1
|
Mathur P, Verma R, Rani L, Kamboj S, Kamboj R, Kamboj T, Bhatt S. Emerging Treatment Options of Pluronic in Designing Colloidal Nano and Micro Carriers for Various Therapies. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:395-406. [PMID: 38018214 DOI: 10.2174/0118722105255391231018112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 11/30/2023]
Abstract
Poloxamers, commonly known as Pluronics, are a special family of synthetic tri-block copolymers with a core structure made of hydrophobic poly (propylene oxide) chains sandwiched by two hydrophilic poly (ethylene oxide) chains. It is possible to modify the mechanical, bioactive, and microstructural characteristics of Pluronics to simulate the behavior of different types of tissues. Additionally, they are auspicious drug carriers with the capacity to increase therapeutic agent availability and to design nano-drug formulations for various ailments. The nanoformulation composed of Pluronics is more susceptible to cancer cells due to their amphiphilic nature and feature of selfassembling into micelles. Today's expanding poloxamer research is creating new hopes that increase the possibility of new remedies for a brand-new nanomedicine age treatment. This article provides a concise overview of the classification, grading, and attributes of drug delivery systems (DDSs) as well as the potential for Pluronics to create micro and nanocarriers. We subsequently discuss its utility in drug delivery for cancer, gene therapy, anti-infective therapy, antioxidants, anti-diabetic drugs, anti-HIV, Alzheimer's disease, and antimicrobial drugs. This review also highlighted several patented formulations that contain various grades of Pluronics in one or more different ways..The.recent findings in fundamental research in the field properly demonstrate the strong interest in these novel pharmaceutical strategies.
Collapse
Affiliation(s)
- Pooja Mathur
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, Haryana, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (Haryana), 127021, India
| | - Laxmi Rani
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, Haryana, India
| | - Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| | - Tanu Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| | - Shailendra Bhatt
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, Haryana, India
| |
Collapse
|
2
|
Mehravanfar H, Farhadian N, Abnous K. Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study. J Drug Target 2024; 32:820-837. [PMID: 38779708 DOI: 10.1080/1061186x.2024.2358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Indocyanine Green (ICG) as an agent for photodynamic therapy (PDT) of melanoma cancer has low quantum yield, short circulation half-life, poor photo-stability, and tendency to aggregation. PURPOSE N-doped carbon quantum dot (CQD) nanoparticle was applied to encapsulate ICG and overcome ICG obstacle in PDT with simultaneous cell imaging property. METHODS CQD was prepared using hydrothermal method. Cell culture study and In vivo assessments on C57BL/6 mice containing melanoma cancer cells was performed. RESULTS Results showed that CQD size slightly enhanced from 24.55 nm to 42.67 nm after ICG loading. Detection of reactive oxygen species (ROS) demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG to 28% for ICG@CQD. Confocal microscopy images approved more cellular uptake and more qualified cell imaging ability of ICG@CQD. In vivo assessments displayed obvious inhibitory effect of tumor growth for ICG@CQD in comparison to free ICG on the C57BL/6 mice. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in tumor region. Finally, ICG@CQD was proposed as an innovative nanocarrier for PDT and diagnosis.
Collapse
Affiliation(s)
- Hadiseh Mehravanfar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Dang-Luong PT, Nguyen HP, Le-Tuan L, Cao XT, Tran-Anh V, Quang HV. Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:180-189. [PMID: 38352718 PMCID: PMC10862130 DOI: 10.3762/bjnano.15.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Theragnostics has become a popular term nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.g., iron oxide nanoparticles and near-infrared fluorophore IR780) for theragnostics. Poly(lactic-co-glycolic acid) was combined with the aforementioned ingredients to generate poly(vinyl alcohol)-based nanoparticles (NPs) using the single emulsion technique. Then the NPs were coated with F127 and F127-folate by simple incubation for five days. The nanoparticles have the hydrodynamic size of approx. 250 nm with negative charge. Similar to chlorambucil and IR780, iron oxide loadings were observed for all three kinds of NPs. The release of chlorambucil was quicker at pH 5.4 than at pH 7.4 at 37 °C. The F127@NPs and F127-folate@NPs demonstrated much greater cell uptake and toxicity up to 72 h after incubation. Our in vitro results of F127@NPs and F127-folate@NPs have demonstrated the ability of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively.
