1
|
El-Agnaf O, Bensmail I, Al-Nesf MAY, Flynn J, Taylor M, Majbour NK, Abdi IY, Vaikath NN, Farooq A, Vemulapalli PB, Schmidt F, Ouararhni K, Al-Siddiqi HH, Arredouani A, Wijten P, Al-Maadheed M, Mohamed-Ali V, Decock J, Abdesselem HB. Uncovering a neurological protein signature for severe COVID-19. Neurobiol Dis 2023; 182:106147. [PMID: 37178811 PMCID: PMC10174474 DOI: 10.1016/j.nbd.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.
Collapse
Affiliation(s)
- Omar El-Agnaf
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maryam A Y Al-Nesf
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | | | | | - Nour K Majbour
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdulaziz Farooq
- Aspetar Hospital, Orthopaedic and Sports Medicine, Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Heba H Al-Siddiqi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
2
|
Nguyen HD, Jo WH, Hoang NHM, Kim MS. Risperidone ameliorated 1,2-Diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharmacol 2023; 115:109726. [PMID: 36641890 DOI: 10.1016/j.intimp.2023.109726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Cognitive impairment and organic solvent exposure have been becoming public health concerns due to an increasingly aging population, increased life expectancy, urbanization, and industrialization. Converging evidence indicates the link between 1,2-diacetylbenzene (DAB), prolactin (PRL), risperidone, and cognitive impairment. However, these relationships remain unclear. We investigated the therapeutic properties of risperidone in DAB-induced cognitive impairment using both in vivo and in silico methods. Risperidone alleviated DAB-induced cognitive impairment in hippocampal mice, possibly by inhibiting GSK-3β, β-amyloid, CDK5, BACE, and tau hyperphosphorylation. Risperidone also attenuated the activation of TREM-1/DAP12/NLRP3/caspase-1/IL-1β, and TLR4/NF-κB pathways caused by DAB. Furthermore, risperidone inhibited DAB-induced oxidative stress, advanced glycation end products, and proinflammatory cytokines, as well as increased the expression of Nrf2, IL-10, Stat3, MDM2, and catalase activity. On the other hand, risperidone activated the expression of IRS1, PI3K, AKT, BDNF, Drd2, Scna5, and Trt as well as reduced the Bax/Bcl2 ratio and Caspase-3 levels. In silico analyses identified the prolactin signaling pathway, miR-155-5p, miR-34a-5p, and CEBPB as the main molecular mechanisms involved in the pathophysiology of DAB-induced cognitive impairment and targeted by risperidone. Our results suggest that risperidone could be used to treat cognitive impairment caused by organic solvents, especially DAB.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
3
|
Malekizadeh Y, Williams G, Kelson M, Whitfield D, Mill J, Collier DA, Ballard C, Jeffries AR, Creese B. Whole transcriptome in silico screening implicates cardiovascular and infectious disease in the mechanism of action underlying atypical antipsychotic side effects. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12078. [PMID: 32864416 PMCID: PMC7443741 DOI: 10.1002/trc2.12078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stroke/thromboembolic events, infections, and death are all significantly increased by antipsychotics in dementia but little is known about why they can be harmful. Using a novel application of a drug repurposing paradigm, we aimed to identify potential mechanisms underlying adverse events. METHODS Whole transcriptome signatures were generated for SH-SY5Y cells treated with amisulpride, risperidone, and volinanserin using RNA sequencing. Bioinformatic analysis was performed that scored the association between antipsychotic signatures and expression data from 415,252 samples in the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) repository. RESULTS Atherosclerosis, venous thromboembolism, and influenza NCBI GEO-derived samples scored positively against antipsychotic signatures. Pathways enriched in antipsychotic signatures were linked to the cardiovascular and immune systems (eg, brain derived neurotrophic factor [BDNF], platelet derived growth factor receptor [PDGFR]-beta, tumor necrosis factor [TNF], transforming growth factor [TGF]-beta, selenoamino acid metabolism, and influenza infection). CONCLUSIONS These findings for the first time mechanistically link antipsychotics to specific cardiovascular and infectious diseases which are known side effects of their use in dementia, providing new information to explain related adverse events.
