1
|
Li J, Goddard NJ, Songsaeng R, Gupta R. Coalescence of multiple pairs of levitated droplets using dual-side phased arrays. ULTRASONICS SONOCHEMISTRY 2025; 116:107327. [PMID: 40179600 PMCID: PMC11999590 DOI: 10.1016/j.ultsonch.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Acoustic levitation in air and contactless coalescence of levitated droplets using acoustic forces are of great significance to chemical and biological reactions. The state-of-the-art is levitation and coalescence of 3 pairs of droplets achieved via dual-side phased arrays. However, there are no reports on the general design principles for manipulation and coalescence of > 3 pairs of droplets. Equally, there are no reports on sequential coalescence of more than two columns of droplets, which is essential for performing reactions requiring addition of more than two reagents. In this paper, we showed that wide traps are more suited than narrow traps for the coalescence of droplets. In wide traps, the acoustic energy was expanded along the direction of merging of droplets. Additionally, uniform traps created in this work by distributing energy between traps increased the number of droplets that can be levitated. We have reported a new algorithm named DS-PAT based on direct search method to overcome the limitations of existing algorithms. Using wide uniform traps and the DS-PAT algorithm, for the first time, a stable coalescence of up to 6 pairs of levitated droplets was achieved. To measure experimental acoustic fields during the merging process, a custom-built acoustic scanning setup was employed, which showed good consistency with simulations. Subsequently, DS-PAT was used to design the sequential coalescence of 4 columns of droplets with 2 droplets in each column. This was then applied to study the well-known oscillatory Belousov-Zhabotinsky (BZ) reaction. This work gives general principles of designing acoustic fields for stable coalescence of columns of droplets and introduces a global algorithm for dual-side phased arrays, paving the way for stable and efficient chemical and biological reactions in airborne droplets.
Collapse
Affiliation(s)
- Jianqing Li
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | - Ruchi Gupta
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids. BIONANOSCIENCE 2024; 15:65. [PMID: 39980746 PMCID: PMC11835939 DOI: 10.1007/s12668-024-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/22/2025]
Abstract
An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
3
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
4
|
Geher-Herczegh T, Wang Z, Masuda T, Vasudevan N, Yoshida R, Hayashi Y. Harmonic resonance and entrainment of propagating chemical waves by external mechanical stimulation in BZ self-oscillating hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2320331121. [PMID: 38593071 PMCID: PMC11032451 DOI: 10.1073/pnas.2320331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Smart polymer materials that are nonliving yet exhibit complex "life-like" or biomimetic behaviors have been the focus of intensive research over the past decades, in the quest to broaden our understanding of how living systems function under nonequilibrium conditions. Identification of how chemical and mechanical coupling can generate resonance and entrainment with other cells or external environment is an important research question. We prepared Belousov-Zhabotinsky (BZ) self-oscillating hydrogels which convert chemical energy to mechanical oscillation. By cyclically applying external mechanical stimulation to the BZ hydrogels, we found that when the oscillation of a gel sample entered into harmonic resonance with the applied oscillation during stimulation, the system kept a "memory" of the resonant oscillation period and maintained it post stimulation, demonstrating an entrainment effect. More surprisingly, by systematically varying the cycle length of the external stimulation, we revealed the discrete nature of the stimulation-induced resonance and entrainment behaviors in chemical oscillations of BZ hydrogels, i.e., the hydrogels slow down their oscillation periods to the harmonics of the cycle length of the external mechanical stimulation. Our theoretical model calculations suggest the important roles of the delayed mechanical response caused by reactant diffusion and solvent migration in affecting the chemomechanical coupling in active hydrogels and consequently synchronizing their chemical oscillations with external mechanical oscillations.
Collapse
Affiliation(s)
- Tunde Geher-Herczegh
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| | - Zuowei Wang
- Department of Mathematics and Statistics, School of Mathematical, Physical and Computational Sciences, University of Reading, ReadingRG6 6AX, United Kingdom
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Nandini Vasudevan
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Yoshikatsu Hayashi
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| |
Collapse
|
5
|
den Hoed FM, Carlotti M, Palagi S, Raffa P, Mattoli V. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots. MICROMACHINES 2024; 15:275. [PMID: 38399003 PMCID: PMC10893381 DOI: 10.3390/mi15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.
