1
|
Macieja S, Piegat A, Mizielińska M, Stefaniak N, El Fray M, Bartkowiak A, Zdanowicz M. The Effect of the Ratio of Butylene Succinate and Dilinoleic Diol in Their Copolyester (PBS-DLS) on the Physicochemical Properties and Biofilm Formation. Molecules 2025; 30:1387. [PMID: 40142162 PMCID: PMC11944411 DOI: 10.3390/molecules30061387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Biofilm-forming microorganisms pose a severe threat in the food and medical industries, among others. In this paper, the research materials were poly(butylene succinate-dilinoleic succinate) (PBS-DLS) copolymers with variable hard and soft segment weight ratios (90:10, 70:30, and 50:50). Polymeric films were prepared by the solvent casting method. Selected physicochemical properties and the tendency to form biofilm on the polymer surface were investigated. As the amount of DLS soft segments in the polymer matrix increased, changes in the FTIR-ATR spectra (signal intensity), surface (SEM), and phase transition (DSC) were observed. The higher the content of the DLS segment, the lower the transition temperatures and the smoother the film's surface. These factors resulted in a significant reduction in the amount of biofilm formed on the material's surface and a decrease in the metabolic activity of microorganisms present in the biofilm and SEM micrographs. The obtained PBS-DLS films have great potential in the food and medical packaging industries.
Collapse
Affiliation(s)
- Szymon Macieja
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (M.M.); (A.B.)
| | - Agnieszka Piegat
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland; (N.S.); (M.E.F.)
| | - Małgorzata Mizielińska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (M.M.); (A.B.)
| | - Nina Stefaniak
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland; (N.S.); (M.E.F.)
| | - Mirosława El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland; (N.S.); (M.E.F.)
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (M.M.); (A.B.)
| | - Magdalena Zdanowicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (M.M.); (A.B.)
| |
Collapse
|
2
|
Zarei M, Żwir MJ, Michalkiewicz B, Gorący J, El Fray M. Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts. J Biomed Mater Res B Appl Biomater 2025; 113:e35525. [PMID: 39737747 DOI: 10.1002/jbm.b.35525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques. The outer layer was fabricated by template-assisted electrospinning utilizing a 3D-printed scaffold with a precise hexagonal pore design as the template, and the inner layer was coated with gelatin through perfusion. Cellulose nanocrystals (CNCs) were incorporated into electrospun fibers to enhance mechanical properties. The gelatin coating was applied to the lumen using perfusion coating, resembling the inner layer. Integration of 3D-printed structures with electrospun fibers via template-assisted electrospinning and gelatin coating resulted in a seamless multilayered scaffold. Mechanical testing demonstrated robustness, surpassing natural arteries in some aspects, while the gelatin coating significantly reduced liquid leakage, ensuring leak-free functionality. Cytotoxicity assessment confirmed the biocompatibility of processed materials with fibroblast cells, supporting potential for medical applications.
Collapse
Affiliation(s)
- Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marek J Żwir
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Beata Michalkiewicz
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Jarosław Gorący
- Department of Cardiology, & Independent Laboratory of Invasive Cardiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
3
|
Larijani G, Parivar K, Hayati Roodbari N, Yaghmaei P, Amini N. Fortified electrospun collagen utilizing biocompatible Poly Glycerol Sebacate prepolymer (PGSp) and zink oxide nanoparticles (ZnO NPs) for diabetics wound healing: Physical, biological and animal studies. Regen Ther 2024; 26:102-113. [PMID: 38872978 PMCID: PMC11170210 DOI: 10.1016/j.reth.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024] Open
Abstract
Collagen, a naturally occurring fibrous protein, is a potential resource of biological materials for tissue engineering and regenerative medicine because it is structurally biocompatible, has low immunogenicity, is biodegradable, and is biomimetic. Numerous studies have documented in the literature how Collagen nanofibers exhibit limited cell adhesion, poor viscosity, and no interior fibril structure. The biomedical industry is using Poly Glycerol Sebacate prepolymer(PGSp), a biodegradable and biocompatible polyester with high adhesion and very viscous appearance, more often. Here, unique electrospun Collagen/PGSp/ZnO/NPs blend nanofibers for skin tissue application were developed and described with varied PGSp percent. Additionally, when ternary blends of Collagen, PGSp, and Zink Oxide Nanoparticles (ZnO NPs) are used, the antibacterial properties of the scaffolds are improved. The bead-free electrospun nanofibers were produced by raising the PGSp concentration to 30%w/w. SEM, EDS, tensile, MTT, FTIR, SDS-page, swelling test, contact-angle, antimicrobial, biodegradation, XRD, and cell attachment procedures were used to characterize the crosslinked nanofibers. The ternary blend nanofibers with a weight ratio of Collagen/PGSp 30%/ZnONPs 1% had higher stress/strain strength (0.25 mm/mm), porosity (563), cell survival, and degradation time. Moreover, after applying for wound healing in diabetic rats, Collagen/PGSp 30%/could be show improving wound healing significantly compared to other groups.
