the extract and thus on the stability of the internal lining and the extractability of xenobiotics.
Collapse
Affiliation(s)
- Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| | - Stefan Tsakovski
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, Sofia 1164, Bulgaria
| | - Galina Yotova
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, Sofia 1164, Bulgaria
| | - Miroslava Nedyalkova
- Chair of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Vasil Simeonov
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, Sofia 1164, Bulgaria
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| |
Collapse
|
17
|
Jiang J, Mu D, Ding M, Zhang S, Zhang H, Hu J. Simultaneous determination of primary and secondary phthalate monoesters in the Taihu Lake: Exploration of sources. CHEMOSPHERE 2018; 202:17-24. [PMID: 29554503 DOI: 10.1016/j.chemosphere.2018.03.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
While phthalates monoesters have been recognized as the bioactive metabolites of phthalates, the knowledge on their environmental occurrence and sources is limited. In this study, monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-2-ethylhexyl phthalate (MEHP) were frequently detected in water samples from the Taihu Lake in China using an improved SPE-LC-MS-MS method. The mean concentrations for MMP, MEP, MiBP, MnBP, and MEHP were 51.7 ± 25.2, 6.0 ± 4.8, 19.6 ± 14.6, 42.2 ± 64.7, and 33.0 ± 37.4 ng/L, respectively, while those of their corresponding parent chemicals, DMP, DEP, DiBP, and DnBP and DEHP, were 36.54 ± 43.22, 42.64 ± 66.66, 246.8 ± 311.1, 524.7 ± 586.9, and 208.1 ± 223.5 ng/L, respectively. Three secondary monoesters of DEHP, mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) were for the first time detected with mean concentration of 1.27 ± 1.33, 1.33 ± 1.54, and 0.73 ± 0.79 ng/L, respectively. The percentage of the sum concentration of MEOHP, MEHHP, and MECPP relative to total concentration of DEHP metabolites was 5.3-12.4%. DEHP was identified to be biodegraded into secondary phthalate monoesters in water from the Taihu Lake, but their contribution to the total concentration of DEHP metabolites was 1.2-3.6%, lower than those in the Taihu Lake. Primary and secondary DEHP monoesters were also detected in influents and effluents of two sewage treatment plants adjacent to the Taihu Lake, the percentages of secondary DEHP monoesters in influents were 5.8% and 11.3%, similar with those in the Taihu Lake. Taken together with their relatively high concentrations in influents, the discharging of domestic wastewater may be an important contributor to the occurrence of phthalate monoesters in the Taihu Lake.
Collapse
Affiliation(s)
- Jieqiong Jiang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Di Mu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Mengyu Ding
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shiyi Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Zhao Z, Liu GC, Fu W. Role of PERK-eIF2α signaling pathway in fetal male rats with hypospadias induced by di-n-butyl phthalate. Kaohsiung J Med Sci 2018; 34:487-493. [PMID: 30173778 DOI: 10.1016/j.kjms.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
This study aims to explore the role of PERK-eIF2α signaling pathway in fetal male rats with hypospadias induced by maternal exposure to di-n-butyl phthalate (DBP). DBP was used to treat pregnant SD rats by gastric intubation from gestation day (GD) 14-18 to construct a hypospadias rat model. The amount, weight, anogenital distance (AGD), and hypospadias incidence of rats were recorded and the genital tubercle (GT) of fetal male rats was collected on GD 19. Western blotting was performed to detect the expressions of PERK-eIF2α pathway- and autophagy-related proteins, and cell apoptosis was detected using TUNEL method. Then, GT fibroblasts of fetal rats were obtained and transfected with PERK-siRNA to detect cell apoptosis and autophagy in each transfected group. The incidence of hypospadias was 43.49% in fetal male rats induced by DBP. The fetal rats in DBP group presented the decreased birth weight and anogenital distance (AGD)/body weight ratio than the Control group (all P < 0.05). Further, p-PERK, p-eIF2α and ATF4 protein expressions and the ratio of LC3-II/LC3-I were greatly increased in the GTs of fetal rats, while apoptosis index (AI) and P62 protein expression were evidently decreased (all P < 0.05). In addition, the apoptosis rate was increased in GT fibroblasts after transfection of PERK-siRNA with the increased P62 and reduced LC3-II/LC3-I ratio (all P < 0.05). Activation of PERK-eIF2α signaling pathway can influence the GT development of fetal male rats with hypospadias induced by DBP through activation of autophagy and inhibition of apoptosis.
