1
|
Sagar KA, Gruber SA. The Complex Relationship Between Cannabis Use and Mental Health: Considering the Influence of Cannabis Use Patterns and Individual Factors. CNS Drugs 2025; 39:113-125. [PMID: 39753766 DOI: 10.1007/s40263-024-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/27/2025]
Abstract
The relationship between cannabis use and mental health is complex, as studies often report seemingly contradictory findings regarding whether cannabis use results in more positive or negative treatment outcomes. With an increasing number of individuals using cannabis for both recreational (i.e., non-medical) and medical purposes, it is critical to gain a deeper understanding of the ways in which cannabis may be helpful or harmful for those diagnosed with psychiatric disorders. Although cannabis is composed of hundreds of compounds, studies assessing the effects of "cannabis" most often report the impact of delta-9-tetrahydrocannabinol (d9-THC), the primary intoxicating constituent of the plant. While d9-THC has documented therapeutic properties, negative clinical outcomes commonly associated with cannabis are generally related to d9-THC exposure. In contrast, non-intoxicating cannabinoids such as cannabidiol (CBD) show promise as potential treatment options for psychiatric symptoms. In this article, findings from studies and reviews examining the relationship between mental health conditions (mood, anxiety, psychosis, and post-traumatic stress disorder [PTSD]) and cannabis use are summarized to highlight critical variables that are often overlooked, including those associated with cannabis use patterns (e.g., frequency of use, amount used, cannabinoid exposure, product choice, and route of administration). Further, this article explores individual factors (e.g., age, sex, genetics/family history) that likely impact cannabis-related outcomes. Research to date suggests that youth and those with a family history or genetic liability for psychiatric disorders are at higher risk for negative outcomes, while more research is needed to fully understand unique effects related to sex and older age.
Collapse
Affiliation(s)
- Kelly A Sagar
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, McLean Imaging Center, Belmont, MA, USA.
- Marijuana Investigations for Neuroscientific Discovery (MIND) Program, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, McLean Imaging Center, Belmont, MA, USA
- Marijuana Investigations for Neuroscientific Discovery (MIND) Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Pedrazzi JFC, Sales AJ, Ponciano RSM, Ferreira LG, Ferreira FR, Campos AC, Hallak JEC, Zuardi AW, Del Bel EA, Guimarães FS, Crippa JA. Acute cannabidiol treatment reverses behavioral impairments induced by embryonic valproic acid exposure in male mice. Pharmacol Biochem Behav 2025; 247:173919. [PMID: 39615556 DOI: 10.1016/j.pbb.2024.173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Cannabidiol (CBD), the major non-psychotomimetic compound of the Cannabis sativa plant, has shown promising effects in addressing various symptoms associated with autism spectrum disorder (ASD). This neurodevelopmental disorder typically impacts cognitive, behavioral, social communication, and motor skills domains. However, effective treatments for the wide range of symptoms associated with the disorder are limited and may trigger undesirable effects. Embryonic exposure to valproic acid (VPA, 500 mg/kg at 12° day embryonic age) in rodents is a consolidated environmental model for studying behavioral and molecular characteristics related to ASD. Therefore, this study aimed to evaluate whether acute CBD could reverse behavioral impairments in adult mice (eight weeks) exposed to VPA in the embryonic period in four distinct trials. In independent groups of animals, the following assays were conducted: I) Pre-Pulse Inhibition Test (PPI), II) Marble Burying, III) Social Interaction, IV) Actimeter Test, and V) Novel Object Recognition Test (NOR). In the PPI paradigm, mice exposed to VPA showed PPI impairment, and CBD (30 and 60 mg/kg) reversed this disruption. CBD (60 mg/kg) respectively decreased the number of buried marbles, improved social interaction time, but failed to reduce stereotyped-like movements in the VPA group. In NOR test CBD at both doses reversed the impairment in index of recognition induced in VPA group. These findings suggest that acute CBD administration can ameliorate behavioral impairments associated with ASD in a well-established animal model for studying this neurodevelopmental disorder.
Collapse
Affiliation(s)
- J F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - A J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R S M Ponciano
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L G Ferreira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F R Ferreira
- Research Group in Neurodevelopment and Psychiatric Disorder, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - E A Del Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Snooks T, Stewart SH, Romero-Sanchiz P, DeGrace S, Barrett SP, Bernusky HCR, Tibbo PG. The roles of cannabis potency and gender in cannabis dependence and anxiety in recent cannabis users with trauma exposure histories. Pharmacol Res 2025; 212:107586. [PMID: 39828102 DOI: 10.1016/j.phrs.2025.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Over the past 20 years, levels of Δ9-tetrahydrocannabinol (THC) in cannabis have significantly increased, while levels of cannabidiol (CBD) have increased much less in comparison. Cannabis with higher THC potency (commonly assessed via THC:CBD ratio) may increase the risk for cannabis dependence and trigger/exacerbate anxiety. However, few studies of cannabis potency effects on cannabis dependence and anxiety have examined gender moderation. Additionally, there are issues with how cannabis potency is calculated via the THC:CBD ratio that may contribute to inconsistencies in the literature. N = 202 (55.8 % women) recent cannabis users (>1 g in the past month) with trauma histories - a group at high risk for anxiety and cannabis dependence - completed an online survey including a self-report measure of THC and CBD levels in participants' typically-used cannabis product. Cannabis potency was calculated as THC:CBD ratio (THC%/CBD%) and as relative THC proportion (THC%/[THC%+CBD%]). Cannabis dependence and anxiety levels were self-reported on the Cannabis Use Disorder Identification Test-Revised (CUDIT-R) and Generalized Anxiety Disorder-7 (GAD-7), respectively. Consistent with prior findings in the general population, cannabis potency was significantly positively correlated with cannabis dependence, p = .002, and anxiety levels, p = .020, but only when assessed via THC proportion and not THC:CBD ratio. Consistent with prior research, women reported significantly higher anxiety levels but also unexpectedly, higher THC:CBD ratios, than men. No significant gender differences were found in the associations of either potency measure with either outcome variable. Results are consistent with recent reports of gender convergence in cannabis use prevalence. Additionally, these results identify relative THC proportion as a superior predictor of adverse cannabis and anxiety outcomes than the THC:CBD ratio in both men and women.
Collapse
Affiliation(s)
- T Snooks
- Department of Psychiatry, Dalhousie University, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, NS B3H 2E2, Canada.
| | - S H Stewart
- Department of Psychiatry, Dalhousie University, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, NS B3H 2E2, Canada; Department of Psychology & Neuroscience, Dalhousie University, 1355 Oxford Street, Life Sciences Centre (Psychology Wing), P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - P Romero-Sanchiz
- School of Psychology, University of Sussex, Pevensey 1 Building, Falmer BN1 9QH, United Kingdom
| | - S DeGrace
- Department of Psychiatry, Dalhousie University, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, NS B3H 2E2, Canada
| | - S P Barrett
- Department of Psychology & Neuroscience, Dalhousie University, 1355 Oxford Street, Life Sciences Centre (Psychology Wing), P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - H C R Bernusky
- Department of Psychology, York University, Behavioural Sciences Building, 4700 Keele St, Toronto, Ontario M3J 1P3, Canada
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
4
|
Andrei C, Nitulescu GM, Nitulescu G, Zanfirescu A. Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality. PHARMACY 2024; 12:176. [PMID: 39728841 DOI: 10.3390/pharmacy12060176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, the European market, including Romania, has witnessed a significant increase in the promotion of cannabidiol (CBD)-based products, often presented as effective treatments for various health conditions. This study investigates the inconsistencies between the health claims associated with these supplements and the evidence from clinical trials. To identify products available on the Romanian market, a systematic review of online pharmacies and websites that specialize in selling CBD-based products has been performed. Additionally, a systematic review of clinical trials has been conducted to assess the efficacy of CBD for the specified indications. Our analysis revealed that some claims, such as those related to post-traumatic stress disorder, lack substantial clinical evidence. Moreover, even when clinical support exists, the dosages recommended for the supplements are often significantly lower than those used in trials, raising concerns about their efficacy. These findings highlight the need for stricter regulatory oversight and more transparent communication to ensure that consumer expectations are aligned with scientific evidence, ultimately promoting informed decision-making and consumer safety.