Collapse
Affiliation(s)
- Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Guidotti G, Duelen R, Bloise N, Soccio M, Gazzano M, Aluigi A, Visai L, Sampaolesi M, Lotti N. The ad hoc chemical design of random PBS-based copolymers influences the activation of cardiac differentiation while altering the HYPPO pathway target genes in hiPSCs. BIOMATERIALS ADVANCES 2023; 154:213583. [PMID: 37604040 DOI: 10.1016/j.bioadv.2023.213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, (PU), Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
5
|
Hevilla V, Sonseca Á, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Photocured Poly(Mannitol Sebacate) with Functional Methacrylic Monomer: Analysis of Physical, Chemical, and Biological Properties. Polymers (Basel) 2023; 15:polym15061561. [PMID: 36987340 PMCID: PMC10054831 DOI: 10.3390/polym15061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
6
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Atari M, Mohammadalizadeh Z, Zargar Kharazi A, Haghjooy Javanmard S. The effect of different solvent systems on physical properties of electrospun poly(glycerol sebacate)/poly(ɛ-caprolactone) blend. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2022161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mehdi Atari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mohammadalizadeh
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anoushe Zargar Kharazi
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Demirci G, Niedźwiedź MJ, Kantor-Malujdy N, El Fray M. Elastomer-Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Polymers (Basel) 2022; 14:1822. [PMID: 35566990 PMCID: PMC9104885 DOI: 10.3390/polym14091822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Novel advanced biomaterials have recently gained great attention, especially in minimally invasive surgical techniques. By applying sophisticated design and engineering methods, various elastomer-hydrogel systems (EHS) with outstanding performance have been developed in the last decades. These systems composed of elastomers and hydrogels are very attractive due to their high biocompatibility, injectability, controlled porosity and often antimicrobial properties. Moreover, their elastomeric properties and bioadhesiveness are making them suitable for soft tissue engineering. Herein, we present the advances in the current state-of-the-art design principles and strategies for strong interface formation inspired by nature (bio-inspiration), the diverse properties and applications of elastomer-hydrogel systems in different medical fields, in particular, in tissue engineering. The functionalities of these systems, including adhesive properties, injectability, antimicrobial properties and degradability, applicable to tissue engineering will be discussed in a context of future efforts towards the development of advanced biomaterials.
Collapse
Affiliation(s)
| | | | | | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (M.J.N.); (N.K.-M.)