Collapse
Affiliation(s)
- Zhang Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - Guo-Chang Liu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen Fu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
19
|
Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem Toxicol 2018; 112:290-298. [PMID: 29307602 DOI: 10.1016/j.fct.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin. However, the underlying pathways of MCLR-induced reproductive system toxicity have not been well elucidated. The blood-testis barrier is mainly constituted by tight junctions (TJs) between adjacent Sertoli cells in the seminiferous epithelium near the basement membrane. The present study was designed to investigate changes in TJs and the underlying pathway in MC-LR-induced TJs toxicity in Sertoli cell. In our study, the transepithelial electrical resistance (TER) value was decreased in a dose dependent manner due to the markers of TJs occludin, claudin and zonula occludens-1 (ZO-1) expression decline. MC-LR is shown to induce cytotoxicity by inhibiting protein phosphatase 2A (PP2A) activity. Our results also showed that the PP2A activity presented a dose-dependent decline. Moreover, MC-LR stimulated protein expression of snail by Akt/GSK-3β activation. The activated Akt/GSK-3β and snail signaling pathway largely accounted for MC-LRinduced TJs toxicity, which could be partially reversed by snail siRNA interference or AKT chemical inhibitor in TM4 cells. These findings indicated that MC-LR inhibit the protein expression of TJs, and the activation of Akt/Snail signaling pathways due to PP2A inhibition is proposed to participate in this process.
Collapse
|
20
|
Durand P, Martin G, Blondet A, Gilleron J, Carette D, Janczarski S, Christin E, Pointis G, Perrard MH. Effects of low doses of carbendazim or iprodione either separately or in mixture on the pubertal rat seminiferous epithelium: An ex vivo study. Toxicol In Vitro 2017; 45:366-373. [DOI: 10.1016/j.tiv.2017.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
21
|
Zhou Y, Xu X, Yu B, Yu G. Characterization of in vitro effects of microcystin-LR on intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1539-1547. [PMID: 27758031 DOI: 10.1002/tox.22375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium is a single-cell layer that provides an important barrier against natural toxins. Microcystin-LR (MC-LR), a cyclic heptapeptide, is one of the best known toxins able to alter the functions of intestine. This study evaluated the toxic effects and the possible mechanisms of MC-LR on barrier function of the intestinal epithelial cells. Intestinal epithelial cells (IEC-6) were exposed to 0, 6.25, 12.5, 25 and 50 μM MC-LR. Cell viability significantly decreased, while the ratio of apoptotic cells increased after exposure to 12.5μM and higer concentration of MC-LR. As expected, the integrity of a polarized IEC-6 monolayer was affected by MC-LR exposure, as demonstrated by a decrease in the transepithelial electrical resistance (TEER) values, becoming most pronounced at 50μM, 24 h. No effects were detected on the protein expression levels of the tight junction protein claudin at 50μM. However, the expression of occludin and zonula occludens-1 (ZO-1) declined. Furthermore, MC-LR can immigrate into IEC-6 cells. The activity of protein phosphatases 2A (PP2A) decreased from the concentration of 12.5 μM, showing a dose-dependent decline. These results provide new information that strengthens the concept that the intestinal epithelium is important targets for toxic effects of water contaminants like MC-LR. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1539-1547, 2017.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xiaoping Xu