Collapse
Affiliation(s)
| | - Hong-Phuc Nguyen
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Loc Le-Tuan
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Xuan-Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Vy Tran-Anh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu Quang
- Department of Biotechnology, NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
4
|
Liu Z, He Y, Ma X. Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. Curr Drug Deliv 2024; 21:795-806. [PMID: 36593700 DOI: 10.2174/1567201820666230102140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.
Collapse
Affiliation(s)
- Zhihan Liu
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Yan He
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Xia Ma
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| |
Collapse
|
5
|
Wu X, Wei Y, Lin R, Chen P, Hong Z, Zeng R, Xu Q, Li T. Multi-responsive mesoporous polydopamine composite nanorods cooperate with nano-enzyme and photosensitiser for intensive immunotherapy of bladder cancer. Immunology 2022; 167:247-262. [PMID: 35751881 DOI: 10.1111/imm.13534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer is a common malignancy in the urinary system. Defects of drug molecules in bladder during treatment, such as passive diffusion, rapid clearance of periodic urination, poor adhesion and permeation abilities, lead to low delivery efficiency of conventional drugs and high recurrence rate of disease. In this study, we designed multi-responsive mesoporous polydopamine (PDA) composite nanorods cooperating with nano-enzyme and photosensitiser for intensive immunotherapy of bladder cancer. The strongly adhesive mesoporous PDA with wheat germ agglutinin on nanoparticles could specifically adhere to epithelial glycocalyx and made the nanoparticles aggregate in urinary pathways. Meanwhile, 2,3-dimethylmaleic anhydride could be hydrolysed in acidic conditions of tumour microenvironment, giving it a positive charge (charge reversal), which is more amenable to enter cancer cells. Afterwards, manganese dioxide nanorods could catalyse the reaction of excess H2 O2 in tumour microenvironment to generate active oxygen, so as to change the hypoxic environment in tumour, and achieve a pH-responsive for slow release of PD-L1. After the ICG was irradiated by infrared light, a large amount of singlet oxygen was generated, thereby enhancing the therapeutic effect and reducing toxicity in vivo. Besides, mesoporous PDA with indocyanine green photothermal agent could have a local heat up quickly under the near-infrared light to kill cancer cells, thereby enhancing therapeutic efficacy. Accordingly, this mesoporous PDA composite nanorods shed a light on bladder tumour treatment.
Collapse
Affiliation(s)
- Xiang Wu
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Rongcheng Lin
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Pingzhou Chen
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhiwei Hong
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Rong Zeng
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Qingjiang Xu
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Tao Li
- Shengli Clinical Medical College of Fuiian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
6
|
Jaiswal S, Roy R, Dutta SB, Bishnoi S, Kar P, Joshi A, Nayak D, Gupta S. Role of Doxorubicin on the Loading Efficiency of ICG within Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2022; 8:3054-3065. [PMID: 35709526 DOI: 10.1021/acsbiomaterials.1c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effective loading or encapsulation of multimodal theranostic agents within a nanocarrier system plays an important role in the clinical development of cancer therapy. In recent years, the silk fibroin protein-based delivery system has been drawing significant attention to be used in nanomedicines due to its biocompatible and biodegradable nature. In this study, silk fibroin nanoparticles (SNPs) have been synthesized by a novel and cost-effective ultrasonic atomizer-based technique for the first time. The fabricated SNPs were coencapsulated by the FDA-approved indocyanine green (ICG) dye and the chemotherapeutic drug doxorubicin (DOX). The synthesized SNPs are spherical, with an average diameter of ∼37 ± 4 nm, and the ICG-DOX-coencapsulated SNPs (ID-SNPs) have a diameter size of ∼47 ± 6 nm. For the