| |
Collapse
|
10
|
Zulkifli Z, Tan JJ, Ku Marsilla KI, Rusli A, Abdullah MK, Shuib RK, Shafiq MD, Abdul Hamid ZA. Shape memory poly (glycerol sebacate)‐based electrospun fiber scaffolds for tissue engineering applications: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zulaikha Zulkifli
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Jun Jie Tan
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute Universiti Sains Malaysia Kepala Batas Malaysia
| | - Ku Ishak Ku Marsilla
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Muhammad Khalil Abdullah
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Raa Khimi Shuib
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
11
|
Synthesis of Hydrophilic Poly(butylene succinate-butylene dilinoleate) (PBS-DLS) Copolymers Containing Poly(Ethylene Glycol) (PEG) of Variable Molecular Weights. Polymers (Basel) 2021; 13:polym13183177. [PMID: 34578078 PMCID: PMC8468582 DOI: 10.3390/polym13183177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Polymeric materials have numerous applications from the industrial to medical fields because of their vast controllable properties. In this study, we aimed to synthesize series of poly(butylene succinate-dilinoleic succinate-ethylene glycol succinate) (PBS-DLS-PEG) copolymers, by two-step polycondensation using a heterogeneous catalyst and a two-step process. PEG of different molecular weights, namely, 1000 g/mol and 6000 g/mol, was used in order to study its effect on the surface and thermal properties. The amount of the PBS hard segment in all copolymers was fixed at 70 wt%, while different ratios between the soft segments (DLS and PEG) were applied. The chemical structure of PBS-DLS-PEG was evaluated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Gel permeation chromatography was used to determine the molecular weight and dispersity index. The results of structural analysis indicate the incorporation of PEG in the macrochain. The physical and thermal properties of the newly synthesized copolymers were also evaluated using water contact angle measurements, differential scanning calorimetry and dynamic thermomechanical analysis. It was found that increasing the amount of PEG of a higher molecular weight increased the surface wettability of the new materials while maintaining their thermal properties. Importantly, the two-step melt polycondensation allowed a direct fabrication of a polymeric filament with a well-controlled diameter directly from the reactor. The obtained results clearly show that the use of two-step polycondensation in the melt allows obtaining novel PBS-DLS-PEG copolymers and creates new opportunities for the controlled processing of these hydrophilic and thermally stable copolymers for 3D printing technology, which is increasingly used in medical techniques.
Collapse
|
12
|
Potapov AG, Shundrina IK. Influence of Comonomers on the Properties of Butylene Succinate Copolyesters. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
14
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
15
|
Guidotti G, Soccio M, Gazzano M, Fusaro L, Boccafoschi F, Munari A, Lotti N. New thermoplastic elastomer triblock copolymer of PLLA for cardiovascular tissue engineering: Annealing as efficient tool to tailor the solid-state properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Guidotti G, Soccio M, Gazzano M, Bloise N, Bruni G, Aluigi A, Visai L, Munari A, Lotti N. Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Jäger A, Donato RK, Perchacz M, Donato KZ, Starý Z, Konefał R, Serkis-Rodzeń M, Raucci MG, Fuentefria AM, Jäger E. Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. J Mater Chem B 2020; 8:9980-9996. [PMID: 33073835 DOI: 10.1039/d0tb02068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advances in polymer chemistry have allowed the preparation of biomedical polymers using human metabolites as monomers that can hold unique properties beyond the required biodegradability and biocompatibility. Herein, we demonstrate the use of endogenous human metabolites (succinic and dilinoleic acids) as monomeric building blocks to develop a new series of renewable resource-based biodegradable and biocompatible copolyesters. The novel copolyesters were characterized in detail employing several standard techniques, namely 1H NMR, 13C NMR, and FTIR spectroscopy and SEC, followed by an in-depth thermomechanical and surface characterization of their resulting thin films (DSC, TGA, DMTA, tensile tests, AFM, and contact angle measurements). Also, their anti-fungal biofilm properties were assessed via an anti-fungal biofilm assay and the biological properties were evaluated in vitro using relevant human-derived cells (human mesenchymal stem cells and normal human dermal fibroblasts). These novel highly biocompatible polymers are simple and cheap to prepare, and their synthesis can be easily scaled-up. They presented good mechanical, thermal and anti-fungal biofilm properties while also promoting cell attachment and proliferation, outperforming well-known polymers used for biomedical applications (e.g. PVC, PLGA, and PCL). Moreover, they induced morphological changes in the cells, which were dependent on the structural characteristics of the polymers. In addition, the obtained physicochemical and biological properties can be design-tuned by the synthesis of homo- and -copolymers through the selection of the diol moiety (ES, PS, or BS) and by the addition of a co-monomer, DLA. Consequently, the copolyesters presented herein have high application potential as renewable and cost-effective biopolymers for various biomedical applications.
Collapse
Affiliation(s)
- Alessandro Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Ricardo K Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Perchacz
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic. and Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Z Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Zdeněk Starý
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Serkis-Rodzeń
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Maria G Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, Mostrad'Oltremare Pad.20, Viale Kennedy 54, 80125 Naples, Italy
| | - Alexandre M Fuentefria
- Laboratory of Applied Mycology, Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
18
|
Kolbuk D, Jeznach O, Wrzecionek M, Gadomska-Gajadhur A. Poly(Glycerol Succinate) as an Eco-Friendly Component of PLLA and PLCL Fibres towards Medical Applications. Polymers (Basel) 2020; 12:E1731. [PMID: 32756398 PMCID: PMC7464260 DOI: 10.3390/polym12081731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres.