- Zhejiang Prov Ctr Dis Prevent & Control, Hangzhou, Zhejiang, 310051, China
| | - Beibei Yu
- School of Foreign Languages, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guang Yu
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
22
|
Gou YY, Lin S, Que DE, Tayo LL, Lin DY, Chen KC, Chen FA, Chiang PC, Wang GS, Hsu YC, Chuang KP, Chuang CY, Tsou TC, Chao HR. Estrogenic effects in the influents and effluents of the drinking water treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8518-8528. [PMID: 26791027 DOI: 10.1007/s11356-015-5946-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Estrogen-like endocrine disrupting compounds (EEDC) such as bisphenol A, nonylphenol, and phthalic acid esters are toxic compounds that may occur in both raw- and drinking water. The aim of this study was to combine chemical- and bioassay to evaluate the risk of EEDCs in the drinking water treatment plants (DWTPs). Fifty-six samples were collected from seven DWTPs located in northern-, central-, and southern Taiwan from 2011 to 2012 and subjected to chemical analyses and two bioassay methods for total estrogenic activity (E-Screen and T47D-KBluc assay). Among of the considered EEDCs, only dibutyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) were detected in both drinking and raw water samples. DBP levels in drinking water ranged from <MDL to 0.840 μg/L and from <MDL to 0.760 μg/L in raw water. DEHP had higher detection rate (82.1 %) than other compounds and was present in both drinking water and raw water from all the DWTPs. The highest daily drinking water intake calculated for male and female were 0.0823 and 0.115 μg/kg per day. The two selected bioassays were conducted for the first batch of 56 samples and a detection rate of 23 % for estradiol equivalent (EEQ) lower than the LOQ to 1.3 and 15 % for EEQ lower than LOQ to 0.757 for the second 53 samples. Our results showed a good correlation between E-screen and chemical assay which indicates that a combination of both can be used in detecting EEDCs in environmental samples.
Collapse
Affiliation(s)
- Yan-You Gou
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Susana Lin
- International College, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan.
| | - Danielle E Que
- School of Chemical Engineering, Chemistry and Biological Engineering, Mapúa Institute of Technology, Muralla St., Intramurous, Manila, 1002, Philippines
| | - Lemmuel L Tayo
- School of Chemical Engineering, Chemistry and Biological Engineering, Mapúa Institute of Technology, Muralla St., Intramurous, Manila, 1002, Philippines
| | - Ding-Yan Lin
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Kuan-Chung Chen
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Fu-An Chen
- Graduate Institute of Pharmaceutical Technology, College of Pharmacy and Health Care, Tajen University, No.20, Weixin Rd., Yanpu Township, Pingtung, Taiwan
| | - Pen-Chi Chiang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan, 10673, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental Health, College of Public Health, National Taiwan University, No.17, Xuzhou Rd., Room 734, Taipei, 10055, Taiwan
| | - Yi-Chyuan Hsu
- Department of Environmental Engineering, Kun Shan University, 195 Kunda Rd, Yung-Kang District, Tainan City, 710, Taiwan
| | - Kuo Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Rd, Neipu, Pingtung County, 912, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd, Hsinchu City, 300, Taiwan
| | - Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, 350, Taiwan
| | - How-Ran Chao
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan.
