1
|
Minogue PJ, Gao J, Mathias RT, Williams JC, Bledsoe SB, Sommer AJ, Beyer EC, Berthoud VM. A crystallin mutant cataract with mineral deposits. J Biol Chem 2023; 299:104935. [PMID: 37331601 PMCID: PMC10407958 DOI: 10.1016/j.jbc.2023.104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.
Collapse
Affiliation(s)
- Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - James C Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon B Bledsoe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andre J Sommer
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Mainali L, Raguz M, Subczynski WK. Quantification of Age-Related Changes in the Lateral Organization of the Lipid Portion of the Intact Membranes Isolated from the Left and Right Eye Lenses of the Same Human Donor. MEMBRANES 2023; 13:189. [PMID: 36837692 PMCID: PMC9958954 DOI: 10.3390/membranes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The continuous wave EPR spin-labeling method was used to evaluate age-related changes in the amounts of phospholipids (PLs) and cholesterol (Chol) in domains present in intact, cortical, and nuclear fiber cell plasma membranes isolated separately from the left and right eye lenses of the same human donor. The relative amounts of boundary plus trapped PLs were evaluated with the PL analog 12-doxylstearic acid spin label (12-SASL) and the relative amounts of trapped Chol with the Chol analog androstane spin label (ASL). The donors ranged in age from 15 to 70 years. Both the left and right eye lenses from donors aged 60, 65, and 70 years had nuclear cataracts; additionally, the right eye lens only of the 60-year-old donor had a cortical cataract. In transparent lenses, the relative amounts of boundary plus trapped PLs increase monotonously with donor age, and, at all ages, this amount was greater in nuclear compared with cortical membranes. Moreover, in transparent lenses, the relative amount of trapped Chol increases with age in nuclear membranes. However, the EPR spectrum of ASL from cortical membranes of 15- to 60-year-old donors shows only the weakly immobilized component assigned to ASL in the bulk plus Chol bilayer domain. Only the cortical membranes of 61- to 70-year-old donors contain both weakly and strongly immobilized components. The strongly immobilized component is assigned to ASL in trapped lipids. We speculate that the age of 60 years may be considered as a "threshold" for appearance of trapped lipids in cortical membranes. The relative amounts of boundary plus trapped PLs in lenses with nuclear cataracts is lower than that predicted from the tendency of the age-dependent increase observed for transparent lenses. The differences in amounts of lipids in the indicated left and right eye domains of each donor are smaller than the differences in single donors of a similar age.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | | |
Collapse
|
3
|
Beyer EC, Mathias RT, Berthoud VM. Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies. Front Physiol 2022; 13:989524. [PMID: 36171977 PMCID: PMC9511111 DOI: 10.3389/fphys.2022.989524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lens is an avascular organ that is supported by an internal circulation of water and solutes. This circulation is driven by ion pumps, channels and transporters in epithelial cells and by ion channels in fiber cells and is maintained by fiber-fiber and fiber-epithelial cell communication. Gap junctional intercellular channels formed of connexin46 and connexin50 are critical components of this circulation as demonstrated by studies of connexin null mice and connexin mutant mice. Moreover, connexin mutants are one of the most common causes of autosomal dominant congenital cataracts. However, alterations of the lens circulation and coupling between lens fiber cells are much more prevalent, beyond the connexin mutant lenses. Intercellular coupling and levels of connexins are decreased with aging. Gap junction-mediated intercellular communication decreases in mice expressing mutant forms of several different lens proteins and in some mouse models of lens protein damage. These observations suggest that disruption of ionic homeostasis due to reduction of the lens circulation is a common component of the development of many different types of cataracts. The decrease in the lens circulation often reflects low levels of lens fiber cell connexins and/or functional gap junction channels.