Collapse
Affiliation(s)
- Dorota Kolbuk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Oliwia Jeznach
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Michał Wrzecionek
- Faculty of Chemistry of Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland;
| | | |
Collapse
|
19
|
Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. NANOMATERIALS 2020; 10:nano10050978. [PMID: 32438673 PMCID: PMC7279550 DOI: 10.3390/nano10050978] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/28/2023]
Abstract
Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.
Collapse
|
20
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
21
|
Touré ABR, Mele E, Christie JK. Multi-layer Scaffolds of Poly(caprolactone), Poly(glycerol sebacate) and Bioactive Glasses Manufactured by Combined 3D Printing and Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E626. [PMID: 32231007 PMCID: PMC7221587 DOI: 10.3390/nano10040626] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young's modulus of 240-310 MPa, higher than that of 3D-printed grids (125-280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3-5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.
Collapse
Affiliation(s)
- Adja B. R. Touré
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK; (E.M.); (J.K.C.)
- Centre for Additive Manufacturing, Faculty of Engineering, Jubilee Campus, Nottingham University, Nottingham NG7 2RD, UK
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK; (E.M.); (J.K.C.)
| | - Jamieson K. Christie
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK; (E.M.); (J.K.C.)
| |
Collapse
|
22
|
Sonseca A, Sahay R, Stepien K, Bukala J, Wcislek A, McClain A, Sobolewski P, Sui X, Puskas JE, Kohn J, Wagner HD, El Fray M. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110505. [DOI: 10.1016/j.msec.2019.110505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022]
|
23
|
Poly(Glycerol Sebacate)-Poly(l-Lactide) Nonwovens. Towards Attractive Electrospun Material for Tissue Engineering. Polymers (Basel) 2019; 11:polym11122113. [PMID: 31888267 PMCID: PMC6960929 DOI: 10.3390/polym11122113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Two types of poly(glycerol sebacate) (PGS) prepolymers were synthesized and electrospun with poly(l-lactic acid) (PLA), resulting in bicomponent nonwovens. The obtained materials were pre-heated in a vacuum, at different times, to crosslink PGS and investigate morphological and structural dependencies in that polymeric, electrospun system. As both PGS and PLA are sensitive to pre-heating (crosslinking) conditions, research concerns both components. More interest is focused on the properties of PGS, considering further research for mechanical properties and subsequent experiments with PGS synthesis. Electrospinning of PGS blended with PLA does not bring difficulties, but obtaining elastomeric properties of nonwovens is problematic. Even though PGS has many potential advantages over other polyesters when soft tissue engineering is considered, its full utilization via the electrospinning process is much harder in practice. Further investigations are ongoing, especially with the promising PGS prepolymer with a higher esterification degree and its variations.
Collapse
|
24
|
Gultekinoglu M, Öztürk Ş, Chen B, Edirisinghe M, Ulubayram K. Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Prowans P, Kowalczyk R, Wiszniewska B, Czapla N, Bargiel P, El Fray M. Bone Healing in the Presence of a Biodegradable PBS-DLA Copolyester and Its Composite Containing Hydroxyapatite. ACS OMEGA 2019; 4:19765-19771. [PMID: 31788608 PMCID: PMC6882124 DOI: 10.1021/acsomega.9b02539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The healing process of the fractured bone in a presence of poly(butylene succinate-butylene dilinoleate) (PBS-DLA) copolymer containing nanosized hydroxyapatite (HAP) particles has been investigated. The PBS-DLA material containing PBS hard segments and DLA soft segments (50:50 wt %) was used to prepare a polymer/ceramic composite with 30 wt % HAP. A new PBS-DLA copolymer showed a high elasticity of 500% and 15 MPa tensile strength. Addition of HAP improved tensile strength up to 25 MPa while high elasticity has been preserved going down only to 300% of elongation at break. A polymer nanocomposite was fabricated into small elastic polymer rods 15 mm long and 1 × 2 mm in cross section and used for tibia bone fixation in rats. Mallory trichrome staining indicated that new biodegradable copolymers and its composite containing HAP have triggered the most advanced bone healing of all tested materials, thus indicating their high potential for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Piotr Prowans
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Robert Kowalczyk
- Clinic
of Maxillofacial Surgery, Pomeranian Medical
University, ul. Unii
Lubelskiej 1, 71-252 Szczecin, Poland
| | - Barbara Wiszniewska
- Department
of Histology and Embryology, Pomeranian
Medical University, Al.
Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Norbert Czapla
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Piotr Bargiel
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Miroslawa El Fray
- Department
of Polymer and Biomaterials Science, Faculty of Chemical Technology
and Engineering, West Pomeranian University
of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| |
Collapse
|
26
|
Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109712. [DOI: 10.1016/j.msec.2019.04.091] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
|
27
|
Kinetic studies of biocatalyzed copolyesters of poly(butylene succinate) (PBS) containing fully bio-based dilinoleic diol. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Lu Y, Lv Q, Liu B, Liu J. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications. Biomater Sci 2019; 7:4963-4983. [PMID: 31532401 DOI: 10.1039/c9bm00716d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biomedical applications of biodegradable polymers synthesized via the catalysis of immobilized Candida antarctica lipase B (CALB).
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Qijun Lv
- Department of General Surgery
- The Ling Nan Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Bo Liu
- Department of General Surgery
- The Ling Nan Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Jie Liu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
29
|
Fabbri M, Guidotti G, Soccio M, Lotti N, Govoni M, Giordano E, Gazzano M, Gamberini R, Rimini B, Munari A. Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Tang L, Wei W, Wang X, Qian J, Li J, He A, Yang L, Jiang X, Li X, Wei J. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds. RSC Adv 2018; 8:10794-10805. [PMID: 35541558 PMCID: PMC9078889 DOI: 10.1039/c7ra13452e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/10/2018] [Indexed: 01/03/2023] Open
Abstract
Novel bio-nanocomposite scaffolds for bone tissue engineering were prepared by incorporation of LAPONITE® (LAP) nanorods into poly(butylene succinate) (PBSu). The results showed that the scaffolds had well interconnected macroporous structures with macropore size in the range of 200–400 μm and porosity of around 70%. In addition, the water absorption, degradability and apatite mineralization ability of the scaffolds were clearly enhanced with the increase of LAP content. Moreover, the degradation of LAP produced alkaline products, which neutralized the acidic degradable products of PBSu, and formed a weak alkaline microenvironment similar to a biological environment. Furthermore, the adhesion, proliferation and differentiation of MC3T3-E1 cells onto the scaffolds were significantly promoted with the increase of LAP content, in which the scaffold with 30 wt% LAP (sPL30) exhibited the best stimulation effect on the cells responses. The results suggested that the promotion of cells responses could be ascribed to the improvements of surface characteristics (including roughness, hydrophilicity, ions release and apatite formation, etc.) of the scaffolds. The sPL30 scaffold with excellent biocompatibility, bioactivity and degradability had great potential for applications in bone tissue engineering. PBSu/LAP bio-nanocomposite scaffolds were prepared, and the sPL30 scaffolds significantly stimulated cell adhesion and proliferation.![]()
Collapse
Affiliation(s)
- Liangchen Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Wu Wei
- College of Materials Science & Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jianyou Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Axiang He
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Lili Yang
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Xuesheng Jiang
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Xiongfeng Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| |
Collapse
|
31
|
Borzenkov M, Chirico G, Collini M, Pallavicini P. Gold Nanoparticles for Tissue Engineering. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Sonseca A, El Fray M. Enzymatic synthesis of an electrospinnable poly(butylene succinate-co-dilinoleic succinate) thermoplastic elastomer. RSC Adv 2017. [DOI: 10.1039/c7ra02509b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Candida antarcticalipase B was successfully employed for the first time as a biocatalyst to obtain high molecular weight PBS : DLS copolyesterviaa two-stage method in diphenyl ether from diethyl succinate, 1,4-butanediol, and dimer linoleic diol.
Collapse
Affiliation(s)
- Agueda Sonseca
- Division of Biomaterials and Microbiological Technologies
- Polymer Institute
- Faculty of Chemical Technology and Engineering
- West Pomeranian University of Technology
- Szczecin
| | - Miroslawa El Fray
- Division of Biomaterials and Microbiological Technologies
- Polymer Institute
- Faculty of Chemical Technology and Engineering
- West Pomeranian University of Technology
- Szczecin
| |
Collapse
|