Collapse
Affiliation(s)
- Yasaman Malekizadeh
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Gareth Williams
- College of Engineering Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Mark Kelson
- Wolfson Centre for Age‐Related DiseaseInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - David Whitfield
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Jonathan Mill
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | | | - Clive Ballard
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Aaron R. Jeffries
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Byron Creese
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| |
Collapse
|
4
|
Boloc D, Rodríguez N, Torres T, García-Cerro S, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M, Gassó P, Lafuente A, Mas S, Arnaiz JA. Identifying key transcription factors for pharmacogenetic studies of antipsychotics induced extrapyramidal symptoms. Psychopharmacology (Berl) 2020; 237:2151-2159. [PMID: 32382784 DOI: 10.1007/s00213-020-05526-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We explore the transcription factors involved in the molecular mechanism of antipsychotic (AP)-induced acute extrapyramidalsymptoms (EPS) in order to identify new candidate genes for pharmacogenetic studies. METHODS Protein-protein interaction (PPI) networks previously created from three pharmacogenomic models (in vitro, animal, and peripheral blood inhumans) were used to, by means of several bioinformatic tools; identify key transcription factors (TFs) that regulate each network. Once the TFs wereidentified, SNPs disrupting the binding sites (TFBS) of these TFs in the genes of each network were selected for genotyping. Finally, SNP-basedassociations with EPS were analyzed in a sample of 356 psychiatric patients receiving AP. RESULTS Our analysis identified 33 TFs expressed in the striatum, and 125 SNPs disrupting TFBS in 50 genes of our initial networks. Two SNPs (rs938112,rs2987902) in two genes (LSMAP and ABL1) were significantly associated with AP induced EPS (p < 0.001). These SNPs disrupt TFBS regulated byPOU2F1. CONCLUSION Our results highlight the possible role of the disruption of TFBS by SNPs in the pharmacological response to AP.
Collapse
Affiliation(s)
- Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Teresa Torres
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Susana García-Cerro
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Jeronimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Hospital Ramon y Cajal, Universidad de Alcala, IRYCIS, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry, Complejo Hospitalario de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miquel Bernardo
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Patricia Gassó
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain.
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Joan Albert Arnaiz
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Improving pharmacogenetic prediction of extrapyramidal symptoms induced by antipsychotics. Transl Psychiatry 2018; 8:276. [PMID: 30546092 PMCID: PMC6293322 DOI: 10.1038/s41398-018-0330-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
In previous work we developed a pharmacogenetic predictor of antipsychotic (AP) induced extrapyramidal symptoms (EPS) based on four genes involved in mTOR regulation. The main objective is to improve this predictor by increasing its biological plausibility and replication. We re-sequence the four genes using next-generation sequencing. We predict functionality "in silico" of all identified SNPs and test it using gene reporter assays. Using functional SNPs, we develop a new predictor utilizing machine learning algorithms (Discovery Cohort, N = 131) and replicate it in two independent cohorts (Replication Cohort 1, N = 113; Replication Cohort 2, N = 113). After prioritization, four SNPs were used to develop the pharmacogenetic predictor of AP-induced EPS. The model constructed using the Naive Bayes algorithm achieved a 66% of accuracy in the Discovery Cohort, and similar performances in the replication cohorts. The result is an improved pharmacogenetic predictor of AP-induced EPS, which is more robust and generalizable than the original.
