1
|
Tang S, Shen Y, Jiang L, Zhang Y. Surface Modification of Nano-Hydroxyapatite/Polymer Composite for Bone Tissue Repair Applications: A Review. Polymers (Basel) 2024; 16:1263. [PMID: 38732732 PMCID: PMC11085102 DOI: 10.3390/polym16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.
Collapse
Affiliation(s)
- Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yifei Shen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Mumtaz N, Akram N, Zia KM, Saeed M, Usman M. Fabrication, Thermo-Mechanical, and Morphological Characterization of Hydroxyapatite-Reinforced Polyurethane Biocomposites as Dye Adsorbent for Effluent. ACS OMEGA 2023; 8:33310-33320. [PMID: 37744844 PMCID: PMC10515338 DOI: 10.1021/acsomega.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Petrochemical costs, limited fossil fuel reserves, and concerns about greenhouse gas emissions have raised interest in developing renewable approaches for synthesizing biobased polyurethanes. This study aims to solve these problems by making nanocrystalline hydroxyapatite (HA) reinforcement from waste chicken eggshells and adding it to polyurethane synthesis through in situ polymerization. The novelty of the research lies in the utilization of HA as a reinforcement material and renewable resources for polyurethane production. The results confirm that HA was successfully added to the polyurethane backbone. Fourier transform infrared (FTIR) analysis confirmed that the NCO groups were changed to urethane linkages. TGA examination demonstrated that the samples exhibited thermal stability up to 457 °C with a mass loss of 61%, indicating enhanced thermal stability. DMA measurements showed improved mechanical properties of the synthesized polyurethanes, with storage modulus (E'), complex modulus (E*), and compliance complex (D*) values of 0.177, 22.522, and 0.660 MPa-1, respectively. SEM analysis confirmed the homogeneous surface and well-dispersed HA reinforcement. Swelling characteristics revealed an optimum absorption of 30% H2O, 35% CH3OH, and 45% CCl4. Polyurethane composites exhibited significant chemical resistance and hydrolytic stability in acidic and basic media. Additionally, the composites demonstrated efficient adsorption of methyl orange from wastewater, with the PUHCI series achieving a maximum adsorption capacity of 85.50 mg/g under optimal conditions of 0.030 g/mL dose, 45 °C temperature, 2.5 h contact time, and pH 6.0..
Collapse
Affiliation(s)
- Nida Mumtaz
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Saeed
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Olaru M, Simionescu N, Doroftei F, David G. Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs. Polymers (Basel) 2023; 15:polym15071635. [PMID: 37050249 PMCID: PMC10096539 DOI: 10.3390/polym15071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHApLPEI) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74–230 µm).
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Geta David
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gh. Asachi” Technical University of Iasi, 71A Bd. D. Mangeron, 700050 Iasi, Romania
- Correspondence:
| |
Collapse
|
4
|
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-Acid-Based Organic-Inorganic Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4982. [PMID: 34501070 PMCID: PMC8434239 DOI: 10.3390/ma14174982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Applications of natural hyaluronic acid (HYH) for the fabrication of organic-inorganic composites for biomedical applications are described. Such composites combine unique functional properties of HYH with functional properties of hydroxyapatite, various bioceramics, bioglass, biocements, metal nanoparticles, and quantum dots. Functional properties of advanced composite gels, scaffold materials, cements, particles, films, and coatings are described. Benefiting from the synergy of properties of HYH and inorganic components, advanced composites provide a platform for the development of new drug delivery materials. Many advanced properties of composites are attributed to the ability of HYH to promote biomineralization. Properties of HYH are a key factor for the development of colloidal and electrochemical methods for the fabrication of films and protective coatings for surface modification of biomedical implants and the development of advanced biosensors. Overcoming limitations of traditional materials, HYH is used as a biocompatible capping, dispersing, and structure-directing agent for the synthesis of functional inorganic materials and composites. Gel-forming properties of HYH enable a facile and straightforward approach to the fabrication of antimicrobial materials in different forms. Of particular interest are applications of HYH for the fabrication of biosensors. This review summarizes manufacturing strategies and mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada; (R.S.); (B.K.)
| |
Collapse
|
5
|
Anghel N, Dinu MV, Zaltariov M, Pamfil D, Spiridon I. New cellulose-collagen-alginate materials incorporated with quercetin, anthocyanins and lipoic acid. Int J Biol Macromol 2021; 181:30-40. [PMID: 33771542 DOI: 10.1016/j.ijbiomac.2021.03.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
Herein we present a new biomaterial based on cellulose, collagen and sodium alginate which served as a matrix for the incorporation of bioactive substances with antioxidant properties. Compared with pure cellulose hydrogels, the compressive strength and the elastic modulus of cellulose-collagen-alginate hydrogels were significantly enhanced, thus the compressive strength increased from 0.256 kPa to 6.91 kPa, while the elastic modulus increased from 0.0023 kPa to 0.115 kPa at 30% strain level. The release kinetic of all drugs through matrix components was done according to the Korsmeyer-Peppas model with a Fickian diffusion. The presence of bioactive principles, quercetin, lipoic acid and anthocyanins, gives biomaterials an antioxidant capacity on average 30% higher compared to the base matrix. The mechanical resistance, mucoadhesiveness, bioadhesiveness, release kinetic, and antioxidant capacity of active principles, recommend these biomaterials for the manufacture of transdermal drug delivery devices.
Collapse
Affiliation(s)
- Narcis Anghel
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Vodă 41, 700487 Iași, Romania.
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Vodă 41, 700487 Iași, Romania
| | - Mirela Zaltariov
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Vodă 41, 700487 Iași, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Vodă 41, 700487 Iași, Romania
| | - Iuliana Spiridon
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Vodă 41, 700487 Iași, Romania
| |
Collapse
|
6
|
Sáez P, Dinu IA, Rodríguez A, Gómez JM, Lazar MM, Rossini D, Dinu MV. Composite cryo-beads of chitosan reinforced with natural zeolites with remarkable elasticity and switching on/off selectivity for heavy metal ions. Int J Biol Macromol 2020; 164:2432-2449. [DOI: 10.1016/j.ijbiomac.2020.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
|