first time, here we demonstrate that DOX helps in the higher loading of ICG within the ID-SNPs, which enhances the encapsulation efficiency of ICG by ∼99%. This could be attributed to the interaction of ICG and DOX molecules with the silk fibroin protein, which helps ICG to get loaded more efficiently within these nanoparticles. The overall finding of this study suggests that the ID-SNPs could be utilized for enhanced ICG-complemented multimodal deep-tissue bioimaging and synergistic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Saumya Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Surjendu Bikash Dutta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
7
|
Jaiswal S, Dutta SB, Nayak D, Gupta S. Effect of Doxorubicin on the Near-Infrared Optical Properties of Indocyanine Green. ACS OMEGA 2021; 6:34842-34849. [PMID: 34963967 PMCID: PMC8697409 DOI: 10.1021/acsomega.1c05500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
In recent years, chemo-photothermal therapy (chemo-PTT) has been extensively studied for the upgradation of cancer treatment. The combined therapeutic approach reduces the overall cytotoxicity and enhances the therapeutic effect against the cancerous cells. In chemo-PTT, Indocyanine green (ICG) dye, a near-infrared chromophore, is used for PTT in combination with doxorubicin (DOX), a chemotherapeutic drug. ICG and DOX work very efficiently in synergy against cancer. However, the effect of DOX on the optical properties of ICG has not been studied yet. Here, for the first time, we report the effect of DOX on the optical properties of ICG in detail. DOX interacts with ICG and induces the aggregation of ICG even at a low concentration. The coincubation of both the molecules causes H and J aggregations in ICG. However, the J aggregation becomes more prominent with an increasing DOX concentration. These findings suggest that the optical properties of ICG change upon incubation with the DOX, which might affect the efficacy of PTT.
Collapse
Affiliation(s)
- Saumya Jaiswal
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552 Madhya Pradesh, India
| | - Surjendu Bikash Dutta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552 Madhya Pradesh, India
| | - Debasis Nayak
- Department
of Biological Sciences, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066 Madhya Pradesh, India
| | - Sharad Gupta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552 Madhya Pradesh, India
| |
Collapse
|
8
|
Polyprodrug with ultra-high drug content for tumor intracellular acid-triggered degradation and drug delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Ting CW, Chou YH, Huang SY, Chiang WH. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy. Colloids Surf B Biointerfaces 2021; 208:112048. [PMID: 34419806 DOI: 10.1016/j.colsurfb.2021.112048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/06/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
In order to boost anticancer efficacy of indocyanine green (ICG)-mediated photothermal therapy (PTT) by promoting intracellular ICG delivery, the ICG-carrying hybrid polymeric nanoparticles were fabricated in this study by co-assembly of hydrophobic poly(lactic-co-glycolic acid) (PLGA) segments, ICG molecules, amphiphilic tocopheryl polyethylene glycol succinate (TPGS) and pH-responsive methoxy poly(ethylene glycol)-benzoic imine-1-octadecanamine (mPEG-b-C18) segments in aqueous solution. The ICG-loaded nanoparticles were characterized to have ICG-containing PLGA core stabilized by hydrophilic PEG-rich surface coating and a well-dispersed spherical shape. Moreover, the ICG-loaded nanoparticles in pH 7.4 aqueous solution sufficiently inhibited ICG self-aggregation and leakage, thereby increasing aqueous photostability of ICG molecules. Notably, when the solution pH was reduced from pH 7.4-5.5, the acid-triggered hydrolysis of benzoic-imine linkers within mPEG-b-C18 remarkably facilitated the detachment of mPEG segments from ICG-loaded nanoparticles, thus accelerating ICG release. The findings of in vitro cellular uptake and cytotoxicity studies further demonstrated that the PEGylated ICG-carrying hybrid nanoparticles were efficiently internalized by MCF-7 cells compared to free ICG and realized intracellular acid-triggered rapid ICG liberation, thus enhancing anticancer effect of ICG-mediated PTT to potently kill cancer cells.