Collapse
Affiliation(s)
- Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
- *Correspondence: Eric C. Beyer,
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | | |
Collapse
|
4
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
5
|
Nakazawa Y, Shibata T, Nagai N, Kubo E, Tamura H, Sasaki H. Degradation of connexin 50 protein causes waterclefts in human lens. Open Med (Wars) 2020; 15:1163-1171. [PMID: 33336073 PMCID: PMC7718650 DOI: 10.1515/med-2020-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Cataracts are mainly classified into three types: cortical cataracts, nuclear cataracts, and posterior subcapsular cataracts. In addition, retrodots and waterclefts are cataract subtypes that cause decreased visual function. To maintain an orderly and tightly packed arrangement to minimize light scattering, adhesion molecules such as connexins and aquaporin 0 (AQP0) are highly expressed in the lens. We hypothesized that some main and/or subcataract type(s) are correlated with adhesion molecule degradation. Lens samples were collected from cataract patients during cataract surgery, and mRNA and protein expression levels were measured by real-time RT-PCR and western blotting, respectively. The mRNA levels of adhesion molecules were not significantly different among any cataract types. Moreover, AQP0 and connexin 46 protein expressions were unchanged among patients. However, connexin 50 protein level was significantly decreased in the lens of patients with WC cataract subtype. P62 and LC3B proteins were detected in the WC patients' lenses, but not in other patients' lenses. These results suggest that more research is needed on the subtypes of cataracts besides the three major types of cataract for tailor-made cataract therapy.
Collapse
Affiliation(s)
- Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Noriaki Nagai
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Kindai University, 3-4-1, Kowakae, Higashiosaka City, Osaka 577-8502, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
6
|
Li H, Jiang H, Rong R, Jiang J, Ji D, Song W, Xia X. Identification of GJA3 p.S50P Mutation in a Chinese Family with Autosomal Dominant Congenital Cataract and Its Underlying Pathogenesis. DNA Cell Biol 2020; 39:1760-1766. [PMID: 32808810 DOI: 10.1089/dna.2020.5605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Congenital cataract refers to a lens opacity caused by multiple etiological factors, including genetic mutation, abnormal metabolism of the lens, and infection. Currently, there are >100 known disease-causing genes as well as 60 known mutations in the Cx46 gene (Gap junction alpha-3, GJA3) associated with congenital cataracts. Dysfunction of gap junctions impairs homeostasis in lens cells, thereby inducing cataract pathogenesis. This study aims to identify the disease-causing mutation in a family with congenital cataract, and to further explore the possible pathogenic mechanism resulting from this mutation. We identified that a recurrent heterozygous missense mutation c.T148C (p.S50P) in GJA3 was the pathogenic mutation in this family. Previously, this mutation was found in a British family causing bilateral congenital cataract. We further demonstrated that CX46 wild type (WT) was coupled through functional gap junctions in HeLa cells, while mutant Cx46 S50P lost this ability. Moreover, the half-life of Cx46 S50P was longer than that of Cx46 WT, Cx46 S50P protein was also localized to the endoplasmic reticulum and induced more reactive oxygen species compared to Cx46 WT, which may lead to dysregulation of Cx46-formed gap junction. Collectively, our study defines the genetics basis of a congenital cataract family as well as the cellular mechanisms of mutant Cx46 S50P, and provides useful information for further studies of the pathogenesis and therapeutic strategy for treating congenital cataract.
Collapse
Affiliation(s)
- Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Haibo Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Weitao Song
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| |
Collapse
|
7
|
Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martínez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet 2018; 138:1027-1042. [PMID: 29464339 DOI: 10.1007/s00439-018-1875-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Domingo Aguilera-Garcia
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Dorine Arjanne Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Fiona Blanco-Kelly
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Patricia Ramos
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Maria Tarilonte
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Villaverde
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Luciana Rodrigues Jacy da Silva
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | | | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Lisa Cooper-Charles
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Dominic McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Hoffman
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Alison Stewart
- Sheffield Clinical Genetics Department, Northern General Hospital, Sheffield, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Genetics and Genomic Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alan Fryer
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Joëlle Roume
- Department of Clinical Genetics, Centre de Référence "AnDDI Rares", Poissy Hospital GHU PIFO, Poissy, France
| | - Pascal Dureau
- Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Anand Saggar
- Clinical Genetics Unit, St Georges University of London, London, UK
| | - Michael Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Carmen Ayuso
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK.