Collapse
|
6
|
Zygmunt M, Piechota M, Rodriguez Parkitna J, Korostyński M. Decoding the transcriptional programs activated by psychotropic drugs in the brain. GENES BRAIN AND BEHAVIOR 2018; 18:e12511. [PMID: 30084543 DOI: 10.1111/gbb.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Analysis of drug-induced gene expression in the brain has long held the promise of revealing the molecular mechanisms of drug actions as well as predicting their long-term clinical efficacy. However, despite some successes, this promise has yet to be fulfilled. Here, we present an overview of the current state of understanding of drug-induced gene expression in the brain and consider the obstacles to achieving a robust prediction of the properties of psychoactive compounds based on gene expression profiles. We begin with a comprehensive overview of the mechanisms controlling drug-inducible transcription and the complexity resulting from expression of noncoding RNAs and alternative gene isoforms. Particular interest is placed on studies that examine the associations within drug classes with regard to the effects on gene transcription, alterations in cell signaling and neuropharmacological drug properties. While the ability of gene expression signatures to distinguish specific clinical classes of psychotropic and addictive drugs remains unclear, some reports show that under specific constraints, drug properties can be predicted based on gene expression. Such signatures offer a simple and effective way to classify psychotropic drugs and screen novel psychoactive compounds. Finally, we note that the amount of data regarding molecular programs activated in the brain by drug treatment has grown exponentially in recent years and that future advances may therefore come in large part from integrating the currently available high-throughput data sets.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Xue F, Chen YC, Zhou CH, Wang Y, Cai M, Yan WJ, Wu R, Wang HN, Peng ZW. Risperidone ameliorates cognitive deficits, promotes hippocampal proliferation, and enhances Notch signaling in a murine model of schizophrenia. Pharmacol Biochem Behav 2017; 163:101-109. [PMID: 29037878 DOI: 10.1016/j.pbb.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Antipsychotic agents have been reported to promote hippocampal neurogenesis and improve cognitive deficits; yet, the molecular mechanisms underlying these actions remain unclear. In the present study, we used a murine model of schizophrenia induced by 5-day intraperitoneal injection with the non-competitive N-methyl-d-aspartate receptor antagonist MK801 (0.3mg/kg/day) to assess cognitive behavioral deficits, changes in Notch signaling, and cellular proliferation in the hippocampus of adult male C57BL/6 mice after 2-week administration of risperidone (Rip, 0.2mg/kg/day) or vehicle. We then utilized in vivo stereotaxic injections of a lentivirus expressing a short hairpin RNA (shRNA) for Notch1 into the dentate gyrus to examine the role of Notch1 in the observed actions of Rip. We found that Rip ameliorated cognitive deficits and restored cell proliferation in MK801-treated mice in a manner associated with the up-regulation of Notch signaling molecules, including Notch1, Hes1, and Hes5. Moreover, these effects were abolished by pretreatment with Notch1 shRNA. Our results suggest that the ability of Rip to improve cognitive function in schizophrenia is mediated in part by Notch signaling.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Chun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Rui Wu
- Xi'an Center for Disease Control and Prevention, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Chao MW, Yang CH, Lin PT, Yang YH, Chuang YC, Chung MC, Tseng CY. Exposure to PM 2.5 causes genetic changes in fetal rat cerebral cortex and hippocampus. ENVIRONMENTAL TOXICOLOGY 2017; 32:1412-1425. [PMID: 27539004 DOI: 10.1002/tox.22335] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 05/06/2023]
Abstract
PM2.5 travels along the respiratory tract and enters systemic blood circulation. Studies have shown that PM2.5 increases the incidence of various diseases not only in adults but also in newborn infants. It causes chronic inflammation in pregnant women and retards fetal development. In this study, pregnant rats were exposed to PM2.5 for extended periods of time and it was found that PM2.5 exposure increased immune cells in mother rats. In addition, cytokines and free radicals rapidly accumulated in the amniotic fluid and indirectly affected the fetuses. The authors collected cerebral cortex and hippocampus samples at E18 and analyzed changes of miRNA levels. Expression levels of cortical miR-6315, miR-3588, and miR-466b-5p were upregulated, and positively correlated with the genes Pkn2 (astrocyte migration), Gorab (neuritogenesis), and Mobp (allergic encephalomyelitis). In contrast, PM2.5 decreased expression of miR-338-5p and let-7e-5p, both related to mental development. Further, PM2.5 exposure increased miR-3560 and let-7b-5p in the hippocampus, two proteins that regulate genes Oxct1 and Lin28b that control ketogenesis and glycosylation, and neural cell differentiation, respectively. miR-99b-5p, miR-92b-5p, and miR-99a-5p were decreased, leading to reduced expression of Kbtbd8 and Adam11 which reduced cell mitosis, migration, and differentiation, and inhibited learning abilities and motor coordination of the fetus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1412-1425, 2017.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
- Center for Nanotechnology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Chin-Hua Yang
- Department of Diagnostic Radiology, Taoyuan General Hospital, Taoyaun, 310, Taiwan
