1
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
2
|
Wen D, Ma CL, Zhang YJ, Meng YX, Ni ZY, Li SJ, Cong B. Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence. BMC Neurosci 2012; 13:63. [PMID: 22682150 PMCID: PMC3407485 DOI: 10.1186/1471-2202-13-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Background Cholecystokinin octapeptide (CCK-8), the most potent endogenous anti-opioid peptide, has been shown to regulate the processes of morphine dependence. In our previous study, we found that exogenous CCK-8 attenuated naloxone induced withdrawal symptoms. To investigate the precise effect of exogenous CCK-8 and the role of cholecystokinin (CCK) 1 and/or 2 receptors in morphine dependence, a SH-SY5Y cell model was employed, in which the μ-opioid receptor, CCK1/2 receptors, and endogenous CCK are co-expressed. Results Forty-eight hours after treating SH-SY5Y cells with morphine (10 μM), naloxone (10 μM) induced a cAMP overshoot, indicating that cellular morphine dependence had been induced. The CCK receptor and endogenous CCK were up-regulated after chronic morphine exposure. The CCK2 receptor antagonist (LY-288,513) at 1–10 μM inhibited the naloxone-precipitated cAMP overshoot, but the CCK1 receptor antagonist (L-364,718) did not. Interestingly, CCK-8 (0.1-1 μM), a strong CCK receptor agonist, dose-dependently inhibited the naloxone-precipitated cAMP overshoot in SH-SY5Y cells when co-pretreated with morphine. The L-364,718 significantly blocked the inhibitory effect of exogenous CCK-8 on the cAMP overshoot at 1–10 μM, while the LY-288,513 did not. Therefore, the CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence in SH-SY5Y cells. An additional inhibitory effect of CCK-8 at higher concentrations appears to involve the CCK1 receptor. Conclusions This study reveals the difference between exogenous CCK-8 and endogenous CCK effects on the development of morphine dependence, and provides the first evidence for the participation of the CCK1 receptor in the inhibitory effects of exogenous CCK-8 on morphine dependence.
Collapse
Affiliation(s)
- Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | |
Collapse
|
3
|
Wen D, Cong B, Ma C, Yang S, Yu H, Ni Z, Li S. The effects of exogenous CCK-8 on the acquisition and expression of morphine-induced CPP. Neurosci Lett 2012; 510:24-8. [PMID: 22245440 DOI: 10.1016/j.neulet.2011.12.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/17/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
Cholecystokinin octapeptide (CCK-8) is the most potent endogenous anti-opioid peptide and regulates a variety of physiological processes. In our previous study, we found that exogenous CCK-8 attenuated naloxone-induced withdrawal symptoms, but the possible regulative effects of CCK-8 on the rewarding effects of morphine were not examined. In the present study, we aimed to determine the exact effects of exogenous CCK-8 at various doses on the rewarding action of morphine by utilizing the unbiased conditioned place preference (CPP) paradigm. We therefore examined the effects of CCK-8 on the acquisition, expression and extinction of morphine-induced CPP and on locomotor activity. The results showed that CCK-8 (0.01-1μg, i.c.v.), administered alone, induced neither CPP nor place aversion, but blocked the acquisition of CPP when administered with 10mg/kg morphine. The highest dose of CCK-8 (1μg) administered before CPP testing increased CPP and, along with lower doses (0.1μg), reduced its extinction. In addition, the highest dose (1μg) of CCK-8 suppressed locomotor activity. Our study provides the first behavioral evidence for the inhibitory effects of exogenous CCK-8 on rewarding activity and reveals significant effects of exogenous CCK-8 on various stages of place preference and the development of opioid dependence.
Collapse
Affiliation(s)
- Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | |
Collapse
|
4
|
Heberlein A, Bleich S, Kornhuber J, Hillemacher T. Neuroendocrine pathways in benzodiazepine dependence: new targets for research and therapy. Hum Psychopharmacol 2008; 23:171-81. [PMID: 18088080 DOI: 10.1002/hup.911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepines are known to modulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis by antagonizing the effects of corticotropin-releasing factor (CRH). Besides regulating the HPA axis CRH evolves properties of a neurotransmitter in the limbic system that is closely involved in the delivery of the emotional consequences of the stress response. At a superordinated level Neuropeptide Y (NPY) and Cholecystokinin (CCK) affect the release of CRH and modulate thereby the intensity of the physiological stress response. Benzodiazepine treatment interferes not only with the release of CRH but also with the release of NPY and CCK. Alterations in the intracortical ratio of NPY, CCK and CRH are correlated with behavioural changes like increased respectively decreased anxiety and subsequent alterations in the activity of the HPA axis. Recent research offers the possibility that the alterations of plasma levels of these neuropeptides are not only a secondary phenomenon due to drug intake, but that low levels of those neuropeptides that modulate anxiety and fear can possibly explain addiction to substances that counterbalance these deficits. Depending on the available results possible implications of NPY and CCK on benzodiazepine addiction and withdrawal symptoms are reviewed, thereby providing topics for further research.