Collapse
Affiliation(s)
- Corina Andrei
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
5
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
7
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bortoletto R, Piscitelli F, Candolo A, Bhattacharyya S, Balestrieri M, Colizzi M. Questioning the role of palmitoylethanolamide in psychosis: a systematic review of clinical and preclinical evidence. Front Psychiatry 2023; 14:1231710. [PMID: 37533892 PMCID: PMC10390736 DOI: 10.3389/fpsyt.2023.1231710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential. Methods This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis. Results Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied. Discussion Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder. Systematic review registration https://doi.org/10.17605/OSF.IO/AFMTK.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Anna Candolo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Aziz AI, Nguyen LC, Oumeslakht L, Bensussan A, Ben Mkaddem S. Cannabinoids as Immune System Modulators: Cannabidiol Potential Therapeutic Approaches and Limitations. Cannabis Cannabinoid Res 2022; 8:254-269. [PMID: 36413346 DOI: 10.1089/can.2022.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.
Collapse
Affiliation(s)
- Abdel-ilah Aziz
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Loubna Oumeslakht
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Armand Bensussan
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France
| | - Sanae Ben Mkaddem
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. RECENT FINDINGS Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. SUMMARY Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
|
11
|
Khalsa JH, Bunt G, Blum K, Maggirwar SB, Galanter M, Potenza MN. Review: Cannabinoids as Medicinals. CURRENT ADDICTION REPORTS 2022; 9:630-646. [PMID: 36093358 PMCID: PMC9449267 DOI: 10.1007/s40429-022-00438-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 12/04/2022]
Abstract
Purpose of review
There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. Recent findings Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. Summary Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
Affiliation(s)
- Jag H. Khalsa
- Division of Therapeutics and Medical Consequences, Medical Consequences of Drug Abuse and Infections Branch, National Institute on Drug Abuse, NIH, Special Volunteer, 16071 Industrial Drive, Gaithersburg, MD 20877 USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
- Drug Addiction and Co-occurring Infections, Aldie, VA 20105-5572 USA
| | - Gregory Bunt
- Samaritan Day Top Village, NYU School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Kenneth Blum
- Center for Behavioral Health & Sports, Western University Health Sciences, Pomona, CA USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Division of Nutrigenomics, Precision Translational Medicine, LLC, San Antonio, TX USA
- Division of Nutrigenomics, Institute of Behavior & Neurogenetics, LLC, San Antonio, TX USA
- Department of Psychiatry, University of Vermont, Burlington, VT USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
| | - Marc Galanter
- Department of Psychiatry, NYU School of Medicine, 550 First Avenue, Room NBV20N28, New York, NY 10016 USA
| | - Marc N. Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Rm726, New Haven, CT 06510 USA
| |
Collapse
|
12
|
Pedrazzi JFC, Ferreira FR, Silva-Amaral D, Lima DA, Hallak JEC, Zuardi AW, Del-Bel EA, Guimarães FS, Costa KCM, Campos AC, Crippa ACS, Crippa JAS. Cannabidiol for the treatment of autism spectrum disorder: hope or hype? Psychopharmacology (Berl) 2022; 239:2713-2734. [PMID: 35904579 DOI: 10.1007/s00213-022-06196-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Frederico R Ferreira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel A Lima
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine A Del-Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla C M Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C S Crippa
- Graduate Program in Child and Adolescent Health, Neuropediatric Center of the Hospital of Clinics (CENEP), Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Lu C, Feng Y, Li H, Gao Z, Zhu X, Hu J. A preclinical study of deep brain stimulation in the ventral tegmental area for alleviating positive psychotic-like behaviors in mice. Front Hum Neurosci 2022; 16:945912. [PMID: 36034113 PMCID: PMC9399924 DOI: 10.3389/fnhum.2022.945912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a clinical intervention for the treatment of movement disorders. It has also been applied to the treatment of psychiatric disorders such as depression, anorexia nervosa, obsessive-compulsive disorder, and schizophrenia. Psychiatric disorders including schizophrenia, bipolar disorder, and major depression can lead to psychosis, which can cause patients to lose touch with reality. The ventral tegmental area (VTA), located near the midline of the midbrain, is an important region involved in psychosis. However, the clinical application of electrical stimulation of the VTA to treat psychotic diseases has been limited, and related mechanisms have not been thoroughly studied. In the present study, hyperlocomotion and stereotyped behaviors of the mice were employed to mimic and evaluate the positive-psychotic-like behaviors. We attempted to treat positive psychotic-like behaviors by electrically stimulating the VTA in mice and exploring the neural mechanisms behind behavioral effects. Local field potential recording and in vivo fiber photometry to observe the behavioral effects and changes in neural activities caused by DBS in the VTA of mice. Optogenetic techniques were used to verify the neural mechanisms underlying the behavioral effects induced by DBS. Our results showed that electrical stimulation of the VTA activates local gamma-aminobutyric acid (GABA) neurons, and dopamine (DA) neurons, reduces hyperlocomotion, and relieves stereotyped behaviors induced by MK-801 (dizocilpine) injection. The results of optogenetic manipulation showed that the activation of the VTA GABA neurons, but not DA neurons, is involved in the alleviation of hyperlocomotion and stereotyped behaviors. We visualized changes in the activity of specific types in specific brain areas induced by DBS, and explored the neural mechanism of DBS in alleviating positive psychotic-like behaviors. This preclinical study not only proposes new technical means of exploring the mechanism of DBS, but also provides experimental justification for the clinical treatment of psychotic diseases by electrical stimulation of the VTA.
Collapse
Affiliation(s)
- Chen Lu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Feng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Gao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaona Zhu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
14
|
Theunissen EL, Reckweg JT, Hutten NRPW, Kuypers KPC, Toennes SW, Neukamm MA, Halter S, Ramaekers JG. Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): implications for psychosis. Psychopharmacology (Berl) 2022; 239:1251-1261. [PMID: 33501595 PMCID: PMC9110546 DOI: 10.1007/s00213-021-05768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are the largest class of novel psychoactive substances (NPS) and are associated with an increased risk of overdosing and adverse events such as psychosis. JWH-018 is one of the earliest SCs and still widely available in large parts of the world. Controlled studies to assess the safety and behavioural profiles of SCs are extremely scarce. AIM The current study was designed to assess the psychotomimetic effects of a moderate dose of JWH-018. METHODS Twenty-four healthy participants (10 males, 14 females) entered a placebo-controlled, double blind, within-subjects trial and inhaled vapour of placebo or 75μg/kg bodyweight JWH-018. To ascertain a minimum level of intoxication, a booster dose of JWH-018 was administered on an as-needed basis. The average dose of JWH-018 administered was 5.52 mg. Subjective high, dissociative states (CADSS), psychedelic symptoms (Bowdle), mood (POMS) and cannabis reinforcement (SCRQ) were assessed within a 4.5-h time window after drug administration. RESULTS JWH-018 caused psychedelic effects, such as altered internal and external perception, and dissociative effects, such as amnesia, derealisation and depersonalisation and induced feelings of confusion. CONCLUSION Overall, these findings suggest that a moderate dose of JWH-018 induces pronounced psychotomimetic symptoms in healthy participants with no history of mental illness, which confirms that SCs pose a serious risk for public health.