- Departmewnt of Biomedical Engineering and Environmental Science, National Tsing Hua University, East District, Hsinchu 300, Taiwan
| | - Po-Ting Lin
- Department of Mechanical Engineering, College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Yu-Hsiu Yang
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Meng-Chi Chung
- Department of Bioscience Technology College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Chia-Yi Tseng
- Center for Nanotechnology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| |
Collapse
|
9
|
Vanwong N, Ngamsamut N, Medhasi S, Puangpetch A, Chamnanphon M, Tan-Kam T, Hongkaew Y, Limsila P, Sukasem C. Impact of CYP2D6 Polymorphism on Steady-State Plasma Levels of Risperidone and 9-Hydroxyrisperidone in Thai Children and Adolescents with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2017; 27:185-191. [PMID: 26780783 DOI: 10.1089/cap.2014.0171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the influence of CYP2D6 gene polymorphisms on plasma concentrations of risperidone and its metabolite in Thai children and adolescents with autism spectrum disorder (ASD). METHODS All 97 autism spectrum disorder patients included in this study had been receiving risperidone at least for 1 month. The CYP2D6 genotypes were determined by real-time polymerase chain reaction (PCR)-based allelic discrimination for CYP2D6*4, *10, and *41 alleles. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Among the 97 patients, the most important nonfunctional alleles (CYP2D6*4 and *5) were detected, whereas the most common allele was CYP2D6*10 (55.9%). CYP2D6 genotyping revealed 90 (92.78%) patients to be extensive metabolizers (EM) and 7 (7.22%) to be intermediate metabolizers (IM). Plasma levels of risperidone were significantly higher in individuals with CYP2D6*5/*10 (p = 0.02), CYP2D6*10/*10 (p = 0.04), and CYP2D6*10/*41 (p = 0.04). Additionally, the plasma concentration of risperidone/9-OH risperidone ratio in patients with a CYP2D6 activity score of 0.5 were significantly higher than those with a CYP2D6 activity score of 2 (p = 0.04). Conversely, no significant influence was found among CYP2D6 polymorphisms, plasma concentrations of 9-hydroxyrisperidone, and the total active moiety. CONCLUSIONS This is the first study to investigate the effects of CYP2D6 genetic polymorphisms on the plasma concentrations of risperidone in Thai children with ASD. The findings indicate that CYP2D6 polymorphisms affect the plasma concentrations of risperidone and the risperidone/9-hydroxyrisperidone ratio. Genetic screening for CYP2D6 polymorphisms could help to predict unexpected adverse events caused by the higher plasma concentration of risperidone.
Collapse
Affiliation(s)
- Natchaya Vanwong
- 1 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok, Thailand .,2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand
| | - Nattawat Ngamsamut
- 3 Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital , Department of Mental Health Services, Ministry of Public Health, Muang, Samutprakan, Thailand
| | - Sadeep Medhasi
- 2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand .,4 Department of Pharmacology, Faculty of Science, Mahidol University , Bangkok, Thailand
| | - Apichaya Puangpetch
- 1 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok, Thailand .,2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand
| | - Montri Chamnanphon
- 1 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok, Thailand .,2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand
| | - Teerarat Tan-Kam
- 3 Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital , Department of Mental Health Services, Ministry of Public Health, Muang, Samutprakan, Thailand
| | - Yaowaluck Hongkaew
- 1 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok, Thailand .,2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand
| | - Penkhae Limsila
- 3 Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital , Department of Mental Health Services, Ministry of Public Health, Muang, Samutprakan, Thailand
| | - Chonlaphat Sukasem
- 1 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok, Thailand .,2 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC) , Ramathibodi Hospital, Bangkok, Thailand
| |
Collapse
|
10
|
Puangpetch A, Vanwong N, Nuntamool N, Hongkaew Y, Chamnanphon M, Sukasem C. CYP2D6 polymorphisms and their influence on risperidone treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2016; 9:131-147. [PMID: 27942231 PMCID: PMC5138038 DOI: 10.2147/pgpm.s107772] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 enzyme especially CYP2D6 plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of CYP2D6 polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice. Although the previous studies showed different results, the effective responses in risperidone treatment depend on the CYP2D6 polymorphisms. Several studies suggested that CYP2D6 polymorphisms were associated with plasma concentration of risperidone, 9-hydroxyrisperidone, and active moiety but did not impact on clinical outcomes. In addition, CYP2D6 poor metabolizer showed more serious adverse events such as weight gain and prolactin than other predicted phenotype groups. The knowledge of pharmacogenomics of CYP2D6 in risperidone treatment is increasing, and it can be used for the development of personalized medication in term of genetic-based dose recommendation. Moreover, the effects of many factors in risperidone treatment are still being investigated. Both the CYP2D6 genotyping and therapeutic drug monitoring are the important steps to complement the genetic-based risperidone treatment.