Collapse
Affiliation(s)
- Chih-Wei Ting
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Hsuan Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shih-Yu Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Han T, Chen Y, Wang Y, Wang S, Cong H, Yu B, Shen Y. Semiconductor small molecule IHIC/ITIC applied to photothermal therapy and photoacoustic imaging of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112257. [PMID: 34271410 DOI: 10.1016/j.jphotobiol.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Organic semiconductor small molecules IHIC and ITIC have been developed as solar cell materials, and because of their strong near-infrared absorption capabilities, they are promising for cancer phototherapy. This article reports the application of semiconductor small molecule IHIC/ITIC liposomes in photothermal therapy and photoacoustic imaging of tumors firstly. Experiments show that the liposome-loaded IHIC/ITIC material has good biocompatibility and can be effectively enriched in tumor sites. After being irradiated with laser, it can emit strong photoacoustic signals, and has achieved good results in the photothermal treatment of breast cancer mice. We believe that organic semiconductor small molecule IHIC/ITIC will become a promising photothermal agent with wonderful development possibilities.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yang Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yifan Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Yao W, Liu C, Wang N, Zhou H, Shafiq F, Yu S, Qiao W. O-nitrobenzyl liposomes with dual-responsive release capabilities for drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111952. [PMID: 33812580 DOI: 10.1016/j.msec.2021.111952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
The request of new materials, matching strict requirements to be applied in precision and patient-specific medicine, is pushing for the synthesis of more and more complex block copolymers. Amphiphilic block copolymers are emerging in the biomedical field due to their great potential in terms of stimuli responsiveness, drug loading capabilities and reversible thermal gelation. Amphiphilicity guarantees self-assembly and thermoreversibility, while grafting polymers offers the possibility of combining blocks with various properties in one single material. These features make amphiphilic block copolymers excellent candidates for fine tuning drug delivery, gene therapy and for designing injectable hydrogels for tissue engineering. This manuscript revises the main techniques developed in the last decade for the synthesis of amphiphilic block copolymers for biomedical application. Strategies for fine tuning the properties of these novel materials during synthesis are discussed. A deep knowledge of the synthesis techniques and their effect on the performance and the biocompatibility of these polymers is the first step to move them from the lab to the bench. Current results predict a bright future for these materials in paving the way towards a smarter, less invasive, while more effective, medicine.
Collapse
|
13
|
Hsu CW, Hsieh MH, Xiao MC, Chou YH, Wang TH, Chiang WH. pH-responsive polymeric micelles self-assembled from benzoic-imine-containing alkyl-modified PEGylated chitosan for delivery of amphiphilic drugs. Int J Biol Macromol 2020; 163:1106-1116. [PMID: 32679318 DOI: 10.1016/j.ijbiomac.2020.07.110] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Abstract
In order to efficiently promote loading efficiency and aqueous photostability of indocyanine green (ICG), an amphiphilic tricarbocyanine dye, the polysaccharide-based nanomicelles utilized as a vehicle for ICG were fabricated by self-assembly of the amphiphilic benzoic-imine-containing PEGylated chitosan/4-(dodecyloxy)benzaldehyde (DBA) conjugates in aqueous solution of pH 7.4. The resulting polymeric micelles were characterized to have a hydrophobic hybrid chitosan/DBA core surrounded by hydrophilic PEG shells. Importantly, the encapsulation of ICG into the hybrid chitosan/DBA core of polymeric micelles by the combined hydrophobic and electrostatic interactions not only promoted the ICG loading but also enhanced its aqueous photostability. With the pH of micelle suspension being reduced from 7.4 to 5.0, upon acid-triggered cleavage of benzoic-imine bonds between chitosan and DBA as well as the extending of the protonated chitosan segments from hybrid cores toward aqueous phase, the rather hydrophobic DBA-rich core was formed within micelles, thereby leading to shrinking of the polymeric micelles. The robust ICG-loaded polymeric micelles showed several superior properties including the inhibition of ICG leakage under the mimic physiological and acidic conditions, favorable biocompatibility and photo-activated hyperthermia effect. This work suggests that the pH-responsive ICG-carrying chitosan-based micelles display great potential in cancer theranostic.
