1
|
Alexeeva OV, Konstantinova ML, Siracusa V, Podmasterev VV, Martirosyan LY, Karyagina OK, Kozlov SS, Lomakin SM, Tretyakov IV, Petrova TV, Iordanskii AL. Characterization and Evaluation of Zero-Order Release System Comprising Glycero-(9,10-trioxolane)-trialeate and PLA: Opportunity for Packaging and Biomedicine Applications. Polymers (Basel) 2024; 16:3554. [PMID: 39771406 PMCID: PMC11679401 DOI: 10.3390/polym16243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial materials is hindered by a lack of knowledge on kinetics of the OTOA release. In this work, the release of glycero-(9,10-trioxolane) trioleate (OTOA) from PLA films with 50% OTOA content was studied during incubation in normal saline solution, and for the first time, the kinetics of OTOA release from PLA film was evaluated. Morphological, thermal, structural and mechanical properties of the PLA + 50% OTOA films were studied during incubation in normal saline and corresponding OTOA release using differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and mechanical tests. It was confirmed by DSC and XRD that incubation in the saline solution and corresponding OTOA release from PLA film does not lead to significant changes in the structure of the polymer matrix. Thus, the formation of more disturbed α' crystalline phase of PLA due to partial hydrolysis of amorphous zones and/or most unstable crystallites in the PLA/OTOA semi-crystalline structure was observed. The degree of crystallinity of PLA + OTOA film was also slightly increased at the prolonged stages of OTOA release. PLA + 50% OTOA film retained its strength properties after incubation in normal saline, with a slight increase in the elastic modulus and tensile strength, accompanied by a significant decrease in relative elongation at break. The obtained results showed that PLA + 50% OTOA film could be characterized by sustained OTOA release with the amount of released OTOA exceeding 50% of the initial content in the PLA film. The OTOA release profile was close to zero-order kinetics, which is beneficial in order to provide stable drug release pattern. Developed PLA + 50% OTOA films showed a strong and stable antibacterial effect against Raoultella terrigena and Escherichia coli, bacterial strains with multidrug resistance behavior. The resulting PLA + OTOA films could be used in a variety of biomedical and packaging applications, including wound dressings and antibacterial food packaging.
Collapse
Affiliation(s)
- Olga V. Alexeeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Marina L. Konstantinova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Vyacheslav V. Podmasterev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Levon Yu. Martirosyan
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Olga K. Karyagina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey S. Kozlov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey M. Lomakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Ilya V. Tretyakov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (I.V.T.); (T.V.P.); (A.L.I.)
| | - Tuyara V. Petrova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (I.V.T.); (T.V.P.); (A.L.I.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (I.V.T.); (T.V.P.); (A.L.I.)
| |
Collapse
|
2
|
Kalosakas G. Drug polymer conjugates: Average release time from thin films. Int J Pharm 2024; 662:124506. [PMID: 39053679 DOI: 10.1016/j.ijpharm.2024.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release tav as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: tav=(1/12)⋅(L2/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant. The former term dominates in a diffusion-controlled release, while the latter one in a reaction-controlled delivery. The crossover regime is exactly described by their sum. The obtained result for the average release time is verified by direct numerical integration through the drug release profiles of the analytical solution. The value of fractional drug release at the characteristic average time is between 60-64%. These results can be used for the design of polymer-drug conjugates with a desired delivery time scale, as well as for the experimental determination of the values of microscopic parameters D and k in a conjugated system of interest.
Collapse
Affiliation(s)
- George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Rio, Greece.