Collapse
Affiliation(s)
- Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
15
|
Dyck GJB, Maayah ZH, Eurich DT, Dyck JRB. Understanding the Potential Benefits of Cannabidiol for Patients With Schizophrenia: A Narrative Review. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab053. [PMID: 39144756 PMCID: PMC11205871 DOI: 10.1093/schizbullopen/sgab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Research suggests that cannabis-derived delta-9-tetrahydrocannabinol can be linked to the worsening of psychosis and/or other symptoms of schizophrenia. However, studies have shown that another major cannabinoid found in cannabis, cannabidiol (CBD), may be a potential alternative or adjunctive treatment for psychosis and schizophrenia. As such, herein we review the relevant literature relating to the safety and efficacy of CBD treatment in patients with schizophrenia, including the effects of CBD in treating the positive, negative, and cognitive symptoms of the disorder, as well as the molecular mechanisms by which CBD can reduce schizophrenic symptoms. The potential utility of CBD for mitigating cannabis cravings and cannabis withdrawal in this patient population will also be reviewed. Lastly, the dosing, method of drug delivery, length of treatment, and adverse effects of CBD in patients with schizophrenia are discussed. Thus, the goal of this narrative review is to help clinicians and researchers better understand the risks and benefits of this potential therapy for this patient population.
Collapse
Affiliation(s)
- Garrison J B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Kruk-Slomka M, Biala G. Cannabidiol Attenuates MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive Avoidance Test in Mice. Molecules 2021; 26:molecules26195977. [PMID: 34641522 PMCID: PMC8513030 DOI: 10.3390/molecules26195977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.
Collapse
|
17
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
18
|
Abyadeh M, Gupta V, Paulo JA, Gupta V, Chitranshi N, Godinez A, Saks D, Hasan M, Amirkhani A, McKay M, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules 2021; 11:1411. [PMID: 34680044 PMCID: PMC8533448 DOI: 10.3390/biom11101411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.
Collapse
Affiliation(s)
- Morteza Abyadeh
- ProGene Technologies Pty Ltd., Macquarie Park, Sydney, NSW 2113, Australia;
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 2600, Australia;
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Angela Godinez
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Danit Saks
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia;
| | - Matthew McKay
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ghasem H. Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| |
Collapse
|
19
|
Rasmussen JØ, Jennum P, Linnet K, Glenthøj BY, Baandrup L. Cannabidiol versus risperidone for treatment of recent-onset psychosis with comorbid cannabis use: study protocol for a randomized controlled clinical trial. BMC Psychiatry 2021; 21:404. [PMID: 34391393 PMCID: PMC8364057 DOI: 10.1186/s12888-021-03395-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cannabis use is an important risk factor for development of psychosis and further transition to schizophrenia. The prevalence of patients with psychosis and comorbid cannabis use (dual diagnosis) is rising with no approved specialized pharmacological treatment option. Cannabidiol, a constituent of the Cannabis sativa plant, has potential both as an antipsychotic and as a cannabis substituting agent. The aim of this study is to evaluate the efficacy of cannabidiol versus a first-choice second-generation antipsychotic (risperidone) in patients with early psychosis and comorbid cannabis use. METHODS The study is a phase II randomized, double-blinded, parallel-group, active-comparator clinical trial. We plan to include 130 patients aged between 18 and 64 years with a recent diagnosis of psychosis, comorbid cannabis use, and currently not treated with antipsychotics. The participants will be randomized to seven weeks of treatment with either cannabidiol 600 mg (300 mg BID) or risperidone 4 mg (2 mg BID). Participants will undergo clinical assessment after 1, 3, 5 and 7 weeks, telephone assessment the weeks in between, and a safety visit two weeks after end of treatment. The primary outcomes are cessation of cannabis use (self-reported) and psychotic symptom severity. The secondary outcomes include frequency and quantity of cannabis use, global illness severity, psychosocial functioning, subjective well-being, cognition, sleep, circadian rhythmicity, and metabolomics. DISCUSSION The results of this trial can potentially contribute with a new treatment paradigm for patients suffering from dual diagnosis. TRIAL REGISTRATION ClinicalTrials.gov , NCT04105231 , registered April 23rd, 2021.
Collapse
Affiliation(s)
- Jesper Østrup Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
| | - Poul Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, University of Copenhagen, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Faculty of Health and Medical Sciences, Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Zenone MA, Snyder J, Crooks VA. What are the informational pathways that shape people's use of cannabidiol for medical purposes? J Cannabis Res 2021; 3:13. [PMID: 33957993 PMCID: PMC8103601 DOI: 10.1186/s42238-021-00069-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background Cannabidiol (CBD) is commonly used to manage symptoms in conditions and diseases for which there is limited clinical research for its application. How consumers arrive and decide to use CBD for medical treatment, despite lacking clinical evidence, is largely unknown. In this paper, we seek to identify the informational pathways through which consumers arrive at CBD for medical purposes. Methods GoFundMe.com campaigns fundraising to purchase CBD between June 2017 and May 2019 were collected using the Crowdfunding for Health Research Portal (CHRP). Product descriptions were thematically analyzed to determine pathways leading to incorporation of CBD into medical treatment. Campaign characteristics such as fundraising ask, funding received, location, campaign title, description, Facebook shares, and number of donors were recorded. Specific medical uses of CBD proposed in campaigns were tabulated. Results The study identified 164 crowdfunding campaigns primarily from the USA (n=159), with several from Canada (n=5). The campaigns requested $2,219,284.24 (median, $7000) and raised $610,612.87 (median, $1805) from 6825 donors (median, 26). Many campaigns asked for other treatments or illness-related costs not specific to CBD. The campaigns were shared 42,299 times on Facebook (median, 156 shares). Three informational pathways were identified leading to incorporation of CBD into medical treatment, which were self-directed research (n=149), recommendations from a trusted care provider (n=36), and/or experiential insights shared by someone associated with or influencing the crowdfunders personal network (n=30). The proposed uses of CBD were for cancer (n=96), seizure-inducing diseases/conditions (n=48), other/unspecified (n=6), joint/inflammatory diseases (n=6), mental health disorders (n=3), nervous system diseases (n=3), and autoimmune diseases (n=2). Conclusions Our results suggest that consumers crowdfunding come to CBD through internally motivated reasons versus exposure to advertisements or other forms of marketing. Campaign beneficiaries generally had an unmet medical need that other forms of treatment were not satisfying. Then, through one or more of the informational pathways identified, CBD is considered a potential solution.
