1
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
2
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Jeyachandran D, Murshed M, Haglund L, Cerruti M. A Bioglass-Poly(lactic-co-glycolic Acid) Scaffold@Fibrin Hydrogel Construct to Support Endochondral Bone Formation. Adv Healthc Mater 2023; 12:e2300211. [PMID: 37462089 PMCID: PMC11468889 DOI: 10.1002/adhm.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of DentistryDepartment of Medicineand Shriners Hospital for ChildrenMcGill UniversityMontrealQuebecH4A 0A9Canada
| | - Lisbet Haglund
- Experimental SurgeryMcGill UniversityMontrealH3G 2M1Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill UniversityMontrealH3A 0C1Canada
| |
Collapse
|
4
|
Li T, Ma Z, Zhang Y, Yang Z, Li W, Lu D, Liu Y, Qiang L, Wang T, Ren Y, Wang W, He H, Zhou X, Mao Y, Zhu J, Wang J, Chen X, Dai K. Regeneration of Humeral Head Using a 3D Bioprinted Anisotropic Scaffold with Dual Modulation of Endochondral Ossification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205059. [PMID: 36755334 PMCID: PMC10131811 DOI: 10.1002/advs.202205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Indexed: 06/18/2023]
Abstract
Tissue engineering is theoretically thought to be a promising method for the reconstruction of biological joints, and thus, offers a potential treatment alternative for advanced osteoarthritis. However, to date, no significant progress is made in the regeneration of large biological joints. In the current study, a biomimetic scaffold for rabbit humeral head regeneration consisting of heterogeneous porous architecture, various bioinks, and different hard supporting materials in the cartilage and bone regions is designed and fabricated in one step using 3D bioprinting technology. Furthermore, orchestrated dynamic mechanical stimulus combined with different biochemical cues (parathyroid hormone [PTH] and chemical component hydroxyapatite [HA] in the outer and inner region, respectively) are used for dual regulation of endochondral ossification. Specifically, dynamic mechanical stimulus combined with growth factor PTH in the outer region inhibits endochondral ossification and results in cartilage regeneration, whereas dynamic mechanical stimulus combined with HA in the inner region promotes endochondral ossification and results in efficient subchondral bone regeneration. The strategy established in this study with the dual modulation of endochondral ossification for 3D bioprinted anisotropic scaffolds represents a versatile and scalable approach for repairing large joints.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Zhengjiang Ma
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Yuxin Zhang
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zezheng Yang
- Department of OrthopedicsThe Fifth People's Hospital of ShanghaiFudan UniversityMinhang DistrictShanghai200240P. R. China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Dezhi Lu
- School of MedicineShanghai UniversityJing An DistrictShanghai200444China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Lei Qiang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Ya Ren
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Wenhao Wang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Hongtao He
- The Third Ward of Department of OrthopedicsThe Second Hospital of Dalian Medical UniversityNo. 467, Zhongshan Road, Shahekou DistrictDalianLiaoning Province116000P. R. China
| | - Xiaojun Zhou
- College of Biological Science and Medical EngineeringState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Junfeng Zhu
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Xiaodong Chen
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| |
Collapse
|
5
|
Pitacco P, Sadowska JM, O'Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater 2023; 156:61-74. [PMID: 35907556 DOI: 10.1016/j.actbio.2022.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. STATEMENT OF SIGNIFICANCE: Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
Collapse
Affiliation(s)
- Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Joanna M Sadowska
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Fergal J O'Brien
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| |
Collapse
|
6
|
Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue. Biomedicines 2022; 10:biomedicines10071621. [PMID: 35884926 PMCID: PMC9312793 DOI: 10.3390/biomedicines10071621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 01/05/2023] Open
Abstract
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a means to modify the degradation rate of alginate-based bioinks for cartilage tissue engineering applications. Raw and partially oxidized alginate (OA) were combined at different ratios (Alginate:OA at 100:0; 75:25; 50:50; 25:75; 0:100) to provide finer control over the rate of bioink degradation. These alginate blends were then combined with a temporary viscosity modifier (gelatin) to produce a range of degradable bioinks with rheological properties suitable for extrusion bioprinting. The rate of degradation was found to be highly dependent on the OA content of the bioink. Despite this high mass loss, the initially printed geometry was maintained throughout a 4 week in vitro culture period for all bioink blends except the 0:100 group. All bioink blends also supported robust chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs), resulting in the development of a hyaline-like tissue that was rich in type II collagen and negative for calcific deposits. Such tuneable inks offer numerous benefits to the field of 3D bioprinting, from providing space in a controllable manner for new extracellular matrix deposition, to alleviating concerns associated with a foreign body response to printed material inks in vivo.