| |
Collapse
|
3
|
Guo PX, Wang XG, Yang MQ, Wang JX, Meng FJ. Preparation and Oil Adsorption of Cellulose- graft-poly(butyl acrylate- N, N'-methylene Bisacrylamide). MATERIALS (BASEL, SWITZERLAND) 2024; 17:325. [PMID: 38255493 PMCID: PMC10817525 DOI: 10.3390/ma17020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
With the advancement of industrial economies, incidents involving spills of petroleum products have become increasingly frequent. The resulting pollutants pose significant threats to air, water, soil, plant and animal survival, as well as human health. In this study, microcrystalline cellulose served as the matrix and benzoyl peroxide (BPO) as the initiator, while butyl acrylate (BA) and N,N'-methylene bisacrylamide (MBA) were employed as graft monomers. Through free radical graft polymerization, cellulose-graft-poly(butyl acrylate-N,N'-methylene bisacrylamide) [Cell-g-P(BA-MBA)], possessing oil-adsorbing properties, was synthesized. The chemical structure, elemental composition, surface morphology and wetting properties of the graft polymerization products have been characterized, using infrared spectroscopy, elemental analysis, scanning electron microscopy and contact angle testing. The adsorption properties of Cell-g-P(BA-MBA) for various organic solvents and oils were then assessed. The experimental results demonstrated that Cell-g-P(BA-MBA) exhibited a maximum adsorption capacity of 37.55 g/g for trichloromethane. Adsorption kinetics experiments indicated a spontaneous and exothermic process involving physical adsorption, conforming to the Freundlich isotherm model. Furthermore, adsorption kinetics experiments revealed that Cell-g-P(BA-MBA) displayed favorable reuse and regeneration performance, maintaining its adsorption capacity essentially unchanged over fifteen adsorption-desorption cycles.
Collapse
Affiliation(s)
| | | | | | | | - Fan-Jun Meng
- Marine College, Shandong University, Weihai 264200, China; (P.-X.G.); (M.-Q.Y.); (J.-X.W.)
| |
Collapse
|
4
|
Karpova SG, Olkhov AA, Varyan IA, Shilkina NG, Berlin AA, Popov AA, Iordanskii AL. Biocomposites Based on Electrospun Fibers of Poly(3-hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact. Polymers (Basel) 2023; 15:4171. [PMID: 37896415 PMCID: PMC10610569 DOI: 10.3390/polym15204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.
Collapse
Affiliation(s)
- Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
| | - Anatoly A. Olkhov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Alexander A. Berlin
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Anatoly A. Popov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Alexey L. Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| |
Collapse
|
5
|
Olkhov AA, Mastalygina EE, Ovchinnikov VA, Kurnosov AS, Popov AA, Iordanskii AL. Biological and Oxidative Degradation of Ultrathin-Fibrous Nonwovens Based on Poly(lactic Acid)/Poly(3-Hydroxybutyrate) Blends. Int J Mol Sci 2023; 24:ijms24097979. [PMID: 37175689 PMCID: PMC10178885 DOI: 10.3390/ijms24097979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Developing biodegradable materials based on polymer blends with a programmable self-destruction period in the environmental conditions of living systems is a promising direction in polymer chemistry. In this work, novel non-woven fibrous materials obtained by electrospinning based on the blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) were developed. The kinetics of biodegradation was studied in the aquatic environment of the inoculum of soil microorganisms. Oxidative degradation was studied under the ozone gaseous medium. The changes in chemical composition and structure of the materials were studied by optical microscopy, DSC, TGA, and FTIR-spectroscopy. The disappearance of the structural bands of PHB in the IR-spectra of the blends and a significant decrease in the enthalpy of melting after 90 days of exposure in the inoculum indicated the biodegradation of PHB while PLA remained stable. It was shown that the rate of ozonation was higher for PLA and the blends with a high content of PLA. The lower density of the amorphous regions of the blends determined an increased rate of their oxidation by ozone compared to homopolymers. The optimal composition in terms of degradation kinetics is a fibrous material based on the blend of 30PLA/70PHB that can be used as an effective ecosorbent, for biopackaging, and as a highly porous covering material for agricultural purposes.