Collapse
Affiliation(s)
- Annemarie Heberlein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Germany.
| | | | | | | |
Collapse
|
5
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
6
|
Mällo T, Matrov D, Herm L, Kõiv K, Eller M, Rinken A, Harro J. Tickling-induced 50-kHz ultrasonic vocalization is individually stable and predicts behaviour in tests of anxiety and depression in rats. Behav Brain Res 2007; 184:57-71. [PMID: 17675169 DOI: 10.1016/j.bbr.2007.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/17/2007] [Accepted: 06/26/2007] [Indexed: 11/16/2022]
Abstract
Manipulation of juvenile rats in a way that mimics the rough-and-tumble play and resembles tickling elicits 50-kHz ultrasonic vocalizations (USVs) that have been proposed as a measure of positive affect. In the present experiments the stability of the 50-kHz USV response (chirping) over 1.5 months of daily manipulation and the effect of tickling was studied. By the second week of tickling rats of both sexes developed a level of 50-kHz USVs that remained individually characteristic. During tickling the rats also emitted low levels of 22-kHz USVs. No correlation was found between the two types of USVs. In tests used in anxiety and depression research, tickling on its own had an anxiolytic effect in many experimental settings. Significantly lower levels of [(35)S]GTPgammaS binding to the dopamine-activated receptor-G protein complex in striatum and serotonin transporter levels in the frontal cortex were found in female control rats as compared to males. These differences were eliminated by tickling. Rats which expressed high level of chirping (HC-rats) were similar to low-chirping (LC) rats in anxiety measures but had lower activity in an exploration test and lower sucrose preference. LC-rats adopted more active coping strategies in the forced swimming test. These findings suggest that there are individually characteristic 50-kHz USV response levels to tickling in rats, and that HC- and LC-rats are similar with regard to anxiety levels but have different coping strategies to novelty. The anxiolytic-like changes in behaviour that were brought about by tickling could be mediated by changes in dopamine- and serotonergic systems.
Collapse
Affiliation(s)
- Tanel Mällo
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
7
|
Rünkorg K, Värv S, Matsui T, Kõks S, Vasar E. Differences in behavioural effects of amphetamine and dopamine-related gene expression in wild-type and homozygous CCK2 receptor deficient mice. Neurosci Lett 2006; 406:17-22. [PMID: 16916582 DOI: 10.1016/j.neulet.2006.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/03/2006] [Accepted: 07/06/2006] [Indexed: 11/28/2022]
Abstract
Neuropeptide cholecystokinin (CCK) interacts with dopamine in the regulation of motor activity and motivations. Therefore, in CCK(2) receptor deficient mice the behavioural effects of repeated amphetamine administration and changes in dopamine-related gene expression were studied. Four-day amphetamine (1 mg/kg) treatment induced a significantly stronger motor sensitization in homozygous mice compared to their wild-type littermates. However, in the conditioned place preference test the action of amphetamine was more pronounced in wild-type animals. As opposed to wild-type mice, amphetamine (1-3 mg/kg) did not cause a significant conditioned place preference in homozygous mice. The expression of Tyhy gene was elevated in the mesolimbic structures and Drd2 gene was down-regulated in the mesencephalon of saline-treated homozygous mice in comparison with respective wild-type group. Four-day treatment with amphetamine induced a significant increase in the expression of Tyhy in the mesencephalon, striatum and mesolimbic structures of wild-type mice, whereas in homozygous mice a similar change was evident only in the mesencephalon. Also, the expression of Drd1 gene in the striatum and Drd2 gene in the mesolimbic structures of wild-type mice were up-regulated under the influence of amphetamine. In conclusion, the present study established differences in the behavioural effects of amphetamine in wild-type and homozygous mice. The increased tone of dopaminergic projections from the mesencephalon to mesolimbic structures is probably related to increased amphetamine-induced motor sensitization in homozygous mice. The lack of development of up-regulation of Drd1 and Drd2 genes after repeated treatment with amphetamine probably explains the reduced place conditioning in CCK(2) receptor deficient mice.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Amphetamine-Related Disorders/genetics
- Amphetamine-Related Disorders/metabolism
- Amphetamine-Related Disorders/physiopathology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cholecystokinin/metabolism
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Homozygote
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Receptor, Cholecystokinin B/drug effects
- Receptor, Cholecystokinin B/genetics
- Receptor, Cholecystokinin B/metabolism
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/physiopathology
Collapse
Affiliation(s)
- Kertu Rünkorg
- Department of Physiology, University of Tartu, Ravila 19, Tartu 50411, Estonia.