| |
Collapse
|
8
|
Logan CM, Rajakaruna S, Bowen C, Radice GL, Robinson ML, Menko AS. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol 2017; 428:118-134. [PMID: 28552735 DOI: 10.1016/j.ydbio.2017.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tissue development and regeneration involve high-ordered morphogenetic processes that are governed by elements of the cytoskeleton in conjunction with cell adhesion molecules. Such processes are particularly important in the lens whose structure dictates its function. Studies of our lens-specific N-cadherin conditional knockout mouse (N-cadcKO) revealed an essential role for N-cadherin in the migration of the apical tips of differentiating lens fiber cells along the apical surfaces of the epithelium, a region termed the Epithelial Fiber Interface (EFI), that is necessary for normal fiber cell elongation and the morphogenesis. Studies of the N-cadcKO lens suggest that N-cadherin function in fiber cell morphogenesis is linked to the activation of Rac1 and myosin II, both signaling pathways central to the regulation of cell motility including determining the directionality of cellular movement. The absence of N-cadherin did not disrupt lateral contacts between fiber cells during development, and the maintenance of Aquaporin-0 and increased expression of EphA2 at cell-cell interfaces suggests that these molecules may function in this role. E-cadherin was maintained in newly differentiating fiber cells without interfering with expression of lens-specific differentiation proteins but was not able to replace N-cadherin function in these cells. The dependence of migration of the fiber cell apical domains along the EFI for lens morphogenesis on N-cadherin provides new insight into the process of tissue development.
Collapse
Affiliation(s)
- Caitlin M Logan
- Thomas Jefferson University, Pathology Anatomy and Cell Biology, Philadelphia, PA, United States
| | - Suren Rajakaruna
- Thomas Jefferson University, Pathology Anatomy and Cell Biology, Philadelphia, PA, United States
| | - Caitlin Bowen
- Thomas Jefferson University, Pathology Anatomy and Cell Biology, Philadelphia, PA, United States
| | - Glenn L Radice
- Thomas Jefferson University, Pathology Anatomy and Cell Biology, Philadelphia, PA, United States
| | - Michael L Robinson
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, United States
| | - A Sue Menko
- Thomas Jefferson University, Pathology Anatomy and Cell Biology, Philadelphia, PA, United States.
| |
Collapse
|
9
|
ŠEDA O, LIŠKA F, PRAVENEC M, VERNEROVÁ Z, KAZDOVÁ L, KŘENOVÁ D, ZÍDEK V, ŠEDOVÁ L, KRUPKOVÁ M, KŘEN V. Connexin 50 Mutation Lowers Blood Pressure in Spontaneously Hypertensive Rat. Physiol Res 2017; 66:15-28. [DOI: 10.33549/physiolres.933432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We assessed the effect of the previously uncovered gap junction protein alpha 8 (Gja8) mutation present in spontaneously hypertensive rat – dominant cataract (SHR-Dca) strain on blood pressure, metabolic profile, and heart and renal transcriptomes. Adult, standard chow-fed male rats of SHR and SHR-Dca strains were used. We found a significant, consistent 10-15 mmHg decrease in both systolic and diastolic blood pressures in SHR-Dca compared with SHR (P<0.01 and P<0.05, respectively; repeated measures analysis of variance (ANOVA)). With immunohistochemistry, we were able to localize Gja8 in heart, kidney, aorta, liver, and lungs, mostly in endothelium; with no differences in expression between strains. SHR-Dca rats showed decreased body weight, high-density lipoprotein cholesterol concentrations and basal insulin sensitivity in muscle. There were 21 transcripts common to the sets of 303 transcripts in kidney and 487 in heart showing >1.2-fold difference in expression between SHR and SHR-Dca. Tumor necrosis factor was the most significant upstream regulator and glial cell-derived neurotrophic factor family ligand-receptor interactions was the common enriched and downregulated canonical pathway both in heart and kidney of SHR-Dca. The connexin 50 mutation L7Q lowers blood pressure in the SHR-Dca strain, decreases high-density lipoprotein cholesterol, and leads to substantial transcriptome changes in heart and kidney.