Collapse
Affiliation(s)
- Marco A Zenone
- Faculty of Health Sciences, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jeremy Snyder
- Faculty of Health Sciences, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
| | - Valorie A Crooks
- Department of Geography, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
21
|
A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br J Cancer 2021; 124:1379-1387. [PMID: 33623076 PMCID: PMC8039032 DOI: 10.1038/s41416-021-01259-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preclinical data suggest some cannabinoids may exert antitumour effects against glioblastoma (GBM). Safety and preliminary efficacy of nabiximols oromucosal cannabinoid spray plus dose-intense temozolomide (DIT) was evaluated in patients with first recurrence of GBM. METHODS Part 1 was open-label and Part 2 was randomised, double-blind, and placebo-controlled. Both required individualised dose escalation. Patients received nabiximols (Part 1, n = 6; Part 2, n = 12) or placebo (Part 2 only, n = 9); maximum of 12 sprays/day with DIT for up to 12 months. Safety, efficacy, and temozolomide (TMZ) pharmacokinetics (PK) were monitored. RESULTS The most common treatment-emergent adverse events (TEAEs; both parts) were vomiting, dizziness, fatigue, nausea and headache. Most patients experienced TEAEs that were grade 2 or 3 (CTCAE). In Part 2, 33% of both nabiximols- and placebo-treated patients were progression-free at 6 months. Survival at 1 year was 83% for nabiximols- and 44% for placebo-treated patients (p = 0.042), although two patients died within the first 40 days of enrolment in the placebo arm. There were no apparent effects of nabiximols on TMZ PK. CONCLUSIONS With personalised dosing, nabiximols had acceptable safety and tolerability with no drug-drug interaction identified. The observed survival differences support further exploration in an adequately powered randomised controlled trial. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: Part 1- NCT01812603; Part 2- NCT01812616.
Collapse
|
22
|
Williams SR, Agapoff JR, Jalan D, Hishinuma ES, Kida LE. Psychiatric Hospitalization and Length of Stay Differences in Cannabis Users and Non-Users with a Primary Discharge Diagnosis of Schizophrenia or Schizoaffective Disorder. Subst Use Misuse 2021; 56:1736-1739. [PMID: 34263706 DOI: 10.1080/10826084.2021.1949615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The effects of cannabis use in vulnerable persons with schizophrenia or schizoaffective disorder, continues to be elucidated. METHODS We compared 55 cannabis-only users (Group 1) with 462 non-substance users (Group 2) on measures of length of stay and number of psychiatric hospitalizations with a primary discharge diagnosis of schizophrenia or schizoaffective disorder using the Wilcoxon-Mann-Whitney non-parametric test for non-normal distributions, analysis of variance (ANOVA), and Poisson regression analysis. RESULTS Group 1 had a mean length of stay of 6.15 days (sd = 5.32 days) and Group 2 had a mean length of stay of 8.66 days (sd = 11.14 days) (i.e. Wilcoxon-Mann-Whitney, p = .0347; log-transformed ANOVA, p = .0203). This difference was no longer statistically significant when controlling for three covariates (p = .1543). Poisson regressions for the mean number of admissions (1.84) were not statistically significant. CONCLUSIONS Cannabis use may not be a good predictor of length of stay, once covariates are considered, and mean number of hospitalizations in hospitalized patients with schizophrenia or schizoaffective disorder.
Collapse
Affiliation(s)
- Steven R Williams
- Department of Psychiatry, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - James R Agapoff
- Department of Psychiatry, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Devesh Jalan
- Department of Psychiatry, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Earl S Hishinuma
- Department of Psychiatry, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Lauren E Kida
- Department of Psychiatry, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
23
|
Sorkhou M, Bedder RH, George TP. The Behavioral Sequelae of Cannabis Use in Healthy People: A Systematic Review. Front Psychiatry 2021; 12:630247. [PMID: 33664685 PMCID: PMC7920961 DOI: 10.3389/fpsyt.2021.630247] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Cannabis is known to have a broad range of effects on behavior, including experiencing a "high" and tranquility/relaxation. However, there are several adverse behavioral sequalae that can arise from cannabis use, depending on frequency of use, potency (e.g., THC content), age of onset, and cumulative exposure. This systematic review examined evidence for cannabis-related adverse behavioral sequalae in otherwise healthy human subjects. Methods: Following PRISMA guidelines, we conducted a systematic review of cross-sectional and longitudinal studies from 1990 to 2020 that identified cannabis-related adverse behavioral outcomes in subjects without psychiatric and medical co-morbidities from PubMed and PsychInfo searches. Key search terms included "cannabis" OR "tetrahydrocannabinol" OR "cannabidiol" OR "marijuana" AND "anxiety" OR "depression" OR "psychosis" OR "schizophrenia" "OR "IQ" OR "memory" OR "attention" OR "impulsivity" OR "cognition" OR "education" OR "occupation". Results: Our search detected a total of 2,870 studies, from which we extracted 124 relevant studies from the literature on cannabis effects in the non-clinical population. Effects of cannabis on several behavioral sequelae including cognition, motivation, impulsivity, mood, anxiety, psychosis intelligence, and psychosocial functioning were identified. The preponderance of the evidence suggests that frequency of cannabis use, THC (but not CBD) content, age of onset, and cumulative cannabis exposure can all contribute to these adverse outcomes in individuals without a pre-existing medical condition or psychiatric disorder. The strongest evidence for the negative effects of cannabis are for psychosis and psychosocial functioning. Conclusions: Although more research is needed to determine risk factors for development of adverse behavioral sequelae of cannabis use, these findings underline the importance of understanding vulnerability to the adverse effects of cannabis, which has implications for prevention and treatment of problematic cannabis use.
Collapse
Affiliation(s)
- Maryam Sorkhou
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rachel H Bedder
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Tony P George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Kashefi A, Tomaz C, Jamali S, Rashidy-Pour A, Vafaei AA, Haghparast A. Cannabidiol attenuated the maintenance and reinstatement of extinguished methylphenidate-induced conditioned place preference in rats. Brain Res Bull 2020; 166:118-127. [PMID: 33264654 DOI: 10.1016/j.brainresbull.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is a mild CNS stimulant that has been used in hyperactive children, and patients with neurodegenerative and major depressive disorders. Exposure to MPH-associated cues enhances craving and arousal in drug users. On the other hand, cannabidiol (CBD) has antipsychotic potential that might be useful in alleviating symptoms of drug addiction. The aim of this study was to investigate the effect of CBD administration on extinction and reinstatement of MPH-induced conditioning place preference (CPP) in rats. Male rats received MPH (1, 2.5 or 5 mg/kg, i.p) or morphine (5 or 10 mg/kg, s.c.) during the conditioning phase. Following the establishment of CPP, during extinction training, 60 min prior to every CPP session, animals were given daily ICV CBD (10 or 50 μg/5 μL), vehicle alone (DMSO) 10 % or were treatment-naïve. On the reinstatement day animals after receiving the initial dose of MPH, 0.5 mg/kg, and were placed into the CPP box to evaluate the CPP scoring for 10-min. Our findings indicated that morphine (5 and 10 mg/kg; s.c.) and MPH (1 and 2.5 mg/kg; i.p.) induced a CPP. The ICV administration of both doses of CBD (10 and 50 μg/5 μL) prevented the reinstatement of MPH-induced CPP, which displayed shorter extinction latency compared to treatment-naïve or DMSO 10 % groups. Therefore, CBD's site of action is a potential target for reducing the risk of MPH relapse; however, more investigation is required.