Collapse
Affiliation(s)
- Anatoly Aleksandrovich Olkhov
- Scientific Laboratory "Advanced Composite Materials and Technologies", Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119334 Moscow, Russia
- Institute of Biochemical Physics named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Elena Evgenyevna Mastalygina
- Scientific Laboratory "Advanced Composite Materials and Technologies", Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia
- Institute of Biochemical Physics named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Vasily Andreevich Ovchinnikov
- Scientific Laboratory "Advanced Composite Materials and Technologies", Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119334 Moscow, Russia
| | - Alexander Sergeevich Kurnosov
- Institute of Biochemical Physics named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Anatoly Anatolyevich Popov
- Scientific Laboratory "Advanced Composite Materials and Technologies", Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia
- Institute of Biochemical Physics named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Alexey Leonidovich Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119334 Moscow, Russia
| |
Collapse
|
6
|
Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Composites of Polyhydroxyalkanoates (PHAs) have been proven to have enhanced properties in comparison to the pure form of these polyesters. Depending on what polymer or material is added to PHAs, the enhancement of different properties is observed. Since PHAs are explored for usage in diverse fields, understanding what blends affect what properties would guide further investigations towards application. This article reviews works that have been carried out with composite variation for application in several fields. Some properties of PHAs are highlighted and composite variation for their modulations are explored.
Collapse
|
7
|
Laser-Assisted Melt Electrospinning of Poly(L-lactide-co-ε-caprolactone): Analyses on Processing Behavior and Characteristics of Prepared Fibers. Polymers (Basel) 2022; 14:polym14122511. [PMID: 35746087 PMCID: PMC9227632 DOI: 10.3390/polym14122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The laser-assisted melt electrospinning (LES) method was utilized for the preparation of poly(L-lactide-co-ε-caprolactone) (PLCL) fibers. During the process, a carbon dioxide laser was irradiated, and voltage was applied to the raw fiber of PLCL. In situ observation of fiber formation behavior revealed that only a single jet was formed from the swelling region under the conditions of low laser power and applied voltage and feeding rate, whereas multiple jets and shots were produced with increases in these parameters. The formation of multiple jets resulted in the preparation of thinner fibers, and under the optimum condition, an average fiber diameter of 0.77 μm and its coefficient of variation of 17% was achieved without the formation of shots. The estimation of tension and stress profiles in the spin-line was also carried out based on the result of in situ observation and the consideration that the forces originated from surface tension, electricity, air friction, and inertia. The higher peak values of tension and stress appearing near the apex of the swelling region corresponded to the formation of thinner fibers for the condition of single-jet ejection. Analyses of the molecular orientation and crystallization of as-spun fibers revealed the formation of a wide variation of higher order structure depending on the spinning conditions.
Collapse
|
8
|
Bamboo Charcoal/Poly(L-lactide) Fiber Webs Prepared Using Laser-Heated Melt Electrospinning. Polymers (Basel) 2021; 13:polym13162776. [PMID: 34451314 PMCID: PMC8401290 DOI: 10.3390/polym13162776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Although several studies have reported that the addition of bamboo charcoal (BC) to polylactide (PLA) enhances the properties of PLA, to date, no study has been reported on the fabrication of ultrafine BC/poly(L-lactide) (PLLA) webs via electrospinning. Therefore, ultrafine fiber webs of PLLA and BC/PLLA were prepared using PLLA and BC/PLLA raw fibers via a novel laser electrospinning method. Ultrafine PLLA and BC/PLLA fibers with average diameters of approximately 1 μm and coefficients of variation of 13–23 and 20–46% were obtained. Via wide-angle X-ray diffraction (WAXD) analysis, highly oriented crystals were detected in the raw fibers; however, WAXD patterns of both PLLA and BC/PLLA webs implied an amorphous structure of PLLA. Polarizing microscopy images revealed that the webs comprised ultrafine fibers with uniform diameters and wide variations in birefringence. Temperature-modulated differential scanning calorimetry measurements indicated that the degree of order of the crystals in the fibers was lower and the molecules in the fibers had higher mobilities than those in the raw fibers. Transmittance of BC/PLLA webs with an area density of 2.6 mg/cm2 suggested that the addition of BC improved UV-shielding efficiencies.