Collapse
Affiliation(s)
- Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Nopphadol Nuntamool
- Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Monpat Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| |
Collapse
|
11
|
Vanwong N, Ngamsamut N, Hongkaew Y, Nuntamool N, Puangpetch A, Chamnanphon M, Sinrachatanant A, Limsila P, Sukasem C. Detection of CYP2D6 polymorphism using Luminex xTAG technology in autism spectrum disorder: CYP2D6 activity score and its association with risperidone levels. Drug Metab Pharmacokinet 2016; 31:156-62. [PMID: 26944100 DOI: 10.1016/j.dmpk.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 11/19/2022]
Abstract
CYP2D6 is involved in the biotransformation of a large number of drugs, including risperidone. This study was designed to detect CYP2D6 polymorphisms with a Luminex assay, including assessment the relationship of CYP2D6 polymorphisms and risperidone plasma concentration in autism spectrum disorder children (ASD) treated with risperidone. All 84 ASD patients included in this study had been receiving risperidone at least for 1 month. The CYP2D6 genotypes were determined by Luminex assay. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using LC/MS/MS. Among the 84 patients, there were 46 (55.42%) classified as EM, 33 (39.76%) as IM, and 4(4.82%) as UM. The plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients were significant differences among the CYP2D6 predicted phenotype group (P = 0.001 and P < 0.0001 respectively). Moreover, the plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients with CYP2D6 activity score 0.5 were significantly higher than those with the CYP2D6 activity score 2.0 (P = 0.004 and P = 0.002 respectively). These findings suggested that the determination of the accurate CYP2D6 genotype-predicted phenotype is essential in the clinical setting and individualization of drug therapy. The use of the Luminex assay for detection of CYP2D6 polymorphisms could help us more accurately identify an individual's CYP2D6 phenotype.
Collapse
Affiliation(s)
- Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nattawat Ngamsamut
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nopphadol Nuntamool
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand; Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Montri Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Ananya Sinrachatanant
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Thailand
| | - Penkhae Limsila
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
12
|
Mas S, Gassó P, Lafuente A. Applicability of gene expression and systems biology to develop pharmacogenetic predictors; antipsychotic-induced extrapyramidal symptoms as an example. Pharmacogenomics 2015; 16:1975-88. [PMID: 26556470 DOI: 10.2217/pgs.15.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacogenetics has been driven by a candidate gene approach. The disadvantage of this approach is that is limited by our current understanding of the mechanisms by which drugs act. Gene expression could help to elucidate the molecular signatures of antipsychotic treatments searching for dysregulated molecular pathways and the relationships between gene products, especially protein-protein interactions. To embrace the complexity of drug response, machine learning methods could help to identify gene-gene interactions and develop pharmacogenetic predictors of drug response. The present review summarizes the applicability of the topics presented here (gene expression, network analysis and gene-gene interactions) in pharmacogenetics. In order to achieve this, we present an example of identifying genetic predictors of extrapyramidal symptoms induced by antipsychotic.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amelia Lafuente
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
13
|
Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms. THE PHARMACOGENOMICS JOURNAL 2015; 16:293-300. [PMID: 26122020 DOI: 10.1038/tpj.2015.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022]
Abstract
To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.