Collapse
Affiliation(s)
- Adel Kashefi
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, University of Brasilia, Brasília, Brazil; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior, University CEUMA, São Luís, Maranhão, Brazil
| | - Shole Jamali
- Neuroscience Research Center, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Boks MP, He Y, Schubart CD, Gastel WV, Elkrief L, Huguet G, Eijk KV, Vinkers CH, Kahn RS, Paus T, Conrod P, Hol EM, de Witte LD. Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain Behav Immun 2020; 88:573-581. [PMID: 32330591 DOI: 10.1016/j.bbi.2020.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
To investigate the biological mechanisms underlying the higher risk for psychosis in those that use cannabis, we conducted a genome-wide environment-interaction study (GWEIS). In a sample of individuals without a psychiatric disorder (N = 1262), we analyzed the interactions between regular cannabis use and genotype with psychotic-like experiences (PLE) as outcome. PLE were measured using the Community Assessment of Psychic Experiences (CAPE). The sample was enriched for those at the extremes of both cannabis use and PLE to increase power. A single nucleotide polymorphism in the P2RX7 gene (rs7958311) was associated with risk for a high level of psychotic experiences in regular cannabis users (p = 1.10 x10-7) and in those with high levels of lifetime cannabis use (p = 4.5 × 10-6). This interaction was replicated in individuals with high levels of lifetime cannabis use in the IMAGEN cohort (N = 1217, p = 0.020). Functional relevance of P2RX7 in cannabis users was suggested by in vitro experiments on activated monocytes. Exposure of these cells to tetrahydrocannabinol (THC) or cannabidiol (CBD) reduced the immunological response of the P2X7 receptor, which was dependent on the identified genetic variant. P2RX7 variants have been implicated in psychiatric disorders before and the P2X7 receptor is involved in pathways relevant to psychosis, such as neurotransmission, synaptic plasticity and immune regulation. We conclude that P2RX7 plays a role in vulnerability to develop psychotic symptoms when using cannabis and point to a new pathway that can potentially be targeted by newly developed P2X7 antagonists.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Chris D Schubart
- Department of Psychiatry, Tergooi Hospital, Blaricum, The Netherlands
| | | | - Laurent Elkrief
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kristel van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Tomás Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Conrod
- Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Psychiatry, University of Montreal, Montréal, QC, Canada
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA.
| |
Collapse
|
26
|
Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats. Behav Pharmacol 2020; 31:385-396. [DOI: 10.1097/fbp.0000000000000544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Sánchez-Gutiérrez T, Fernandez-Castilla B, Barbeito S, González-Pinto A, Becerra-García JA, Calvo A. Cannabis use and nonuse in patients with first-episode psychosis: A systematic review and meta-analysis of studies comparing neurocognitive functioning. Eur Psychiatry 2020; 63:e6. [PMID: 32093788 PMCID: PMC8057396 DOI: 10.1192/j.eurpsy.2019.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The implications of cannabis use in the onset of early psychosis and the severity of psychotic symptoms have resulted in a proliferation of studies on this issue. However, few have examined the effects of cannabis use on the cognitive symptoms of psychosis (i.e., neurocognitive functioning) in patients with first-episode psychosis (FEP). This systematic review and meta-analysis aim to assess the neurocognitive functioning of cannabis users (CU) and nonusers (NU) with FEP. METHODS Of the 110 studies identified through the systematic review of 6 databases, 7 met the inclusion criteria, resulting in 14 independent samples and 78 effect sizes. The total sample included 304 CU with FEP and 369 NU with FEP. The moderator variables were age at first use, duration of use, percentage of males, and age. RESULTS Effect sizes were not significantly different from zero in any neurocognitive domain when users and NU were compared. Part of the variability in effect sizes was explained by the inclusion of the following moderator variables: (1) frequency of cannabis use (β = 0.013, F = 7.56, p = 0.017); (2) first-generation antipsychotics (β = 0.019, F = 34.46, p ≤ 0.001); and (3) country where the study was carried out (β = 0.266, t = 2.06, p = 0.043). CONCLUSIONS This meta-analysis indicates that cannabis use is not generally associated with neurocognitive functioning in patients with FEP. However, it highlights the deleterious effect of low doses of cannabis in some patients. It also stresses the importance of the type of antipsychotic prescription and cannabis dose as moderator variables in the neurocognitive functioning of CU with FEP.
Collapse
Affiliation(s)
| | - Belén Fernandez-Castilla
- Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Leuven. Belgium
| | - Sara Barbeito
- Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), Madrid, Spain
| | - Ana González-Pinto
- Hospital Universitario de Alava, Servicio de Psiquiatría, BIOARABA, CIBERSAM, Universidad del País Vasco, Leioa, Spain
| | | | - Ana Calvo
- Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), Madrid, Spain
| |
Collapse
|
28
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
29
|
He Y, de Witte LD, Schubart CD, Van Gastel WA, Koeleman BPC, de Jong S, Ophoff RA, Hol EM, Boks MP. Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. Eur Neuropsychopharmacol 2019; 29:643-652. [PMID: 30879928 DOI: 10.1016/j.euroneuro.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/13/2019] [Accepted: 03/02/2019] [Indexed: 11/18/2022]
Abstract
The relation of heavy cannabis use with decreased neuropsychological function has frequently been described but the underlying biological mechanisms are still largely unknown. This study investigates the relation of cannabis use with genome wide gene expression and subsequently examines the relations with neuropsychological function. Genome-wide gene expression in whole blood was compared between heavy cannabis users (N = 90) and cannabis naïve participants (N = 100) that were matched for psychotic like experiences. The results were validated using quantitative real-time PCR. Psychotic like experiences were assessed using the Comprehensive Assessment of Psychotic Experiences (CAPE). Neuropsychological function was estimated using four subtasks of the Wechsler Adult Intelligence Scale (WAIS). Subsequent in vitro studies in monocytes and a neuroblastoma cell line investigated expression changes in response to two major psychotropic components of cannabis; tetrahydrocannabinol (THC) and cannabidiol (CBD). mRNA expression of Protein Tyrosine Phosphatase Receptor Type F Polypeptide-Interacting-Protein Alpha-2 (PPFIA2) was significantly higher in cannabis users (LogFold Change 0.17) and confirmed by qPCR analysis. PPFIA2 expression level was negatively correlated with estimated intelligence (B=-22.9, p = 0.002) also in the 100 non-users (B=-28.5, p = 0.037). In vitro exposure of monocytes to CBD led to significant increase in PPFIA2 expression. However, exposure of monocytes to THC and neuroblastoma cells to THC or CBD did not change PPFIA2 expression. Change in PPFIA2 gene expression in response to cannabinoids is a putative mechanism by which cannabis could influence neuropsychological functions. The findings warrant further exploration of the role of PPFIA2 in cannabis induced changes of neuropsychological function, particularly in relation to CBD.