Collapse
Affiliation(s)
- O. ŠEDA
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The lens is an avascular organ composed of an anterior epithelial cell layer and fiber cells that form the bulk of the organ. The lens expresses connexin43 (Cx43), connexin46 (Cx46) and connexin50 (Cx50). Epithelial Cx50 has critical roles in cell proliferation and differentiation, likely involving growth factor-dependent signaling pathways. Both Cx46 and Cx50 are crucial for lens transparency; mutations in their genes have been linked to congenital and age-related cataracts. Congenital cataract-associated connexin mutants can affect protein trafficking, stability and/or function, and the functional effects may differ between gap junction channels and hemichannels. Dominantly inherited cataracts may result from effects of the connexin mutant on its wild type isotype, the other co-expressed wild type connexin and/or its interaction with other cellular components.
Collapse
Affiliation(s)
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Ma Z, Yao W, Chan CC, Kannabiran C, Wawrousek E, Hejtmancik JF. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1214-27. [PMID: 26851658 DOI: 10.1016/j.bbadis.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/16/2016] [Accepted: 02/02/2016] [Indexed: 11/15/2022]
Abstract
βγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the βA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant βA3/A1-crystallin protein. Transgenic expression of mutant βA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del βA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts.
Collapse
Affiliation(s)
- Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenliang Yao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA; Medimmune, Gaithersburg, MD, USA
| | | | - Chitra Kannabiran
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric Wawrousek
- Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Exp Eye Res 2015; 132:78-90. [PMID: 25617680 DOI: 10.1016/j.exer.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023]
Abstract
The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Hegde SM, Srivastava K, Tiwary E, Srivastava OP. Molecular mechanism of formation of cortical opacity in CRYAAN101D transgenic mice. Invest Ophthalmol Vis Sci 2014; 55:6398-408. [PMID: 25146988 DOI: 10.1167/iovs.14-14623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The CRYAAN101D transgenic mouse model expressing deamidated αA-crystallin (deamidation at N101 position to D) develops cortical cataract at the age of 7 to 9 months. The present study was carried out to explore the molecular mechanism that leads to the development of cortical opacity in CRYAAN101D lenses. METHODS RNA sequence analysis was carried out on 2- and 4-month-old αA-N101D and wild type (WT) lenses. To understand the biologic relevance and function of significantly altered genes, Ingenuity Pathway Analysis (IPA) was done. To elucidate terminal differentiation defects, immunohistochemical, and Western blot analyses were carried out. RESULTS RNA sequence and IPA data suggested that the genes belonging to gene expression, cellular assembly and organization, and cell cycle and apoptosis networks were altered in N101D lenses. In addition, the tight junction signaling and Rho A signaling were among the top three canonical pathways that were affected in N101D mutant. Immunohistochemical analysis identified a series of terminal differentiation defects in N101D lenses, specifically, increased proliferation and decreased differentiation of lens epithelial cells (LEC) and decreased denucleation of lens fiber cells (LFC). The expression of Rho A was reduced in different-aged N101D lenses, and, conversely, Cdc42 and Rac1 expressions were increased in the N101D mutants. Moreover, earlier in development, the expression of major membrane-bound molecular transporter Na,K-ATPase was drastically reduced in N101D lenses. CONCLUSIONS The results suggest that the terminal differentiation defects, specifically, increased proliferation and decreased denucleation are responsible for the development of lens opacity in N101D lenses.
Collapse
Affiliation(s)
- Shylaja M Hegde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kiran Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ekta Tiwary
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
14
|
Berthoud VM, Minogue PJ, Yu H, Snabb JI, Beyer EC. Connexin46fs380 causes progressive cataracts. Invest Ophthalmol Vis Sci 2014; 55:6639-48. [PMID: 25103261 PMCID: PMC4207115 DOI: 10.1167/iovs.14-15012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/28/2014] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Although many connexin46 (Cx46) mutants have been linked to inherited human cataracts, there are no adequate animal models for their study. The current experiments were designed to characterize the consequences of expression of one such mutant, Cx46fs380, in the mouse lens. METHODS Mice expressing Cx46fs380 were generated by a knockin strategy. Levels and distribution of specific proteins were analyzed by immunoblotting and immunofluorescence. RESULTS Dark-field microscopy revealed that lenses of young heterozygous and homozygous Cx46fs380 mice did not have opacities, but they developed anterior nuclear cataracts that became more severe with age. Immunofluorescence and immunoblotting showed that Cx46 was severely reduced in both heterozygous and homozygous Cx46fs380 lenses at 1 month of age, whereas immunoreactive connexin50 (Cx50) was moderately decreased. The reduction in Cx50 became more severe in older lenses. The solubilities of crystallins from young wild-type and fs380 mice were similar, but older fs380 lenses exhibited abnormalities of abundance, solubility, and modification of some crystallins. CONCLUSIONS Major decreases in connexin levels precede the development of cataracts. These mice represent a useful model for elucidation of the progression of lens abnormalities during cataractogenesis especially as caused by a mutant connexin.