Collapse
|
7
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Tam WL, Freitas Mendes L, Chen X, Lesage R, Van Hoven I, Leysen E, Kerckhofs G, Bosmans K, Chai YC, Yamashita A, Tsumaki N, Geris L, Roberts SJ, Luyten FP. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther 2021; 12:513. [PMID: 34563248 PMCID: PMC8466996 DOI: 10.1186/s13287-021-02580-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation. However, limited availability of these tissues and lack of predictive biological response result in limitations for clinical demands. Tissue engineering using viable cell-based implants is a strategic approach to address these unmet medical needs. Methods Herein, the in vitro and in vivo cartilage and bone tissue formation potencies of human pluripotent stem cells were investigated. The induced pluripotent stem cells were specified towards the mesodermal lineage and differentiated towards chondrocytes, which subsequently self-assembled into cartilaginous organoids. The tissue formation capacity of these organoids was then challenged in an ectopic and orthotopic bone formation model. Results The derived chondrocytes expressed similar levels of collagen type II as primary human articular chondrocytes and produced stable cartilage when implanted ectopically in vivo. Upon targeted promotion towards hypertrophy and priming with a proinflammatory mediator, the organoids mediated successful bridging of critical size long bone defects in immunocompromised mice. Conclusions These results highlight the promise of induced pluripotent stem cell technology for the creation of functional cartilage tissue intermediates that can be explored for novel bone healing strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02580-7.
Collapse
Affiliation(s)
- Wai Long Tam
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium
| | - Luís Freitas Mendes
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Xike Chen
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Raphaëlle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Biomechmanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000, Leuven, Belgium
| | - Inge Van Hoven
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Elke Leysen
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.,Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium.,Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Kathleen Bosmans
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Yoke Chin Chai
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.,Department of Development and Regeneration, Stem Cell Institute, KU Leuven, O&N4, Herestraat 49, 3000, Leuven, Belgium
| | - Akihiro Yamashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kawahara-cho 53, Kyoto, 606-8507, Japan
| | - Noriyuki Tsumaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kawahara-cho 53, Kyoto, 606-8507, Japan
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.,Biomechmanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000, Leuven, Belgium.,GIGA In Silico Medicine, Quartier Hôpital, Avenue de l'Hôpital 11 B34, 4000, Liège, Belgium
| | - Scott J Roberts
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Frank P Luyten
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium. .,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium. .,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Nulty J, Burdis R, Kelly DJ. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:661989. [PMID: 34169064 PMCID: PMC8218548 DOI: 10.3389/fbioe.2021.661989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue's development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue "building blocks," which could potentially be used in the treatment of challenging bone defects.
Collapse
Affiliation(s)
- Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
10
|
Chiulan I, Heggset EB, Voicu ŞI, Chinga-Carrasco G. Photopolymerization of Bio-Based Polymers in a Biomedical Engineering Perspective. Biomacromolecules 2021; 22:1795-1814. [PMID: 33819022 DOI: 10.1021/acs.biomac.0c01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photopolymerization is an effective method to covalently cross-link polymer chains that can be shaped into several biomedical products and devices. Additionally, polymerization reaction may induce a fluid-solid phase transformation under physiological conditions and is ideal for in vivo cross-linking of injectable polymers. The photoinitiator is a key ingredient able to absorb the energy at a specific light wavelength and create radicals that convert the liquid monomer solution into polymers. The combination of photopolymerizable polymers, containing appropriate photoinitiators, and effective curing based on dedicated light sources offers the possibility to implement photopolymerization technology in 3D bioprinting systems. Hence, cell-laden structures with high cell viability and proliferation, high accuracy in production, and good control of scaffold geometry can be biofabricated. In this review, we provide an overview of photopolymerization technology, focusing our efforts on natural polymers, the chemistry involved, and their combination with appropriate photoinitiators to be used within 3D bioprinting and manufacturing of biomedical devices. The reviewed articles showed the impact of different factors that influence the success of the photopolymerization process and the final properties of the cross-linked materials.
