1
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
2
|
Ivanović SR, Borozan N, Miladinović DĆ, Živković I, Borozan S. The relationship between the cholinergic mechanism of toxicity and oxidative stress in rats during subacute diazinon poisoning. Toxicol Appl Pharmacol 2023; 473:116598. [PMID: 37331382 DOI: 10.1016/j.taap.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Diazinon is an organophosphate pesticide (OP) that has significant potential for accidental and intentional poisoning of wildlife, domestic animals and humans. The aim of the study is to investigate the correlation between cholinesterase activity and oxidative stress parameters in liver and diaphragm by continuous monitoring as a function of time during prolonged use of diazinon. Wistar rats were treated orally with diazinon (55 mg/kg/day): 7, 14, 21 and 28 days. At the end of each period, blood, liver and diaphragm were collected to examine cholinesterase activity and enzymatic/non-enzymatic oxidative stress parameters: superoxide dismutase 1 (SOD1), catalase (CAT), thiobarbituric acid substances (TBARS), protein carbonyl groups. In all four time periods, there was a significant change in acetylcholinesterase (AChE) in erythrocytes and butyrylcholinesterase (BuChE) in blood plasma, CAT in liver and diaphragm and SOD1 in diaphragm. Parameters significantly altered during the cholinergic crisis included: cholinesterases and TBARS in liver and diaphragm and partially SOD1 in liver. Protein carbonyl groups in liver and diaphragm were significantly altered outside the cholinergic crisis. In the liver, there was a very strong negative correlation between BuChE and TBARS in all four time periods and BuChE and CAT on day 7. In the diaphragm, a very strong negative correlation was found between AChE and TBARS at days 7 and 14, and a very strong positive correlation between AChE and SOD1 at days 14, 21 and 28. A better understanding of the relationship between cholinergic overstimulation and oxidative stress may help to better assess health status in prolonged OPs intoxication.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| | | | | | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| |
Collapse
|
3
|
Cai R, Zhu L, Wang P, Zhao Y. Bimetallic Catalyzed N-arylation Used in Synthesis of Novel β-carbolines Derivatives. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180815666181025124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Natural occurring β-Carbolines alkaloids are abundant in the plant kingdom
or other organisms, and they were found to possess good antitumor activity through multiple
mechanisms. Based on previous summarized SARs of β-carboline derivatives, the modification on
pyridine ring would have a great impact on their antitumor activities. Therefore, we plan to synthesized
arylated β-carboline-3-amides to find more valuable β-Carbolines derivatives.
Methods:
A novel bimetallic Pd(OAc)2/AgOAc catalyst system was developed for the amidation of
aryl iodides under acid condition. A series of N-arylated β-carbolines derivatives were synthesized
using this method. The structures of these compounds were confirmed by 1H NMR, 13C NMR and
HRMS, and their in vitro antiproliferative activity was investigated against HepG2 and Hela tumor
cell lines by MTT assay.
Results:
Eleven N-arylated β-carboline-3-amides were synthesized using this bimetallic catalyzed
method in 58-98% yields. These synthesized N-arylated compounds showed no antiproliferative
activity at 20 μM.
Conclusion:
We have discovered an efficient and bimetallic catalytic system allowing the Narylation
of secondary acyclic amides. This is the first report that N-arylation of aliphatic secondary
acyclic amides under acid condition.