Collapse
Affiliation(s)
- Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Helena Yu
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Joseph I Snabb
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
15
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens. Exp Eye Res 2014; 120:138-51. [PMID: 24486794 DOI: 10.1016/j.exer.2014.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
16
|
Berthoud VM, Minogue PJ, Yu H, Schroeder R, Snabb JI, Beyer EC. Connexin50D47A decreases levels of fiber cell connexins and impairs lens fiber cell differentiation. Invest Ophthalmol Vis Sci 2013; 54:7614-22. [PMID: 24204043 PMCID: PMC3835270 DOI: 10.1167/iovs.13-13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Substitutions of aspartate-47 (D47) of Connexin50 (Cx50) have been linked to autosomal dominant congenital cataracts in several human pedigrees. To elucidate the lens abnormalities caused by a substitution at this position, we studied No2 mice, which carry the Cx50D47A mutation and parallel the human pathology. METHODS Lenses from mice of different ages (neonatal to 4 months) were examined by dark-field and immunofluorescence microscopy. Protein levels were determined by immunoblotting using primary antibodies directed against connexins, other membrane proteins, crystallins, and proteins residing in different organelles. RESULTS Lenses of both heterozygous and homozygous Cx50D47A mice had cataracts and were smaller than those of wild-type littermates. Levels of Cx50 were severely reduced in mutant animals as compared with those in wild-type mice (<20% in heterozygotes and ≤3% in homozygotes). Levels of Cx46 and aquaporin0 were also decreased, but to a lesser extent. The immunostaining pattern of lens connexins was altered in mutant animals. The lenses of Cx50D47A mice showed persistence of nuclear remnants in deep regions of the lens and elevated levels of H3 histone and the mitochondrial protein, Tom20. γ-Crystallin levels were decreased in lenses of all mutant mice, and β-crystallins were reduced in homozygotes. CONCLUSIONS These data suggest that mice expressing Cx50D47A develop cataracts due to a severe decrease in the abundance of functional connexin channels. They also implicate Cx50 in fiber cell differentiation, since mutant lenses showed impaired degradation of organelles and decreased levels of some crystallins.
Collapse
|
17
|
Beyer EC, Ebihara L, Berthoud VM. Connexin mutants and cataracts. Front Pharmacol 2013; 4:43. [PMID: 23596416 PMCID: PMC3625720 DOI: 10.3389/fphar.2013.00043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022] Open
Abstract
The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8) have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating) or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death) and formation of cytoplasmic accumulations (that may act as light scattering particles). These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Mainali L, Raguz M, O'Brien WJ, Subczynski WK. Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens. Exp Eye Res 2012; 97:117-29. [PMID: 22326289 DOI: 10.1016/j.exer.2012.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eye lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes, because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes-namely, the domain formed by boundary lipids and the domain formed by trapped lipids-were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
19
|
Gupta R, Asomugha CO, Srivastava OP. The common modification in alphaA-crystallin in the lens, N101D, is associated with increased opacity in a mouse model. J Biol Chem 2011; 286:11579-92. [PMID: 21245144 PMCID: PMC3064212 DOI: 10.1074/jbc.m110.148627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/10/2011] [Indexed: 11/06/2022] Open
Abstract
To elucidate the morphological and cellular changes due to introduction of a charge during development and the possible mechanism that underlies cataract development in humans as a consequence of an additional charge, we generated a transgenic mouse model mimicking deamidation of Asn at position 101. The mouse model expresses a human αA-crystallin gene in which Asn-101 was replaced with Asp, which is referred to as αAN101D-transgene and is considered to be "deamidated" in this study. Mice expressing αAN101D-transgene are referred to here CRYAA(N101D) mice. All of the lines showed the expression of αAN101D-transgene. Compared with the lenses of mice expressing wild-type (WT) αA-transgene (referred to as CRYAA(WT) mice), the lenses of CRYAA(N101D) mice showed (a) altered αA-crystallin membrane protein (aquaporin-0 (AQP0), a specific lens membrane protein) interaction, (b) extracellular spaces between outer cortical fiber cells, (c) attenuated denucleation during confocal microscopic examination, (d) disrupted normal fiber cell organization and structure during scanning electron microscopic examination, (e) distorted posterior suture lines by bright field microscopy, and (f) development of a mild anterior lens opacity in the superior cortical region during the optical coherence tomography scan analysis. Relative to lenses with WT αA-crystallin, the lenses containing the deamidated αA-crystallin also showed an aggregation of αA-crystallin and a higher level of water-insoluble proteins, suggesting that the morphological and cellular changes in these lenses are due to the N101D mutation. This study provides evidence for the first time that expression of deamidated αA-crystallin caused disruption of fiber cell structural integrity, protein aggregation, insolubilization, and mild cortical lens opacity.