Collapse
Affiliation(s)
- Ching-Wei Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Hung Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Cong Xiao
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ya-Hsuan Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
14
|
Hu S, Dong C, Wang J, Liu K, Zhou Q, Xiang J, Zhou Z, Liu F, Shen Y. Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. J Control Release 2020; 324:250-259. [DOI: 10.1016/j.jconrel.2020.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
|
15
|
Liao SC, Ting CW, Chiang WH. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery. J Colloid Interface Sci 2020; 561:11-22. [PMID: 31812857 DOI: 10.1016/j.jcis.2019.11.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/03/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
|
16
|
IR780-loaded zwitterionic polymeric nanoparticles with acidity-induced agglomeration for enhanced tumor retention. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|
18
|
A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019; 221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023]
Abstract
Monitoring of nanoparticle-based therapy in vivo and controlled drug release are urgently needed for the precise treatment of disease. We have synthesized a multifunctional Gd-DTPA-ONB (GDO) lipid by introducing the Gd-DTPA contrast agent moiety into an o-nitro-benzyl ester lipid. By design, liposomes formed from the GDO lipid combine MRI tracking ability and dual-trigger release capabilities with maximum sensitivity (because all lipids bear the cleavable moiety) without reducing the drug encapsulation rate. We first confirmed that both photo-treatment and pH-triggered hydrolysis are able to cleave the GDO lipid and lyse GDO liposomes. We then investigated the efficiency of drug release via the combined release processes for GDO liposomes loaded with doxorubicin (DOX). Relative to neutral pH, the release efficiency in acidic environment increased by 10.4% (at pH = 6.5) and 13.3% (at pH = 4.2). This pH-dependent release response is conducive to distinguishing pathological tissue such as tumors and endolysosomal compartments. The photo-induced release efficiency increases with illumination time as well as with distance of the pH from neutral. Photolysis increased the release efficiency by 13.8% at pH = 4.2, which is remarkable considering the already increased amount of drug release in the acidic environment. In addition, the relaxation time of GDO liposomes was 4.1 times that of clinical Gd-DTPA, with brighter T1-weighted imaging in vitro and in vivo. Real-time MRI imaging and in vivo fluorescence experiments demonstrated tumor targeting and MRI guided release. Furthermore, significant tumor growth inhibition in a treatment experiment using DOX-loaded GDO liposomes clearly demonstrated the benefit of photo-treatment for efficacy: the tumor size in the photo-treatment group was 3.7 times smaller than in the control group. The present study thus highlights the benefit of the design idea of combining efficient imaging/guiding, targeting, and triggerable release functions in one lipid molecule for drug delivery applications.
Collapse
|
19
|
Lorenzoni D, Souto CAZ, Araujo MB, de Souza Berger C, da Silva LCD, Baratti MO, Ribeiro JN, Endringer DC, Guimarães MCC, da Silva AR. PLGA-PEG nanoparticles containing gallium phthalocyanine: Preparation, optimization and analysis of its photodynamic efficiency on red blood cell and Hepa-1C1C7. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111582. [PMID: 31442827 DOI: 10.1016/j.jphotobiol.2019.111582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been used for the encapsulation of phthalocyanine motived by its biocompatibility and biodegradability. Many studies have already been done to evaluate the influence of parameters used in the PLGA nanoparticle synthesis but without the evaluation of the combinatory interaction between these parameters on the nanoparticulate properties. Ga(III)-phthalocyanine (GaPc) was encapsulated into the PEGlated PLGA-nanoparticles and the individual and combinatory effects of the emulsification time, the method used for the nanoparticle synthesis and the temperature of the aqueous phase was evaluated on the size, entrapment efficiency, efficacy of nanoparticle recovery, residual PVA and zeta potential value using a 23 factorial design (FD). Mathematical models were adjustable to the data and evolutionary operations were performed to optimize the nanoparticle size. The ability of the optimized nanoparticle to decrease the viability of the Hepa-1C1C7 cell and the blood red cell was also evaluated. The FD disclosed the emulsification-diffusion method decreased the residual PVA and the size of PLGA-PEG nanoparticle, but also decreased the entrapment efficiency of GaPc, the zeta potential absolute value and the recovery efficacy of nanoparticles. The combinatory effect between the method used in the nanoparticle preparation and the temperature of aqueous phase influenced four of the five evaluated properties. The viability of Hepa-1C1C7 cells was reduced until 13× when the cells were irradiated in the presence of encapsulated GaPc while it was decreased until 4.7× when the experiment was carried out with the free GaPc. The encapsulated GaPc was also more efficient to cause the haemolysis of the RBC than it was the free GaPc. The optimization of the nanoparticles synthesis increased the efficiency of the GaPc to oxidize the evaluated cells.
Collapse
Affiliation(s)
- Drielly Lorenzoni
- Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|