Collapse
|
9
|
Olkhov AA, Tyubaeva PM, Vetcher AA, Karpova SG, Kurnosov AS, Rogovina SZ, Iordanskii AL, Berlin AA. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers (Basel) 2021; 13:polym13060941. [PMID: 33803794 PMCID: PMC8003206 DOI: 10.3390/polym13060941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrathin electrospun fibers of pristine biopolyesters, poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA), as well as their blends, have been obtained and then explored after exposure to hydrolytic (phosphate buffer) and oxidative (ozone) media. All the fibers were obtained from a co-solvent, chloroform, by solution-mode electrospinning. The structure, morphology, and segmental dynamic behavior of the fibers have been determined by optical microscopy, SEM, ESR, and others. The isotherms of water absorption have been obtained and the deviation from linearity (the Henry low) was analyzed by the simplified model. For PHB-PLA fibers, the loss weight increments as the reaction on hydrolysis are symbate to water absorption capacity. It was shown that the ozonolysis of blend fibrils has a two-stage character which is typical for O3 consumption, namely, the pendant group's oxidation and the autodegradation of polymer molecules with chain rupturing. The first stage of ozonolysis has a quasi-zero-order reaction. A subsequent second reaction stage comprising the back-bone destruction has a reaction order that differs from the zero order. The fibrous blend PLA/PHB ratio affects the rate of hydrolysis and ozonolysis so that the fibers with prevalent content of PLA display poor resistance to degradation in aqueous and gaseous media.
Collapse
Affiliation(s)
- Anatoly A. Olkhov
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Polina M. Tyubaeva
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence:
| | - Svetlana G. Karpova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexander S. Kurnosov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Svetlana Z. Rogovina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexander A. Berlin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| |
Collapse
|
10
|
Zhorina LA, Rogovina SZ, Prut EV, Kuznetsova OP, Grachev AV, Ivanushkina NN, Iordanskii AL, Berlin AA. Biodegradable Composites Based on Poly(3-hydroxybutyrate) and Polylactide Polyesters Produced from Vegetable Raw Materials. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20040136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Siracusa V, Karpova S, Olkhov A, Zhulkina A, Kosenko R, Iordanskii A. Gas Transport Phenomena and Polymer Dynamics in PHB/PLA Blend Films as Potential Packaging Materials. Polymers (Basel) 2020; 12:polym12030647. [PMID: 32178319 PMCID: PMC7182844 DOI: 10.3390/polym12030647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Actually, in order to replace traditional fossil-based polymers, many efforts are devoted to the design and development of new and high-performance bioplastics materials. Poly(hydroxy alkanoates) (PHAS) as well as polylactides are the main candidates as naturally derived polymers. The intention of the present study is to manufacture fully bio-based blends based on two polyesters: poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLA) as real competitors that could be used to replace petrol polymers in packaging industry. Blends in the shape of films have been prepared by chloroform solvent cast solution methodology, at different PHB/PLA ratios: 1/0, 1/9, 3/7, 5/5, 0/1. A series of dynamic explorations have been performed in order to characterize them from a different point of view. Gas permeability to N2, O2, and CO2 gases and probe (TEMPO) electron spin resonance (ESR) analyses were performed. Blend surface morphology has been evaluated by Scanning Electron Microscopy (SEM) while their thermal behavior was analyzed by Differential Scanning Calorimetry (DSC) technique. Special attention was devoted to color and transparency estimation. Both probe rotation mobility and N2, O2, and CO2 permeation have monotonically decreased during the transition from PLA to PHB, for all contents of bio-blends, namely because of transferring from PLA with lower crystallinity to PHB with a higher one. Consequently, the role of the crystallinity was elucidated. The temperature dependences for CO2 permeability and diffusivity as well as for probe correlation time allowed the authors to evaluate the activation energy of both processes. The values of gas transport energy activation and TEMPO rotation mobility are substantially close to each other, which should testify that polymer segmental mobility determines the gas permeability modality.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-3387275526
| | - Svetlana Karpova
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation; (S.K.); (A.O.)
| | - Anatoliy Olkhov
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation; (S.K.); (A.O.)
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Anna Zhulkina
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Regina Kosenko
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Alexey Iordanskii
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| |
Collapse
|
12
|
Tertyshnaya Y, Lobanov A, Karpova S, Pantyukhov P. Composites based on polylactide and manganese (III) tetraphenylporphyrin. Influence of concentration on the structure and properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
|