Collapse
Affiliation(s)
- Ratna Gupta
- From the Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390
| | - Chinwe O. Asomugha
- From the Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390
| | - Om P. Srivastava
- From the Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390
| |
Collapse
|
20
|
Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis and lens development. Curr Mol Med 2010; 10:851-63. [PMID: 21091421 PMCID: PMC6263138 DOI: 10.2174/156652410793937750] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.
Collapse
Affiliation(s)
- J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
21
|
Varadaraj K, Kumari SS, Mathias RT. Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: effects on lens transparency. Exp Eye Res 2010; 91:393-404. [PMID: 20599966 DOI: 10.1016/j.exer.2010.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/14/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022]
Abstract
Mutations and knockout of aquaporin 0 (AQP0) result in dominant lens cataract. To date, several functions have been proposed for AQP0; however, two functions, water permeability and cell-to-cell adhesion have been supported by several investigators and only water channel function has been readily authenticated by in vitro and ex vivo studies. Lens shifts protein expression from the more efficient AQP1 in the equatorial epithelial cells to the less efficient water channel, AQP0, in the differentiating secondary fiber cells; perhaps, AQP0 performs a distinctive function. If AQP0 has only water permeability function, can the more efficient water channel AQP1 transgenically expressed in the fiber cells compensate and restore lens transparency in the AQP0 knockout (AQP0(-/-)) mouse? To investigate, we generated a transgenic wild-type mouse line expressing AQP1 in the fiber cells using alphaA-crystallin promoter. These transgenic mice (TgAQP1(+/+)) showed increase in fiber cell membrane water permeability without any morphological, anatomical or physiological defects compared to the wild type indicating that the main purpose of the shift in expression from AQP1 to AQP0 may not be to lessen the membrane water permeability. Further, we transgenically expressed AQP1 in the lens fiber cells of AQP0 knockout mouse (TgAQP1(+/+)/AQP0(-/-)) to determine whether AQP1 could restore AQP0 water channel function and regain lens transparency. Fiber cells of these mice showed 2.6 times more water permeability than the wild type. Transgene AQP1 reduced the severity of lens cataract and prevented dramatic acceleration of cataractogenesis. However, lens fiber cells showed deformities and lack of compact cellular architecture. Loss of lens transparency due to the absence of AQP0 was not completely restored indicating an additional function for AQP0. In vitro studies showed that AQP0 is capable of cell-to-cell adhesion while AQP1 is not. To our knowledge, this is the first report which uses an animal model to demonstrate that AQP0 may have an additional function, possibly cell-to-cell adhesion.
Collapse
Affiliation(s)
- K Varadaraj
- Department of Physiology and Biophysics, State University of New York at Stony Brook, NY 11794-8661, USA.