Collapse
Affiliation(s)
- Frank Marco den Hoed
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Marco Carlotti
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Palagi
- BioRobotics Institute, Sant’Anna School of Advanced Studies, P.zza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
6
|
Songsaeng R, Goddard NJ, Gupta R. An investigative study into an oscillatory reaction in acoustically levitated droplets. RSC Adv 2023; 13:30002-30009. [PMID: 37842669 PMCID: PMC10571017 DOI: 10.1039/d3ra06514f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
For the first time we have studied an oscillatory chemical reaction (the well-known Belousov-Zhabotinsky (BZ) reaction) in acoustically levitated droplets. Acoustically levitated droplets allow wall-less reaction studies, reduce consumption of sample/reagents, offer high throughput measurements, and enable environmentally friendly chemistry by significantly reducing plastic waste. In this work, microdroplets of the BZ reactants were mixed at the central axis of a low-cost acoustic levitator. The chemical reaction observed in acoustically levitated droplets proceeded in the same way as that in both stirred and unstirred vials where the volume of droplets was 750-fold lower than the solutions in vials. The observed oscillation frequency in droplets was lower than that observed in vials, possibly as a result of evaporative cooling of the droplets. This work has shown that oscillatory reactions can be successfully carried out in acoustically levitated droplets, which allows the application of this technique to areas such as analysis, synthesis and actuation of smart materials and studies of the origins of life.
Collapse
Affiliation(s)
| | | | - Ruchi Gupta
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
7
|
Ter Harmsel M, Maguire OR, Runikhina SA, Wong ASY, Huck WTS, Harutyunyan SR. A catalytically active oscillator made from small organic molecules. Nature 2023; 621:87-93. [PMID: 37673989 PMCID: PMC10482680 DOI: 10.1038/s41586-023-06310-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/12/2023] [Indexed: 09/08/2023]
Abstract
Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat1-4. Abiotic chemical oscillations, discovered originally in inorganic systems5,6, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field7-17. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools. However, this is not trivial because the participation of components of the oscillator in the secondary function might jeopardize its time-keeping ability. We now report a small molecule oscillator that can catalyse an independent chemical reaction in situ without impairing its oscillating properties. In a flow system, the concentration of the catalytically active product of the oscillator shows sustained oscillations and the catalysed reaction is accelerated only during concentration peaks. Augmentation of synthetic oscillators with periodic catalytic action allows the construction of complex systems that, in the future, may benefit applications in automated synthesis, systems and polymerization chemistry and periodic drug delivery.
Collapse
Affiliation(s)
- Matthijs Ter Harmsel
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Oliver R Maguire
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sofiya A Runikhina
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Albert S Y Wong
- Department of Molecules and Materials, University of Twente, Enschede, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| | | |
Collapse
|
8
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
9
|
Oscillatory carbonylation of poly(ethylene glycol)methyl ether acetylene. Improved model of reaction mechanism. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Reliable and straightforward PID tuning rules for highly underdamped systems. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Mallphanov IL, Vanag VK. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The results of studies on the development of micro-oscillators (MOs) based on the Belousov –Zhabotinsky (BZ) oscillatory chemical reaction are integrated and systematized. The mechanisms of the BZ reaction and the methods of immobilization of the catalyst of the BZ reaction in micro-volumes are briefly discussed. Methods for creating BZ MOs based on water microdroplets in the oil phase and organic and inorganic polymer microspheres are considered. Methods of control and management of the dynamics of BZ MO networks are described, including methods of MO synchronization. The prospects for the design of neural networks of MOs with intelligent-like behaviour are outlined. Such networks present a new area of nonlinear chemistry, including, in particular, the creation of a chemical ‘computer’.
The bibliography includes 250 references.