Collapse
Affiliation(s)
- Ioana Chiulan
- Polymer Department, The National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, Bucharest 060021, Romania.,Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, 011061, Romania
| | | | - Ştefan Ioan Voicu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, 011061, Romania
| | | |
Collapse
|
11
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Mahmoud E, Sayed M, El-Kady AM, Elsayed H, Naga S. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int J Biol Macromol 2020; 165:1346-1360. [DOI: 10.1016/j.ijbiomac.2020.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
|
14
|
Critchley S, Sheehy EJ, Cunniffe G, Diaz-Payno P, Carroll SF, Jeon O, Alsberg E, Brama PAJ, Kelly DJ. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater 2020; 113:130-143. [PMID: 32505800 DOI: 10.1016/j.actbio.2020.05.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. STATEMENT OF SIGNIFICANCE: Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
Collapse
Affiliation(s)
- Susan Critchley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Eamon J Sheehy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gráinne Cunniffe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oju Jeon
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - Eben Alsberg
- Department of Bioengineering, University of Illinois, Chicago, IL, USA; Departments of Orthopaedics, Pharmacology, and Mechanical & Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Pieter A J Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
15
|
Erickson CB, Newsom JP, Fletcher NA, Feuer ZM, Yu Y, Rodriguez‐Fontan F, Hadley Miller N, Krebs MD, Payne KA. In vivo degradation rate of alginate–chitosan hydrogels influences tissue repair following physeal injury. J Biomed Mater Res B Appl Biomater 2020; 108:2484-2494. [DOI: 10.1002/jbm.b.34580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Christopher B. Erickson
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Department of BioengineeringUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Jake P. Newsom
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Nathan A. Fletcher
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Zachary M. Feuer
- Gates Center for Regenerative MedicineUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Yangyi Yu
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | | | - Nancy Hadley Miller
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Melissa D. Krebs
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Karin A. Payne
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Gates Center for Regenerative MedicineUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| |
Collapse
|
16
|
Strasser V, Matijaković N, Mihelj Josipović T, Kontrec J, Lyons DM, Kralj D, Dutour Sikirić M. Factors affecting calcium phosphate mineralization within bulk alginate hydrogels. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Gonzalez-Fernandez T, Rathan S, Hobbs C, Pitacco P, Freeman FE, Cunniffe GM, Dunne NJ, McCarthy HO, Nicolosi V, O'Brien FJ, Kelly DJ. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J Control Release 2019; 301:13-27. [PMID: 30853527 DOI: 10.1016/j.jconrel.2019.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
Collapse
Affiliation(s)
- T Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland
| | - S Rathan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - C Hobbs
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - P Pitacco
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - F E Freeman
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - G M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - N J Dunne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Pharmacy, Queen's University Belfast, UK
| | - H O McCarthy
- School of Pharmacy, Queen's University Belfast, UK
| | - V Nicolosi
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - F J O'Brien
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland
| | - D J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland.
| |
Collapse
|
18
|
Critchley S, Cunniffe G, O'Reilly A, Diaz-Payno P, Schipani R, McAlinden A, Withers D, Shin J, Alsberg E, Kelly DJ. Regeneration of Osteochondral Defects Using Developmentally Inspired Cartilaginous Templates. Tissue Eng Part A 2018; 25:159-171. [PMID: 30358516 DOI: 10.1089/ten.tea.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Successfully treating osteochondral defects involves regenerating both the damaged articular cartilage and the underlying subchondral bone, in addition to the complex interface that separates these tissues. In this study, we demonstrate that a cartilage template, engineered using bone marrow-derived mesenchymal stem cells, can enhance the regeneration of such defects and promote the development of a more mechanically functional repair tissue. We also use a computational mechanobiological model to understand how joint-specific environmental factors, specifically oxygen levels and tissue strains, regulate the conversion of the engineered template into cartilage and bone in vivo.