| |
Collapse
|
23
|
Duan P, Hu C, Quan C, Yu T, Zhou W, Yuan M, Shi Y, Yang K. 4-Nonylphenol induces apoptosis, autophagy and necrosis in Sertoli cells: Involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways. Toxicology 2016; 341-343:28-40. [PMID: 26804764 DOI: 10.1016/j.tox.2016.01.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/23/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022]
Abstract
The xenoestrogen 4-nonylphenol (NP) induces reproductive dysfunction of male rats, but the fundamental mechanism of this phenomenon is largely unexplored. Sertoli cells (SCs) are pivotal for spermatogenesis and male fertility. The involvement of autophagy in NP-induced apoptotic and necrotic death of SCs was investigated. In this study, 24-h exposure of SCs to 20-30μM NP decreased cell viability, caused G2/M arrest, triggered ΔΨm loss, increased ROS production and induced caspase-dependent apoptosis, necrosis as well as autophagosome formation. NP-induced autophagy was confirmed by monodansylcadaverine-staining and LC3-I/LC3-II conversion. Furthermore, NP up-regulated the (Thr172)p-AMPK/AMPK and (Thr183/185)p-JNK/JNK ratios. This was followed by the down-regulation of (Ser473)p-Akt/Akt, (Thr1462)p-TSC2/TSC2, (Ser2448)p-mTOR/mTOR, (Thr389)p-p70S6K/p70S6K and (Thr37/45)p-4EBP1/4EBP1. Intriguingly, NP-induced apoptosis, autophagy and necrosis could be inhibited through blocking ROS generation by N-acetylcysteine. Autophagy inhibitor 3-MA enhanced NP-induced apoptosis and necrosis. Moreover, The activation of AMPK/mTOR/p70s6k/4EBP1 and JNK signalling pathways induced by NP could be efficiently reversed by pretreatment of N-acetylcysteine or 3-MA. Collectively, our findings provide the first evidence that NP promotes apoptosis, autophagy and necrosis simultaneously in SCs and that this process may involve ROS-dependent JNK- and Akt/AMPK/mTOR pathways. Modulation of autophagy induced by NP may serve as a survival mechanism against apoptosis and necrosis.
Collapse
Affiliation(s)
- Peng Duan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunhui Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine Shiyan, Hubei 442000, China
| | - Chao Quan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Yu
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhou
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Yuan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuqin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430030, China
| | - Kedi Yang
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Jones S, Boisvert A, Francois S, Zhang L, Culty M. In utero exposure to di-(2-ethylhexyl) phthalate induces testicular effects in neonatal rats that are antagonized by genistein cotreatment. Biol Reprod 2015; 93:92. [PMID: 26316063 DOI: 10.1095/biolreprod.115.129098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Fetal exposure to endocrine disruptors (EDs) is believed to predispose males to reproductive abnormalities. Although males are exposed to combinations of chemicals, few studies have evaluated the effects of ED mixtures at environmentally relevant doses. Our previous work showed that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di-(2-ethylhexyl) phthalate (DEHP) induced unique alterations in adult testis. In this follow-up study, we examined Postnatal Day 3 (PND3) and PND6 male offspring exposed from Gestational Day 14 to parturition to corn oil, 10mg/kg GEN, DEHP, or their combination, to gain insight into the early molecular events driving long-term alterations. DEHP stimulated the mRNA and protein expression of the steroidogenic enzyme HSD3B, uniquely at PND3. DEHP also increased the mRNA expression of Nestin, a Leydig progenitor/Sertoli cell marker, and markers of Sertoli cell (Wt1), gonocyte (Plzf, Foxo1), and proliferation (Pcna) at PND3, while these genes were unchanged by the mixture. Redox (Nqo1, Sod2, Sod3, Trx, Gst, Cat) and xenobiotic transporter (Abcb1b, Abcg2) gene expression was also increased by DEHP at PND3, while attenuated when combined with GEN, suggesting the involvement of cellular stress in short-term DEHP effects and a protective effect of GEN. The direct effects of GEN and mono-(2-ethylhexyl) phthalate, the principal bioactive metabolite of DEHP, on testis were investigated in PND3 organ cultures, showing a stimulatory effect of 10 μM mono-(2-ethylhexyl) phthalate on basal testosterone production that was normalized by GEN. These effects contrasted with previous reports of androgen suppression and decreased gene expression in perinatal rat testis by high DEHP doses, implying that neonatal effects are not predictive of adult effects. We propose that GEN, through an antioxidant action, normalizes reactive oxygen species-induced neonatal effects of DEHP. The notion that these EDs do not follow classical dose-response effects and involve different mechanisms of toxicity from perinatal ages to adulthood highlights the importance of assessing impacts across a range of doses and ages.
Collapse
Affiliation(s)
- Steven Jones
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Sade Francois
- Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Liandong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Martine Culty
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|