Collapse
Affiliation(s)
- Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chris D Schubart
- Ter Gooi Hospital, Department of Psychiatry, Blaricum, The Netherlands
| | | | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- UCLA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Neuroimmunology, Netherlands Institute for Neuroscience, An institute of the royal academy of arts and sciences, Amsterdam, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
30
|
Brighenti V, Licata M, Pedrazzi T, Maran D, Bertelli D, Pellati F, Benvenuti S. Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionisation-tandem mass spectrometry detection. J Chromatogr A 2019; 1597:179-186. [PMID: 31006529 DOI: 10.1016/j.chroma.2019.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022]
Abstract
Fibre-type Cannabis sativa L. (hemp) represents a valuable resource in many different fields, including both the pharmaceutical and food ones. This plant contains non-psychoactive cannabinoids, a class of bioactive compounds biosynthesized in both female and male inflorescences. Among them, cannabidiol (CBD) is the most interesting compound from a medicinal point of view. Indeed, several scientific studies have proved its therapeutic potential in a large number of pathologies, in addition to its biological effects attributable to its antioxidant, neuroprotective and anti-inflammatory properties. The analysis of the amount of cannabinoids in food and food supplements represents a critical issue in the ambit of both the quality assurance and the dietary intake control of these biologically active compounds. In this ambit, a particular attention is necessary for apiary products, since they are widely consumed and they can be produced by bees starting from different floral sources. In the light of all the above, the aim of this study was to develop for the first time a new analytical method based on RP-HPLC with ESI-MS/MS detection for the determination of CBD and related cannabinoids in honey. A quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction procedure with an un-buffered method was selected and optimised as the more suitable protocol. As regards detection, it was carried out by using a linear ion trap quadrupole (QTRAP) mass analyser, operated in the multiple reaction monitoring (MRM) mode. Hemp male inflorescences and pollen were analysed in parallel by means of HPLC-UV/DAD, since bees can transfer pollen into their hives and, consequently, into beehive products. The method developed and validated for the first time in this work was finally applied to the analysis of cannabinoids in honey samples, thus demonstrating to be a useful tool for both quality control and safety assurance.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Manuela Licata
- Department of Biomedical, Metabolical and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Tatiana Pedrazzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Maran
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
31
|
Aitta-Aho T, Maksimovic M, Dahl K, Sprengel R, Korpi ER. Attenuation of Novelty-Induced Hyperactivity of Gria1-/- Mice by Cannabidiol and Hippocampal Inhibitory Chemogenetics. Front Pharmacol 2019; 10:309. [PMID: 30984001 PMCID: PMC6449460 DOI: 10.3389/fphar.2019.00309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Gene-targeted mice with deficient AMPA receptor GluA1 subunits (Gria1-/- mice) show robust hyperlocomotion in a novel environment, suggesting them to constitute a model for hyperactivity disorders such as mania, schizophrenia and attention deficit hyperactivity disorder. This behavioral alteration has been associated with increased neuronal activation in the hippocampus, and it can be attenuated by chronic treatment with antimanic drugs, such as lithium, valproic acid, and lamotrigine. Now we found that systemic cannabidiol strongly blunted the hyperactivity and the hippocampal c-Fos expression of the Gria1-/- mice, while not affecting the wild-type littermate controls. Acute bilateral intra-dorsal hippocampal infusion of cannabidiol partially blocked the hyperactivity of the Gria1-/- mice, but had no effect on wild-types. The activation of the inhibitory DREADD receptor hM4Gi in the dorsal hippocampus by clozapine-N-oxide robustly inhibited the hyperactivity of the Gria1-/- mice, but had no effect on the locomotion of wild-type mice. Our results show that enhanced neuronal excitability in the hippocampus is associated with pronounced novelty-induced hyperactivity of GluA1 subunit-deficient mice. When this enhanced response of hippocampal neurons to novel stimuli is specifically reduced in the hippocampus by pharmacological treatment or by chemogenetic inhibition, Gria1-/- mice recover from behavioral hyperactivity, suggesting a hippocampal dysfunction in hyperactive behaviors that can be treated with cannabidiol.
Collapse
Affiliation(s)
- Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Milica Maksimovic
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Dahl
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Crippa JAS, Hallak JEC, Zuardi AW, Guimarães FS, Tumas V, Dos Santos RG. Is cannabidiol the ideal drug to treat non-motor Parkinson's disease symptoms? Eur Arch Psychiatry Clin Neurosci 2019; 269:121-133. [PMID: 30706171 DOI: 10.1007/s00406-019-00982-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rest tremor, postural disturbances, and rigidity. PD is also characterized by non-motor symptoms such as sleep disturbances, cognitive deficits, and psychiatric disorders such as psychosis, depression, and anxiety. The pharmacological treatment for these symptoms is limited in efficacy and induce significant adverse reactions, highlighting the need for better treatment options. Cannabidiol (CBD) is a phytocannabinoid devoid of the euphoriant and cognitive effects of tetrahydrocannabinol, and preclinical and preliminary clinical studies suggest that this compound has therapeutic effect in non-motor symptoms of PD. In the present text, we review the clinical studies of cannabinoids in PD and the preclinical and clinical studies specifically on CBD. We found four randomized controlled trials (RCTs) involving the administration of agonists/antagonists of the cannabinoid 1 receptor, showing that these compounds were well tolerated, but only one study found positive results (reductions on levodopa-induced dyskinesia). We found seven preclinical models of PD using CBD, with six studies showing a neuroprotective effect of CBD. We found three trials involving CBD and PD: an open-label study, a case series, and an RCT. CBD was well tolerated, and all three studies reported significant therapeutic effects in non-motor symptoms (psychosis, rapid eye movement sleep behaviour disorder, daily activities, and stigma). However, sample sizes were small and CBD treatment was short (up to 6 weeks). Large-scale RCTs are needed to try to replicate these results and to assess the long-term safety of CBD.
Collapse
Affiliation(s)
- José Alexandre S Crippa
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil.
- Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, CEP-14049-900, Brazil.
| | - Jaime E C Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Tumas
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
33
|
Williams SR, Agapoff JR, Lu BY, Hishinuma ES, Lee M. The frequency of hospitalizations and length of stay differences between schizophrenic and schizoaffective disorder inpatients who use cannabis. JOURNAL OF SUBSTANCE USE 2019. [DOI: 10.1080/14659891.2018.1489013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Steven R. Williams
- Department of Psychiatry, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| | - James R. Agapoff
- Department of Psychiatry, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| | - Brett Y. Lu
- Department of Psychiatry, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| | - Earl S. Hishinuma
- Department of Psychiatry, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| | - Mark Lee
- Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
34
|
Narrative Review of Cannabidiol as an Antipsychotic and Recommendations for Legal Regulations. CANADIAN JOURNAL OF ADDICTION 2018. [DOI: 10.1097/cxa.0000000000000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Grimm O, Löffler M, Kamping S, Hartmann A, Rohleder C, Leweke M, Flor H. Probing the endocannabinoid system in healthy volunteers: Cannabidiol alters fronto-striatal resting-state connectivity. Eur Neuropsychopharmacol 2018; 28:841-849. [PMID: 29887287 DOI: 10.1016/j.euroneuro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are two substances from cannabis sativa that have beenimplicated in the treatment of mental and neurological disorders. We concentrated on a previously validated neuroimaging phenotype, fronto-striatal connectivity across different striatal seeds, because of this loop's relevance to executive functioning, decision making, salience generation and motivation and its link to various neuropsychiatric conditions. Therefore, we studied the effect of THC and CBD on fronto-striatal circuitry by a seed-voxel connectivity approach using seeds from the caudate and the putamen. We conducted a cross-over pharmaco-fMRI study in 16 healthy male volunteers with placebo, 10 mg oral THC and 600 mg oral CBD. Resting state was measured in a 3 T scanner. CBD lead to an increase of fronto-striatal connectivity in comparison to placebo. In contrast to our expectation that THC and CBD show opposing effects, THC versus placebo did not show any significant effects, probably due to insufficient concentration of THC during scanning. The effect of CBD on enhancing fronto-striatal connectivity is of interest because it might be a neural correlate of its anti-psychotic effect in patients.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Frankfurt am Main, Germany
| | - Martin Löffler
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Sandra Kamping
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany; Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aljoscha Hartmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
36
|
Sankaranarayanan A, Wilding H, Neill E, Castle D. A Critical Systematic Review of Evidence for Cannabinoids in the Treatment of Schizophrenia. Psychiatr Ann 2018. [DOI: 10.3928/00485713-20180409-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abstract
A major factor associated with poor prognostic outcome after a first psychotic break is cannabis misuse, which is prevalent in schizophrenia and particularly common in individuals with recent-onset psychosis. Behavioral interventions aimed at reducing cannabis use have been unsuccessful in this population. Cannabidiol (CBD) is a phytocannabinoid found in cannabis, although at low concentrations in modern-day strains. CBD has a broad pharmacological profile, but contrary to ∆9-tetrahydrocannabinol (THC), CBD does not activate CB1 or CB2 receptors and has at most subtle subjective effects. Growing evidence indicates that CBD acts as an antipsychotic and anxiolytic, and several reports suggest neuroprotective effects. Moreover, CBD attenuates THC's detrimental effects, both acutely and chronically, including psychotogenic, anxiogenic, and deleterious cognitive effects. This suggests that CBD may improve the disease trajectory of individuals with early psychosis and comorbid cannabis misuse in particular-a population with currently poor prognostic outcome and no specialized effective intervention.