Collapse
Affiliation(s)
- Rui Cai
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Pengfei Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Luo L, Zhang G, Mao L, Wang P, Xi C, Shi G, Leavenworth JW. Group II muscarinic acetylcholine receptors attenuate hepatic injury via Nrf2/ARE pathway. Toxicol Appl Pharmacol 2020; 395:114978. [PMID: 32234387 DOI: 10.1016/j.taap.2020.114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Parasympathetic nervous system dysfunction is common in patients with liver disease. We have previously shown that muscarinic acetylcholine receptors (mAchRs) play an important role in the regulation of hepatic fibrosis and that the receptor agonists and antagonists affect hepatocyte proliferation. However, little is known about the impact of the different mAchR subtypes and associated signaling pathways on liver injury. Here, we treated the human liver cell line HL7702 with 10 mmol/L carbon tetrachloride (CCL4) to induce hepatocyte damage. We found that CCL4 treatment increased the protein levels of group I mAchRs (M1, M3, M5) but reduced the expression of group II mAchRs (M2, M4) and activated the Nrf2/ARE and MAPK signaling pathways. Although overexpression of M1, M3, or M5 led to hepatocyte damage with an intact Nrf2/ARE pathway, overexpression of M2 or M4 increased, and siRNA-mediated knockdown of either M2 or M4 decreased the protein levels of Nrf2 and its downstream target genes. Moreover, CCL4 treatment increased serum ALT levels more significantly, but only induced slight changes in the expression of mAchRs, NQO1 and HO1, while reducing the expression of M2 and M4 in liver tissues of Nrf2-/- mice compared to wild type mice. Our findings suggest that group II mAchRs, M2 and M4, activate the Nrf2/ARE signaling pathway, which regulates the expression of M2 and M4, to protect the liver from CCL4-induced injury.
Collapse
Affiliation(s)
- Lin Luo
- School of Pharmacy, Nantong University, PR China..
| | | | - Liuliu Mao
- School of Pharmacy, Nantong University, PR China
| | - Pengbo Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Chenghao Xi
- School of Pharmacy, Nantong University, PR China
| | - Gaoyong Shi
- School of Pharmacy, Nantong University, PR China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA..
| |
Collapse
|
5
|
Słoniecka M, Danielson P. Acetylcholine decreases formation of myofibroblasts and excessive extracellular matrix production in an in vitro human corneal fibrosis model. J Cell Mol Med 2020; 24:4850-4862. [PMID: 32176460 PMCID: PMC7176861 DOI: 10.1111/jcmm.15168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine (ACh) has been reported to play various physiological roles, including wound healing in the cornea. Here, we study the role of ACh in the transition of corneal fibroblasts into myofibroblasts, and in consequence its role in the onset of fibrosis, in an in vitro human corneal fibrosis model. Primary human keratocytes were obtained from healthy corneas. Vitamin C (VitC) and transforming growth factor‐β1 (TGF‐β1) were used to induce fibrosis in corneal fibroblasts. qRT‐PCR and ELISA analyses showed that gene expression and production of collagen I, collagen III, collagen V, lumican, fibronectin (FN) and alpha‐smooth muscle actin (α‐SMA) were reduced by ACh in quiescent keratocytes. ACh treatment furthermore decreased gene expression and production of collagen I, collagen III, collagen V, lumican, FN and α‐SMA during the transition of corneal fibroblasts into myofibroblasts, after induction of fibrotic process. ACh inhibited corneal fibroblasts from developing contractile activity during the process of fibrosis, as assessed with collagen gel contraction assay. Moreover, the effect of ACh was dependent on activation of muscarinic ACh receptors. These results show that ACh has an anti‐fibrotic effect in an in vitro human corneal fibrosis model, as it negatively affects the transition of corneal fibroblasts into myofibroblasts. Therefore, ACh might play a role in the onset of fibrosis in the corneal stroma.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Amir M, Yu M, He P, Srinivasan S. Hepatic Autonomic Nervous System and Neurotrophic Factors Regulate the Pathogenesis and Progression of Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2020; 7:62. [PMID: 32175323 PMCID: PMC7056867 DOI: 10.3389/fmed.2020.