Collapse
|
12
|
Geher-Herczegh T, Wang Z, Masuda T, Yoshida R, Vasudevan N, Hayashi Y. Delayed Mechanical Response to Chemical Kinetics in Self-Oscillating Hydrogels Driven by the Belousov-Zhabotinsky Reaction. Macromolecules 2021; 54:6430-6439. [PMID: 34483368 PMCID: PMC8411808 DOI: 10.1021/acs.macromol.1c00402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Indexed: 11/29/2022]
Abstract
![]()
We show experimentally
that chemical and mechanical self-oscillations
in Belousov–Zhabotinsky hydrogels are inherently asynchronous,
that is, there is a detectable delay in swelling–deswelling
response after a change in the chemical redox state. This phenomenon
is observable in many previous experimental studies and potentially
has far-reaching implications for the functionality and response time
of the material in future applications; however, so far, it has not
been quantified or reported systematically. Here, we provide a comprehensive
qualitative and quantitative description of the chemical-to-mechanical
delay, and we propose to explain it as a consequence of the slow nonequilibrium
swelling–deswelling dynamics of the polymer material. Specifically,
standard hydrogel pieces are large enough that transport processes,
for example, counterion migration and water diffusion, cannot occur
instantaneously throughout the entire gel piece, as opposed to previous
theoretical considerations. As a result, the volume response of the
polymer to a chemical change may be governed by a characteristic response
time, which leads to the emergence of delay in mechanical oscillation.
This is supported by our theoretical calculations.
Collapse
Affiliation(s)
- Tunde Geher-Herczegh
- Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6DH, U.K
| | - Zuowei Wang
- Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, U.K
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku 113-8656, Japan
| | - Nandini Vasudevan
- Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6DH, U.K
| | - Yoshikatsu Hayashi
- Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6DH, U.K
| |
Collapse
|
13
|
Guo J, Poros-Tarcali E, Pérez-Mercader J. Periodic Polymerization and the Generation of Polymer Giant Vesicles Autonomously Driven by pH Oscillatory Chemistry. Front Chem 2021; 9:576349. [PMID: 33777891 PMCID: PMC7992010 DOI: 10.3389/fchem.2021.576349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Using the radicals generated during pH oscillations, a semibatch pH oscillator is used as the chemical fuel and engine to drive polymerization induced self-assembly (PISA) for the one-pot autonomous synthesis of functional giant vesicles. Vesicles with diameters ranging from sub-micron to ∼5 µm are generated. Radical formation is found to be switched ON/OFF and be autonomously controlled by the pH oscillator itself, inducing a periodic polymerization process. The mechanism underlying these complex processes is studied and compared to conventional (non-oscillatory) initiation by the same redox pair. The pH oscillations along with the continuous increase in salt concentration in the semibatch reactor make the self-assembled objects undergo morphological evolution. This process provides a self-regulated means for the synthesis of soft giant polymersomes and opens the door for new applications of pH oscillators in a variety of contexts, from the exploration of new geochemical scenarios for the origin of life and the autonomous emergence of the necessary free-energy and proton gradients, to the creation of active functional microreactors and programmable release of cargo molecules for pH-responsive materials.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
| | - Eszter Poros-Tarcali
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
14
|
Alicki R, Gelbwaser-Klimovsky D, Jenkins A, von Hauff E. Dynamical theory for the battery's electromotive force. Phys Chem Chem Phys 2021; 23:9428-9439. [PMID: 33885063 DOI: 10.1039/d1cp00196e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a dynamical theory of how the chemical energy stored in a battery generates the electromotive force (emf). In this picture, the battery's half-cell acts as an engine, cyclically extracting work from its underlying chemical disequilibrium. We show that the double layer at the electrode-electrolyte interface can exhibit a rapid self-oscillation that pumps an electric current, thus accounting for the persistent conversion of chemical energy into electrical work equal to the emf times the separated charge. We suggest a connection between this mechanism and the slow self-oscillations observed in various electrochemical cells, including batteries, as well as the enhancement of the current observed when ultrasound is applied to the half-cell. Finally, we propose more direct experimental tests of the predictions of this dynamical theory.
Collapse
Affiliation(s)
- Robert Alicki
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308, Gdańsk, Poland.
| | | | | | | |
Collapse
|
15
|
Isakova A, Parker J, Nwosu CJ, Howse JR, Novakovic K. Broadening the scope of Pd-catalyzed oscillatory carbonylation reactions: solvent, substrate, catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01563-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Čupić Ž, Ivanović-Šašić A. Alternating catalytic reactions. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-018-1501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jones SJ, Taylor AF, Beales PA. Towards feedback-controlled nanomedicines for smart, adaptive delivery. Exp Biol Med (Maywood) 2019; 244:283-293. [PMID: 30205721 PMCID: PMC6435888 DOI: 10.1177/1535370218800456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPACT STATEMENT The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel "chrononanomedicines."