| | | | | | | | | |
Collapse
|
8
|
Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006; 31:215-30. [PMID: 16738800 DOI: 10.1007/s00726-006-0334-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/06/2006] [Indexed: 11/26/2022]
Abstract
Short CCK peptides elicit panic attacks in humans and anxiogenic-like effects in some animal models, but CCK receptor antagonists have not been found clinically effective. Yet CCK overactivity appears to be involved in submissive behaviour, and CCKB receptor expression and binding are increased in suicide victims and animal models of anxiety. Preliminary data suggest that involvement of CCK and its receptor subtypes in anxiety can be better described when focusing on distinct endophenotypes, and considering environmental contingencies and confounds originating from interactions with dopamin-, opioid- and glutamatergic neurotransmission. In contrast, NPY is an anti-anxiety peptide with robust effects in various animal models when administrated into several brain regions. Studies with non-peptide antagonists selective for receptor subtypes have revealed the role of endogenous NPY in active coping. At least Y1, Y2 and Y5 receptors in various brain regions are involved, with the strongest evidence for contribution of Y1.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology and Psychopharmacological Drug Development Group, Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia.
| |
Collapse
|
9
|
Xie JY, Herman DS, Stiller CO, Gardell LR, Ossipov MH, Lai J, Porreca F, Vanderah TW. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005; 25:409-16. [PMID: 15647484 PMCID: PMC6725495 DOI: 10.1523/jneurosci.4054-04.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 12/13/2022] Open
Abstract
Opioid-induced hyperalgesia is characterized by hypersensitivity to innocuous or noxious stimuli during sustained opiate administration. Microinjection of lidocaine into the rostral ventromedial medulla (RVM), or dorsolateral funiculus (DLF) lesion, abolishes opioid-induced hyperalgesia, suggesting the importance of descending pain facilitation mechanisms. Here, we investigate the possibility that cholecystokinin (CCK), a pronociceptive peptide, may drive such descending facilitation from the RVM during continuous opioid administration. In opioid-naive rats, CCK in the RVM produced acute tactile and thermal hypersensitivity that was antagonized by the CCK2 receptor antagonist L365,260 or by DLF lesion. CCK in the RVM also acutely displaced the spinal morphine antinociceptive dose-response curve to the right. Continuous systemic morphine elicited sustained tactile and thermal hypersensitivity within 3 d. Such hypersensitivity was reversed in a time-dependent manner by L365,260 in the RVM, and blockade of CCK2 receptors in the RVM also blocked the rightward displacement of the spinal morphine antinociceptive dose-response curve. Microdialysis studies in rats receiving continuous morphine showed an approximately fivefold increase in the basal levels of CCK in the RVM when compared with controls. These data suggest that activation of CCK2 receptors in the RVM promotes mechanical and thermal hypersensitivity and antinociceptive tolerance to morphine. Enhanced, endogenous CCK activity in the RVM during sustained morphine exposure may diminish spinal morphine antinociceptive potency by activating descending pain facilitatory mechanisms to exacerbate spinal nociceptive sensitivity. Prevention of opioid-dose escalation in chronic pain states by CCK receptor antagonism represents a potentially important strategy to limit unintended enhanced clinical pain and analgesic tolerance
Collapse
Affiliation(s)
- Jennifer Y Xie
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Alttoa A, Kõiv K, Eller M, Uustare A, Rinken A, Harro J. Effects of low dose N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine administration on exploratory and amphetamine-induced behavior and dopamine D2 receptor function in rats with high or low exploratory activity. Neuroscience 2005; 132:979-90. [PMID: 15857703 DOI: 10.1016/j.neuroscience.2005.01.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/16/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Individual differences in behavioral traits are associated with sensitivity to various neurochemical and psychopharmacological manipulations. In this study exploratory and amphetamine-induced behavior in rats with persistently high or low exploratory activity (HE and LE, respectively) was examined before and after a partial denervation of the locus coeruleus (LC) projections with the selective neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 10 mg/kg). Partial LC denervation prevented the increase in exploratory activity over repeated test sessions in the LE animals, but had no effect in HE-rats. Amphetamine- (0.5 mg/kg) induced locomotor activity was attenuated by DSP-4 pretreatment only in HE-rats. These results suggest differential involvement of LC noradrenergic transmission in novelty- and amphetamine-induced behavior in animals with persistent differences in novelty-related behavior. In addition to partial noradrenaline depletion in the frontal cortex and hippocampus, which occurred in both HE- and LE-rats, DSP-4 treatment also decreased the content of dopamine and its metabolites in the nucleus accumbens, and the metabolite levels in striatum, but only in the LE-animals. 5-HIAA levels were also reduced in the nucleus accumbens and striatum in LE-rats by the neurotoxin. D(2) receptor function, as determined by dopamine-stimulated [(35)S]GTPgammaS binding, was increased by DSP-4 treatment in the striatum of LE-rats, but reduced in HE-rats. No effect of partial LC denervation was found on dopamine-stimulated [(35)S]GTPgammaS binding in the nucleus accumbens. Together these findings suggest that LC noradrenergic neurotransmission is differently involved in dopaminergic mechanisms which mediate novelty-related vs amphetamine-induced behavior.
Collapse
Affiliation(s)
- A Alttoa
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | | | | | | | | | | |
Collapse
|