Collapse
Affiliation(s)
- Britta Hahn
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; tel: 001-410-402-6112, fax: 001-410-402-7198, e-mail:
| |
Collapse
|
38
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
39
|
Hložek T, Uttl L, Kadeřábek L, Balíková M, Lhotková E, Horsley RR, Nováková P, Šíchová K, Štefková K, Tylš F, Kuchař M, Páleníček T. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur Neuropsychopharmacol 2017; 27:1223-1237. [PMID: 29129557 DOI: 10.1016/j.euroneuro.2017.10.037] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/12/2017] [Accepted: 10/22/2017] [Indexed: 12/27/2022]
Abstract
Metabolic and behavioural effects of, and interactions between Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are influenced by dose and administration route. Therefore we investigated, in Wistar rats, effects of pulmonary, oral and subcutaneous (sc.) THC, CBD and THC+CBD. Concentrations of THC, its metabolites 11-OH-THC and THC-COOH, and CBD in serum and brain were determined over 24h, locomotor activity (open field) and sensorimotor gating (prepulse inhibition, PPI) were also evaluated. In line with recent knowledge we expected metabolic and behavioural interactions between THC and CBD. While cannabinoid serum and brain levels rapidly peaked and diminished after pulmonary administration, sc. and oral administration produced long-lasting levels of cannabinoids with oral reaching the highest brain levels. Except pulmonary administration, CBD inhibited THC metabolism resulting in higher serum/brain levels of THC. Importantly, following sc. and oral CBD alone treatments, THC was also detected in serum and brain. S.c. cannabinoids caused hypolocomotion, oral treatments containing THC almost complete immobility. In contrast, oral CBD produced mild hyperlocomotion. CBD disrupted, and THC tended to disrupt PPI, however their combination did not. In conclusion, oral administration yielded the most pronounced behavioural effects which corresponded to the highest brain levels of cannabinoids. Even though CBD potently inhibited THC metabolism after oral and sc. administration, unexpectedly it had minimal impact on THC-induced behaviour. Of central importance was the novel finding that THC can be detected in serum and brain after administration of CBD alone which, if confirmed in humans and given the increasing medical use of CBD-only products, might have important legal and forensic ramifications.
Collapse
Affiliation(s)
- Tomáš Hložek
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Libor Uttl
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Lukáš Kadeřábek
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Marie Balíková
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Eva Lhotková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Rachel R Horsley
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Pavlína Nováková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Klára Šíchová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Kristýna Štefková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Filip Tylš
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Martin Kuchař
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
40
|
Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model. Neuropsychopharmacology 2017; 42:1447-1457. [PMID: 28230072 PMCID: PMC5436124 DOI: 10.1038/npp.2017.40] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/10/2017] [Accepted: 02/19/2017] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.
Collapse
|
41
|
Steenkamp MM, Blessing EM, Galatzer-Levy IR, Hollahan LC, Anderson WT. Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: A literature review. Depress Anxiety 2017; 34:207-216. [PMID: 28245077 DOI: 10.1002/da.22596] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is common in the general population, yet there are limitations to the effectiveness, tolerability, and acceptability of available first-line interventions. We review the extant knowledge on the effects of marijuana and other cannabinoids on PTSD. Potential therapeutic effects of these agents may largely derive from actions on the endocannabinoid system and we review major animal and human findings in this area. Preclinical and clinical studies generally support the biological plausibility for cannabinoids' potential therapeutic effects, but underscore heterogeneity in outcomes depending on dose, chemotype, and individual variation. Treatment outcome studies of whole plant marijuana and related cannabinoids on PTSD are limited and not methodologically rigorous, precluding conclusions about their potential therapeutic effects. Reported benefits for nightmares and sleep (particularly with synthetic cannabinoid nabilone) substantiate larger controlled trials to determine effectiveness and tolerability. Of concern, marijuana use has been linked to adverse psychiatric outcomes, including conditions commonly comorbid with PTSD such as depression, anxiety, psychosis, and substance misuse. Available evidence is stronger for marijuana's harmful effects on the development of psychosis and substance misuse than for the development of depression and anxiety. Marijuana use is also associated with worse treatment outcomes in naturalistic studies, and with maladaptive coping styles that may maintain PTSD symptoms. Known risks of marijuana thus currently outweigh unknown benefits for PTSD. Although controlled research on marijuana and other cannabinoids' effects on PTSD remains limited, rapid shifts in the legal landscape may now enable such studies, potentially opening new avenues in PTSD treatment research.
Collapse
Affiliation(s)
| | | | | | - Laura C Hollahan
- Langone School of Medicine, New York, University, New York, NY, USA
| | | |
Collapse
|
42
|
Fischedick JT. Identification of Terpenoid Chemotypes Among High (-)- trans-Δ 9- Tetrahydrocannabinol-Producing Cannabis sativa L. Cultivars. Cannabis Cannabinoid Res 2017; 2:34-47. [PMID: 28861503 PMCID: PMC5436332 DOI: 10.1089/can.2016.0040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: With laws changing around the world regarding the legal status of Cannabis sativa (cannabis) it is important to develop objective classification systems that help explain the chemical variation found among various cultivars. Currently cannabis cultivars are named using obscure and inconsistent nomenclature. Terpenoids, responsible for the aroma of cannabis, are a useful group of compounds for distinguishing cannabis cultivars with similar cannabinoid content. Methods: In this study we analyzed terpenoid content of cannabis samples obtained from a single medical cannabis dispensary in California over the course of a year. Terpenoids were quantified by gas chromatography with flame ionization detection and peak identification was confirmed with gas chromatography mass spectrometry. Quantitative data from 16 major terpenoids were analyzed using hierarchical clustering analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: A total of 233 samples representing 30 cultivars were used to develop a classification scheme based on quantitative data, HCA, PCA, and OPLS-DA. Initially cultivars were divided into five major groups, which were subdivided into 13 classes based on differences in terpenoid profile. Different classification models were compared with PLS-DA and found to perform best when many representative samples of a particular class were included. Conclusion: A hierarchy of terpenoid chemotypes was observed in the data set. Some cultivars fit into distinct chemotypes, whereas others seemed to represent a continuum of chemotypes. This study has demonstrated an approach to classifying cannabis cultivars based on terpenoid profile.