Collapse
Affiliation(s)
- Stephen J. Jones
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Annette F. Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Isakova A, Parkes GE, Murdoch BJ, Topham PD, Novakovic K. Combining polymer-bound catalyst with polymeric substrate for reproducible pH oscillations in palladium-catalysed oxidative carbonylation of alkynes. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Čupić Ž, Maćešić S, Novakovic K, Anić S, Kolar-Anić L. Stoichiometric network analysis of a reaction system with conservation constraints. CHAOS (WOODBURY, N.Y.) 2018; 28:083114. [PMID: 30180608 DOI: 10.1063/1.5026791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Stoichiometric Network Analysis (SNA) is a powerful method that can be used to examine instabilities in modelling a broad range of reaction systems without knowing the explicit values of reaction rate constants. Due to a lack of understanding, SNA is rarely used and its full potential is not yet fulfilled. Using the oscillatory carbonylation of a polymeric substrate [poly(ethylene glycol)methyl ether acetylene] as a case study, in this work, we consider two mathematical methods for the application of SNA to the reaction models when conservation constraints between species have an important role. The first method takes conservation constraints into account and uses only independent intermediate species, while the second method applies to the full set of intermediate species, without the separation of independent and dependent variables. Both methods are used for examination of steady state stability by means of a characteristic polynomial and related Jacobian matrix. It was shown that both methods give the same results. Therefore, as the second method is simpler, we suggest it as a more straightforward method for the applications.
Collapse
Affiliation(s)
- Željko Čupić
- Centre of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Stevan Maćešić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Slobodan Anić
- Centre of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ljiljana Kolar-Anić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Anna I, Katarina N. Pulsatile release from a flat self-oscillating chitosan macrogel. J Mater Chem B 2018; 6:5003-5010. [PMID: 32255072 DOI: 10.1039/c8tb00781k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Coupling oscillatory chemical reactions to smart materials which can respond to external stimuli is considered an answer to the long-standing issue of pulsatile drug delivery. Although a number of coupled architectures exist, there are no systems reporting pH-controlled pulsed drug release based on chemical oscillators. In this paper, we report for the first time a proof-of-concept self-oscillatory chitosan macrogel, employing the palladium-catalysed oxidative carbonylation reaction as the driving force of its oscillations. The reported hydrogel is composed of highly biocompatible components and a novel imine-functionalised chitosan-palladium catalyst with zero leaching rates. This macrogel was shown to rhythmically release not only the products of the reaction, but also fluorescein, which is used as an FDA-approved model drug. The step-wise release pattern corresponded to the step-wise dynamics of pH decrease in methanol:water, while in pure methanol, the changes in pH had an oscillatory mode, accompanied by mirrored oscillations in fluorescein concentration. This proof-of-concept system significantly expands the horizons of pulsatile delivery materials for future research.
Collapse
Affiliation(s)
- Isakova Anna
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
21
|
Affiliation(s)
- Támás Bánsági
- Department of Chemistry; University of Birmingham; Edgbaston, Birmingham B15 2TT UK
- Department of Chemical and Biological Engineering; University of Sheffield; Sheffield S1 3JD UK
| | - Annette F. Taylor
- Department of Chemical and Biological Engineering; University of Sheffield; Sheffield S1 3JD UK
| |
Collapse
|
22
|
Isakova A, Murdoch BJ, Novakovic K. From small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HI. Phys Chem Chem Phys 2018; 20:9281-9288. [DOI: 10.1039/c7cp07747e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A step closer to all polymer self-oscillating systems: pH oscillations were achieved in the phenylacetylene carbonylation reaction, catalysed by polymer-bound palladium acetate.
Collapse
Affiliation(s)
- Anna Isakova
- School of Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Billy J. Murdoch
- National EPSRC XPS Users’ Service (NEXUS)
- School of Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | | |
Collapse
|
23
|
Kinetics of the urea–urease clock reaction with urease immobilized in hydrogel beads. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1296-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
The effect of using a methanol–water solvent mixture on pH oscillations in the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1282-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|