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease represents a continuum of excessive hepatic steatosis, inflammation and fibrosis. It is a growing epidemic in the United States of America and worldwide. Progression of non-alcoholic fatty liver disease can lead to morbidity and mortality due to complications such as cirrhosis or hepatocellular carcinoma. Pathogenesis of non-alcoholic fatty liver disease is centered on increased hepatic lipogenesis and decreased hepatic lipolysis in the setting of hepatic and systemic insulin resistance. Adipose tissue and hepatic inflammation can further perpetuate the severity of illness. Currently there are no approved therapies for non-alcoholic fatty liver disease. Most of the drugs being explored for non-alcoholic fatty liver disease focus on classical pathogenic pathways surrounding hepatic lipid accumulation, inflammation or fibrosis. Studies have demonstrated that the autonomic nervous system innervating the liver plays a crucial role in regulation of hepatic lipid homeostasis, inflammation and fibrosis. Additionally, there is growing evidence that neurotrophic factors can modulate all stages of non-alcoholic fatty liver disease. Both the autonomic nervous system and neurotrophic factors are altered in patients and murine models of non-alcoholic fatty liver disease. In this review we focus on the pathophysiological role of the autonomic nervous system and neurotrophic factors that could be potential targets for novel therapeutic approaches to treat non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Muhammad Amir
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Yu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| |
Collapse
|
7
|
Wang YQ, Wei JG, Tu MJ, Gu JG, Zhang W. Fucoidan Alleviates Acetaminophen-Induced Hepatotoxicity via Oxidative Stress Inhibition and Nrf2 Translocation. Int J Mol Sci 2018; 19:ijms19124050. [PMID: 30558169 PMCID: PMC6321350 DOI: 10.3390/ijms19124050] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that leads to severe hepatotoxicity at excessive doses. Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. However, the impacts of fucoidan on APAP-induced liver injury have not been sufficiently addressed. In the present study, male Institute of Cancer Research (ICR) mice aged 6 weeks were subjected to a single APAP (500 mg/kg) intraperitoneal injection after 7 days of fucoidan (100 or 200 mg/kg/day) or bicyclol intragastric administration. The mice continued to be administered fucoidan or bicyclol once per day, and were sacrificed at an indicated time. The indexes evaluated included liver pathological changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in the liver, and related proteins levels (CYP2E1, pJNK and Bax). Furthermore, human hepatocyte HL-7702 cell line was used to elucidate the potential molecular mechanism of fucoidan. The mitochondrial membrane potential (MMP) and nuclear factor-erythroid 2-related factor (Nrf2) translocation in HL-7702 cells were determined. The results showed that fucoidan pretreatment reduced the levels of ALT, AST, ROS, and MDA, while it enhanced the levels of GSH, SOD, and CAT activities. Additionally, oxidative stress-induced phosphorylated c-Jun N-terminal protein kinase (JNK) and decreased MMP were attenuated by fucoidan. Although the nuclear Nrf2 was induced after APAP incubation, fucoidan further enhanced Nrf2 in cell nuclei and total expression of Nrf2. These results indicated that fucoidan ameliorated APAP hepatotoxicity, and the mechanism might be related to Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jin-Ge Wei
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Meng-Jue Tu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jian-Guo Gu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed Pharmacother 2018; 103:1262-1271. [PMID: 29864907 DOI: 10.1016/j.biopha.2018.04.156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy has been regarded as an inflammation-associated defensive mechanism against chronic liver disease, which has been highlighted as a novel therapeutic target for the treatment of liver fibrosis. We herein aimed to study the effects of catalpol on liver fibrosis in vivo and in vitro, and to elucidate the role of autophagy in catalpol-induced anti-inflammation. Catalpol protected the liver against CCl4-induced injury, as evidenced by mitigated hepatic steatosis, necrosis, and fibrotic septa. Catalpol decreased the serum levels of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and bilirubin as well as the liver/body weight ratio. Masson and sirius red staining along with hydroxyproline detection showed that catalpol decreased collagen deposition significantly compared to that of the model group. Catalpol inhibited CCl4-induced liver fibrosis, manifested as decreased expressions of α-SMA, fibronectin and α1(I)-procollagen at both transcriptional and translational levels. Inflammatory factors, such as IL-1β, TNF-α, IL-18, IL-6 and COX-2, were significantly elevated in rats receiving CCl4 and down-regulated by catalpol in a dose-dependent manner in vivo. Western blot and immunofluorescence assay revealed that catalpol activated the autophagy of rats with CCl4-caused liver fibrosis, as indicated by up-regulation of LC3-II and beclin1 and down-regulation of P62. The results of in vitro experiments were consistent. Interestingly, inhibition or depletion of autophagy by LY294002 or Atg5 siRNA significantly attenuated catalpol-induced anti-inflammatory effects on activated hepatic stellate cells in vitro. In conclusion, catalpol relieved liver fibrosis mainly by inhibiting inflammation, and autophagy inhibition attenuated the catalpol-induced anti-inflammatory effect on liver fibrosis.
Collapse
|