| | | | | |
Collapse
|
22
|
Nowak RB, Fischer RS, Zoltoski RK, Kuszak JR, Fowler VM. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens. ACTA ACUST UNITED AC 2009; 186:915-28. [PMID: 19752024 PMCID: PMC2753162 DOI: 10.1083/jcb.200905065] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased gammaTM levels, loss of F-actin from membranes, and disrupted distribution of beta2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and gammaTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin-actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
23
|
Costello MJ, Johnsen S, Metlapally S, Gilliland KO, Ramamurthy B, Krishna PV, Balasubramanian D. Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India. Exp Eye Res 2008; 87:147-58. [PMID: 18617164 DOI: 10.1016/j.exer.2008.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 04/24/2008] [Accepted: 05/18/2008] [Indexed: 11/25/2022]
Abstract
The primary goal was to characterize the structural alterations that occur at the fiber cell interfaces in nuclei of fully opaque cataracts removed by extracapsular cataract surgery in India. The dark yellow to brunescent nuclei, ages 38-78 years, were probably representative of advanced age-related nuclear cataracts. Thick tissue slices were fixed, en bloc stained and embedded for transmission electron microscopy. Stained thin sections contained well-preserved membranes and junctions, although the complex cellular topology often made it necessary to tilt the grid extensively to visualize the membranes. Damage to the fiber cell membranes was noted in all regions of the nucleus. The most important damage occurred within undulating membrane junctions where the loss of membrane segments was common. These membrane breaks were not sites of fusion as membrane edges were detected and cytoplasm appeared to be in contact with extracellular space, which was enlarged in many regions. Dense deposits of protein-like material were frequently observed within the extracellular space and appeared to be similar to protein in the adjacent cytoplasm. The deposits were often 20-50 nm thick, variable in length and located on specific sites on plasma membranes and between clusters of cells or cell processes. In addition, low density regions were seen within the extracellular space, especially within highly undulating membranes where spaces about 100 nm in diameter were observed. The membrane damage was more extensive and extracellular spaces were larger than in aged transparent donor lenses. Because high and low density regions contribute equally to the fluctuations in refractive index, the changes in density due to the observed damage near membranes are likely to produce significant light scattering based on theoretical analysis. The dimensions of the fluctuations in the range 20-100 nm imply that the scattering is probably similar to that of small particles that would increase high-angle scattering visible in the slit lamp. Such damage to membranes would be expected to contribute to the total opacification of the nucleus as the cataract matures. The main sources of the fluctuations appear to be the degradation of membranes and adjacent cytoplasmic proteins, as well as the redistribution of proteins and fragments.
Collapse
Affiliation(s)
- M J Costello
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Thomas BC, Minogue PJ, Valiunas V, Kanaporis G, Brink PR, Berthoud VM, Beyer EC. Cataracts are caused by alterations of a critical N-terminal positive charge in connexin50. Invest Ophthalmol Vis Sci 2008; 49:2549-56. [PMID: 18326694 DOI: 10.1167/iovs.07-1658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To elucidate the basis of the autosomal dominant congenital nuclear cataracts caused by the connexin50 mutant, CX50R23T, by determining its cellular distribution and functional behavior and the consequences of substituting other amino acids for arginine-23. METHODS Connexin50 (CX50) mutants were generated by PCR and transfected into HeLa or N2a cells. Expressed CX50 protein was detected by immunoblot analysis and localized by immunofluorescence. Intercellular communication was assessed by microinjection of neurobiotin or by double whole-cell patch-clamp recording. RESULTS HeLa cells stably transfected with CX50R23T or wild-type CX50 produced immunoreactive CX50 bands of identical electrophoretic mobility. Whereas HeLa cells stably expressing CX50 contained abundant gap junction plaques, CX50R23T localized predominantly in the cytoplasm. HeLa cells expressing wild-type CX50 showed large gap junctional conductances and extensive transfer of neurobiotin, but those expressing CX50R23T did not show significant intercellular communication by either assay. Moreover, CX50R23T inhibited the function of coexpressed wild-type CX50. Three CX50R23 substitution mutants (CX50R23K, CX50R23L, and CX50R23W) formed gap junction plaques, whereas two mutant substitutions with negatively charged residues (CX50R23D, CX50R23E) did not form detectable plaques. Only the mutant with a positive charge substitution (CX50R23K) allowed neurobiotin transfer at levels similar to those of wild-type CX50; none of the other mutants induced transfer. CONCLUSIONS These results suggest that replacement of amino acid 23 in CX50 by any residue that is not positively charged would lead to cataract formation.
Collapse
Affiliation(s)
- Bettina C Thomas
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637-1470, USA
| | | | | | | | | | | | | |
Collapse
|