Collapse
Affiliation(s)
- Susan Critchley
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adam O'Reilly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Rossana Schipani
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Aidan McAlinden
- 3 Section of Veterinary Clinical Studies, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Jungyoun Shin
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,8 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,9 Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Superior calvarial bone regeneration using pentenoate-functionalized hyaluronic acid hydrogels with devitalized tendon particles. Acta Biomater 2018; 71:148-155. [PMID: 29496620 DOI: 10.1016/j.actbio.2018.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) is a life-threatening condition defined by internal brain herniation. Severe TBI is commonly treated by a two-stage surgical intervention, where decompressive craniectomy is first conducted to remove a large portion of calvarial bone and allow unimpeded brain swelling. In the second surgery, spaced weeks to months after the first, cranioplasty is performed to restore the cranial bone. Hydrogels with paste-like precursor solutions for surgical placement may potentially revolutionize TBI treatment by permitting a single-stage surgical intervention, capable of being implanted with the initial surgery, remaining pliable during brain swelling, and tuned to regenerate calvarial bone after brain swelling has subsided. The current study evaluated the use of photocrosslinkable pentenoate-functionalized hyaluronic acid (PHA) and non-crosslinking hyaluronic acid (HA) hydrogels encapsulating naturally derived tissue particles of demineralized bone matrix (DBM), devitalized cartilage (DVC), devitalized meniscus (DVM), or devitalized tendon (DVT) for bone regeneration in critical-size rat calvarial defects. All hydrogel precursors exhibited a yield stress for placement and addition of particles increased the average material compressive modulus. The HA-DBM (4-30%), PHA (4%), and PHA-DVT (4-30%) groups had 5 (p < 0.0001), 3.1, and 3.2 (p < 0.05) times greater regenerated bone volume compared to the sham (untreated defect) group, respectively. In vitro cell studies suggested that the PHA-DVT (4-10%) group would have the most desirable performance. Overall, hydrogels containing DVT particles outperformed other materials in terms of bone regeneration in vivo and calcium deposition in vitro. Hydrogels containing DVT will be further evaluated in future rat TBI studies. STATEMENT OF SIGNIFICANCE Traumatic brain injury (TBI) is a life-threatening condition characterized by severe brain swelling and is currently treated by a two-stage surgical procedure. Complications associated with the two-stage surgical intervention include the occurrence of the condition termed syndrome of the trephined; however, the condition is completely reversible once the secondary surgery is performed. A desirable TBI treatment would include a single surgical intervention to avoid syndrome of the trephined altogether. The first hurdle in reaching the overall goal is to develop a pliable hydrogel material that can regenerate the patient's bone. The development of a pliable hydrogel technology would greatly impact the field of bone regeneration for TBI application and other areas of bone regeneration.
Collapse
|
20
|
Townsend JM, Zabel TA, Feng Y, Wang J, Andrews BT, Nudo RJ, Berkland CJ, Detamore MS. Effects of tissue processing on bioactivity of cartilage matrix-based hydrogels encapsulating osteoconductive particles. ACTA ACUST UNITED AC 2018; 13:034108. [PMID: 29411714 DOI: 10.1088/1748-605x/aaad77] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the treatment of severe traumatic brain injury (TBI), decompressive craniectomy is commonly used to remove a large portion of calvarial bone to allow unimpeded brain swelling. Hydrogels have the potential to revolutionize TBI treatment by permitting a single-surgical intervention, remaining pliable during brain swelling, and tuned to regenerate bone after swelling has subsided. With this motivation, our goal is to present a pliable material capable of regenerating calvarial bone across a critical size defect. We therefore proposed the use of a methacrylated solubilized decellularized cartilage (MeSDCC) hydrogel encapsulating synthetic osteogenic particles of hydroxyapatite nanofibers, bioglass microparticles, or added rat bone marrow-derived mesenchymal stem cells (rMSCs) for bone regeneration in critical-size rat calvarial defects. Fibrin hydrogels were employed as a control material for the study. MeSDCC hydrogels exhibited sufficient rheological performance for material placement before crosslinking ([Formula: see text] > 500 Pa), and sufficient compressive moduli post-crosslinking (E > 150 kPa). In vitro experiments suggested increased calcium deposition for cells seeded on the MeSDCC material; however, in vivo bone regeneration was minimal in both MeSDCC and fibrin groups, even with colloidal materials or added rMSCs. Minimal bone regeneration in the MeSDCC test groups may potentially be attributed to cartilage solubilization after decellularization, in which material signals may have degraded from enzymatic treatment. Looking to the future, an improvement in the bioactivity of the material will be crucial to the success of bone regeneration strategies for TBI treatment.