Collapse
|
43
|
Walsh Z, Gonzalez R, Crosby K, S. Thiessen M, Carroll C, Bonn-Miller MO. Medical cannabis and mental health: A guided systematic review. Clin Psychol Rev 2017; 51:15-29. [DOI: 10.1016/j.cpr.2016.10.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
|
44
|
A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia. Neurosci Biobehav Rev 2017; 72:310-324. [DOI: 10.1016/j.neubiorev.2016.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
|
45
|
Brañas A, Barrigón ML, Garrido-Torres N, Perona-Garcelán S, Rodriguez-Testal JF, Lahera G, Ruiz-Veguilla M. U-shaped curve of psychosis according to cannabis use: New evidence from a snowball sample. J Psychopharmacol 2016; 30:1331-1338. [PMID: 27539930 DOI: 10.1177/0269881116660712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to investigate the relationship between psychotic-like experiences (PLEs) assessed using the Community Assessment of Psychic Experience (CAPE) questionnaire and the pattern of cannabis use in a non-clinical sample collected by snowball sampling. METHODS Our sample was composed of 204 subjects, distributed into three groups by their cannabis use pattern: 68 were non-cannabis users, 40 were moderate cannabis users and 96 were daily cannabis users. We assessed the psychotic experiences in each group with the CAPE questionnaire; and then controlled for the effect of possible confounding factors like sex, age, social exclusion, age of onset of cannabis use, alcohol use and other drug use. RESULTS We found a significant quadratic association between the frequency of cannabis use and positive (β = -1.8; p = 0.004) and negative dimension scores (β = -1.2; p = 0.04). The first-rank and mania factors showed a significant quadratic association (p < 0.05), while the voices factor showed a trend (p = 0.07). Scores for the different groups tended to maintain a U-shape in their values for the different factors. When we adjusted for gender, age, social exclusion, age of onset of cannabis use, and use of alcohol and other drugs, only the first-rank experiences remained significant. CONCLUSIONS We found there was a U-shaped curve in the association between cannabis use and the positive and negative dimensions of the CAPE score. We also found this association in mania and first-rank experiences.
Collapse
Affiliation(s)
- Antía Brañas
- Department of Psychiatry, Hospital Universitario Príncipe de Asturias, Universidad de Alcalá de Henares, Madrid, Spain
| | - María L Barrigón
- Department of Psychiatry, Hospital Fundación Jiménez Díaz, Madrid, Huelva, Spain
| | | | | | - Juan F Rodriguez-Testal
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Lahera
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Miguel Ruiz-Veguilla
- Grupo Neurodesarrollo y Psicosis, Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Cientificas/Universidad de Sevilla/Unidad de Gestión Clínica (UGC) de Salud Mental Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
46
|
A Study of the Impact of Cannabis on Doses of Discharge Antipsychotic Medication in Individuals with Schizophrenia or Schizoaffective Disorder. Psychiatr Q 2016; 87:729-737. [PMID: 26875104 DOI: 10.1007/s11126-016-9426-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patients with schizophrenia or schizoaffective disorder have a high prevalence of comorbid cannabis use disorder (CUD). CUD has been associated with poorer outcomes in patients. We compared doses of antipsychotic medications at the time of discharge from hospital among inpatients with schizophrenia or schizoaffective disorder with or without concurrent cannabis use. We reviewed the medical records of patients (N = 8157) with schizophrenia or schizoaffective disorder discharged from the hospital between 2008 and 2012. The patients were divided into two groups; those with urine drug tests positive for cannabis and those negative for cannabis. Doses of antipsychotic medications were converted to chlorpromazine equivalents. Bivariate analyses were done with Student's t test for continuous variables and χ 2 test for categorical variables. Linear regression was carried out to adjust for potential confounders. Unadjusted analysis revealed that the cannabis positive group was discharged on lower doses of antipsychotic medication compared with the cannabis negative group (geometric mean chlorpromazine equivalent doses 431.22 ± 2.20 vs 485.18 ± 2.21; P < 0.001). However, the difference in geometric mean chlorpromazine equivalent doses between the two groups was no longer significant after adjusting for sex, age, race, and length of stay (geometric mean difference 0.99; 95 % CI 0.92-1.10). Though limited by lack of information on duration, amount and severity of cannabis use, as well as inability to control for other non-antipsychotic medications, our study suggests that cannabis use did not significantly impact on doses of antipsychotics required during the periods of acute exacerbation in patients with schizophrenia or schizoaffective disorder.
Collapse
|
47
|
Norris C, Loureiro M, Kramar C, Zunder J, Renard J, Rushlow W, Laviolette SR. Cannabidiol Modulates Fear Memory Formation Through Interactions with Serotonergic Transmission in the Mesolimbic System. Neuropsychopharmacology 2016; 41:2839-2850. [PMID: 27296152 PMCID: PMC5061893 DOI: 10.1038/npp.2016.93] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling.
Collapse
Affiliation(s)
- Christopher Norris
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michael Loureiro
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia Kramar
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jordan Zunder
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Justine Renard
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 468 Medical Science Building, London, ON, Canada N6A 5C1, Tel: +1 519 661 2111, ext 80302, Fax: +1 519 661 3936, E-mail:
| |
Collapse
|
48
|
Fakhoury M. Could cannabidiol be used as an alternative to antipsychotics? J Psychiatr Res 2016; 80:14-21. [PMID: 27267317 DOI: 10.1016/j.jpsychires.2016.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a mental disorder that affects close to 1% of the population. Individuals with this disorder often present signs such as hallucination, anxiety, reduced attention, and social withdrawal. Although antipsychotic drugs remain the cornerstone of schizophrenia treatment, they are associated with severe side effects. Recently, the endocannabinoid system (ECS) has emerged as a potential therapeutic target for pharmacotherapy that is involved in a wide range of disorders, including schizophrenia. Since its discovery, a lot of effort has been devoted to the study of compounds that can modulate its activity for therapeutic purposes. Among them, cannabidiol (CBD), a non-psychoactive component of cannabis, shows great promise for the treatment of psychosis, and is associated with fewer extrapyramidal side effects than conventional antipsychotic drugs. The overarching goal of this review is to provide current available knowledge on the role of the dopamine system and the ECS in schizophrenia, and to discuss key findings from animal studies and clinical trials investigating the antipsychotic potential of CBD.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
49
|
Lorenzetti V, Solowij N, Yücel M. The Role of Cannabinoids in Neuroanatomic Alterations in Cannabis Users. Biol Psychiatry 2016; 79:e17-31. [PMID: 26858212 DOI: 10.1016/j.biopsych.2015.11.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 01/18/2023]
Abstract
The past few decades have seen a marked change in the composition of commonly smoked cannabis. These changes primarily involve an increase of the psychoactive compound ∆(9)-tetrahydrocannabinol (THC) and a decrease of the potentially therapeutic compound cannabidiol (CBD). This altered composition of cannabis may be linked to persistent neuroanatomic alterations typically seen in regular cannabis users. In this review, we summarize recent findings from human structural neuroimaging investigations. We examine whether neuroanatomic alterations are 1) consistently observed in samples of regular cannabis users, particularly in cannabinoid receptor-high areas, which are vulnerable to the effects of high circulating levels of THC, and 2) associated either with greater levels of cannabis use (e.g., higher dosage, longer duration, and earlier age of onset) or with distinct cannabinoid compounds (i.e., THC and CBD). Across the 31 studies selected for inclusion in this review, neuroanatomic alterations emerged across regions that are high in cannabinoid receptors (i.e., hippocampus, prefrontal cortex, amygdala, cerebellum). Greater dose and earlier age of onset were associated with these alterations. Preliminary evidence shows that THC exacerbates, whereas CBD protects from, such harmful effects. Methodologic differences in the quantification of levels of cannabis use prevent accurate assessment of cannabis exposure and direct comparison of findings across studies. Consequently, the field lacks large "consortium-style" data sets that can be used to develop reliable neurobiological models of cannabis-related harm, recovery, and protection. To move the field forward, we encourage a coordinated approach and suggest the urgent development of consensus-based guidelines to accurately and comprehensively quantify cannabis use and exposure in human studies.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne
| | - Nadia Solowij
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne.
| |
Collapse
|
50
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|