Collapse
|
14
|
Santana MHA, Ventura RV, Utsunomiya YT, Neves HHR, Alexandre PA, Oliveira Junior GA, Gomes RC, Bonin MN, Coutinho LL, Garcia JF, Silva SL, Fukumasu H, Leme PR, Ferraz JBS. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J Anim Breed Genet 2015; 132:420-7. [PMID: 26016521 DOI: 10.1111/jbg.12167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/11/2015] [Indexed: 01/02/2023]
Abstract
The aim of this study was to identify candidate genes and genomic regions associated with ultrasound-derived measurements of the rib-eye area (REA), backfat thickness (BFT) and rumpfat thickness (RFT) in Nellore cattle. Data from 640 Nellore steers and young bulls with genotypes for 290 863 single nucleotide polymorphisms (SNPs) were used for genomewide association mapping. Significant SNP associations were explored to find possible candidate genes related to physiological processes. Several of the significant markers detected were mapped onto functional candidate genes including ARFGAP3, CLSTN2 and DPYD for REA; OSBPL3 and SUDS3 for BFT; and RARRES1 and VEPH1 for RFT. The physiological pathway related to lipid metabolism (CLSTN2, OSBPL3, RARRES1 and VEPH1) was identified. The significant markers within previously reported QTLs reinforce the importance of the genomic regions, and the other loci offer candidate genes that have not been related to carcass traits in previous investigations.
Collapse
Affiliation(s)
- M H A Santana
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - R V Ventura
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil.,Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Beef Improvement Opportunties (BIO), Guelph, ON, Canada
| | - Y T Utsunomiya
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, Brazil
| | - H H R Neves
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, Brazil.,GenSys Consultores Associados S/C Ltda, Porto Alegre, Brazil
| | - P A Alexandre
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - G A Oliveira Junior
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - R C Gomes
- Empresa Brasileira de Pesquisa Agropecuária, CNPGC/EMBRAPA, Campo Grande, Brazil
| | - M N Bonin
- Empresa Brasileira de Pesquisa Agropecuária, CNPGC/EMBRAPA, Campo Grande, Brazil
| | - L L Coutinho
- Escola Superior de Agricultura Luiz de Queiroz, USP, Piracicaba, Brazil
| | - J F Garcia
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, Brazil
| | - S L Silva
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - H Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - P R Leme
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| | - J B S Ferraz
- Faculdade de Zootecnia e Engenharia de Alimentos - USP, Pirassununga, Brazil
| |
Collapse
|
15
|
Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms. THE PHARMACOGENOMICS JOURNAL 2015; 15:452-60. [PMID: 25623440 DOI: 10.1038/tpj.2014.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.
Collapse
Affiliation(s)
- S Mas
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - P Gassó
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Parellada
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Bernardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain.,Department Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - A Lafuente
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
16
|
Weight gain in risperidone therapy: investigation of peripheral hypothalamic neurohormone levels in psychotic patients. J Clin Psychopharmacol 2013; 33:608-13. [PMID: 23807284 DOI: 10.1097/jcp.0b013e318297980e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of antipsychotic drugs has started a new era in the treatment of psychotic disorders. Nevertheless, they cause complications in the long-term treatment, which is mainly weight gain. In this study, we investigated circulating levels of hypothalamic neuropeptides, which are related to appetite regulation, neuropeptide Y (NPY), α-melanocyte-stimulating hormone (α-MSH), cocaine- and amphetamine-regulated transcript (CART), and leptin, in first-attack psychotic patients who were treated with an atypical antipsychotic drug, risperidone, for 4 weeks. We used a case-control association design to compare the neuropeptides in the control group versus before and after treatment of the patient group. Samples were obtained from psychotic patients who were admitted to the Psychiatry Outpatient Clinics, Gulhane School of Medicine, Ankara, Turkey. When compared with the control group, NPY and α-MSH plasma levels of psychotic patients were severely reduced, and the CART levels were substantially increased when they were first diagnosed (before treatment). However, the patients' body mass index and circulating leptin levels were markedly high after the treatment. Circulating levels of those neurohormones were not significantly changed between before and after treatment of the patients. These data demonstrate that peripheral α-MSH and NPY, although reflecting only secretion from peripheral organs, nevertheless, may provide an insight into the patients sympathetic tone and also suggest change of their appetite regulation. α-Melanocyte-stimulating hormone, NPY, and CART plasma levels may be used as a predictor of weight gain in the early treatment of the patients along with the leptin levels.
Collapse
|