Collapse
Affiliation(s)
- Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 2018; 162:34-46. [PMID: 29432987 DOI: 10.1016/j.biomaterials.2018.01.057] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023]
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierluca Pitacco
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jessica Nulty
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Daly AC, Sathy BN, Kelly DJ. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J Tissue Eng 2018; 9:2041731417753718. [PMID: 29399319 PMCID: PMC5788092 DOI: 10.1177/2041731417753718] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O2 and 3% O2. At 20% O2, dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Binulal N Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Freeman FE, Kelly DJ. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues. Sci Rep 2017; 7:17042. [PMID: 29213126 PMCID: PMC5719090 DOI: 10.1038/s41598-017-17286-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Alginate is a commonly used bioink in 3D bioprinting. Matrix stiffness is a key determinant of mesenchymal stem cell (MSC) differentiation, suggesting that modulation of alginate bioink mechanical properties represents a promising strategy to spatially regulate MSC fate within bioprinted tissues. In this study, we define a printability window for alginate of differing molecular weight (MW) by systematically varying the ratio of alginate to ionic crosslinker within the bioink. We demonstrate that the MW of such alginate bioinks, as well as the choice of ionic crosslinker, can be tuned to control the mechanical properties (Young's Modulus, Degradation Rate) of 3D printed constructs. These same factors are also shown to influence growth factor release from the bioinks. We next explored if spatially modulating the stiffness of 3D bioprinted hydrogels could be used to direct MSC fate inside printed tissues. Using the same alginate and crosslinker, but varying the crosslinking ratio, it is possible to bioprint constructs with spatially varying mechanical microenvironments. Moreover, these spatially varying microenvironments were found to have a significant effect on the fate of MSCs within the alginate bioinks, with stiffer regions of the bioprinted construct preferentially supporting osteogenesis over adipogenesis.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland. .,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28804984 DOI: 10.1002/adhm.201700298] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone-soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Fiona E. Freeman
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tomas Gonzalez-Fernandez
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Susan E. Critchley
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Jessica Nulty
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Advanced Materials and Bioengineering Research Center (AMBER); Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin Ireland
| |
Collapse
|
25
|
Cunniffe GM, Gonzalez-Fernandez T, Daly A, Sathy BN, Jeon O, Alsberg E, Kelly DJ. * Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering. Tissue Eng Part A 2017; 23:891-900. [PMID: 28806146 DOI: 10.1089/ten.tea.2016.0498] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-γ-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bone marrow-derived mesenchymal stem cells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization and mineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
Collapse
Affiliation(s)
- Gráinne M Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Tomas Gonzalez-Fernandez
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Andrew Daly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Binulal N Sathy
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland .,4 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Oju Jeon
- 5 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University , Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
26
|
Atoufi Z, Zarrintaj P, Motlagh GH, Amiri A, Bagher Z, Kamrava SK. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1617-1638. [DOI: 10.1080/09205063.2017.1340044] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhale Atoufi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ghodratollah Hashemi Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Anahita Amiri
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Bagher
- ENT-Head and Neck Research Center and Department, Rasoul Akram Hospital, Iran University of Medical Sciences & Health Services, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT-Head and Neck Research Center and Department, Rasoul Akram Hospital, Iran University of Medical Sciences & Health Services, Tehran, Iran
| |
Collapse
|
27
|
Shumilova AA, Myltygashev MP, Kirichenko AK, Nikolaeva ED, Volova TG, Shishatskaya EI. Porous 3D implants of degradable poly-3-hydroxybutyrate used to enhance regeneration of rat cranial defect. J Biomed Mater Res A 2016; 105:566-577. [PMID: 27741556 DOI: 10.1002/jbm.a.35933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/05/2016] [Accepted: 10/11/2016] [Indexed: 01/17/2023]
Abstract
The study describes preparation and testing of porous 3D implants of natural degradable polymer of 3-hydroxybutyric acid P(3HB) for regeneration of bone tissue defects. The ability of the P(3HB) implants to favor attachment and facilitate proliferation and directed differentiation of mesenchymal stem cells (MSCs) was studied in the culture of MSCs isolated from bone marrow and adipose tissue. Tissue-engineered hybrid systems (grafts) constructed using P(3HB) and P(3HB) in combination with osteoblasts were used in experiments on laboratory animals (n = 48) with bone defect model. The defect model (5 mm in diameter) was created in the rat parietal bone, and filling of the defect by the new bone tissue was monitored in the groups of animals with P(3HB) implants, with commercial material, and without implants (negative control). Computed tomography (CT) and histologic examination showed that after 120 days, in the group with the osteoblast-seeded P(3HB) implants, the defect was completely closed; in the group with the cell-free P(3HB) implants, the remaining defect was no more than 10% of the initial one (0.5 mm); in both the negative and positive controls, the size of the defect was about 1.0-1.2 mm. These results suggest that P(3HB) has good potential as osteoplastic material for reconstructive osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 566-577, 2017.
Collapse
Affiliation(s)
- A A Shumilova
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| | - M P Myltygashev
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak Street, Krasnoyarsk, 660022
| | - A K Kirichenko
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak Street, Krasnoyarsk, 660022
| | - E D Nikolaeva
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041
| | - T G Volova
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| | - E I Shishatskaya
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| |
Collapse
|
28
|
Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Adv Healthc Mater 2016; 5:2353-62. [PMID: 27281607 DOI: 10.1002/adhm.201600182] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Indexed: 12/22/2022]
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gráinne M. Cunniffe
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Binulal N. Sathy
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Oju Jeon
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
29
|
|