1
|
Sun C, Ding Z, Li B, Chen S, Li E, Yang Q. New insights into Gremlin-1: A tumour microenvironment landscape re-engineer and potential therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119962. [PMID: 40250712 DOI: 10.1016/j.bbamcr.2025.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Gremlin-1 (GREM1), a well-known bone morphogenetic protein (BMP) antagonist, is highly expressed in various malignant tumours. However, the specific role of GREM1 in tumours remains controversial and may be attributed to the heterogeneity and complexity of the tumour microenvironment (TME). It is currently believed that GREM1 regulates the complex landscape of the TME, primarily by antagonising BMP signalling or BMP-independent pathways. Both GREM1 and BMP play dual roles in tumour progression. Therefore, the mutual crosstalk between tumour cells and tumour-associated fibroblasts and the regulation of various secreted factors in the TME affect the secretion level of GREM1, which in turn regulates the amplitude balance between GREM1 and BMP, affecting tumour progression. The inhibition of GREM1 activity in the TME can disrupt this amplitude balance and prevent the formation of a tumour-supportive microenvironment, demonstrating that GREM1 is a potential therapeutic target. In this study, we reviewed the specific signalling pathways via which GREM1 in the TME regulates epithelial-mesenchymal transition, construction of the tumour immune microenvironment, and maintenance of tumour cell stemness via BMP-dependent and BMP-independent regulation, and also summarised the latest clinical progress of GREM1.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; HuanKui Academy, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Benjie Li
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Sihong Chen
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, China.
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai zheng Street, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Chan TC, Pan CT, Hsieh HY, Vejvisithsakul PP, Wei RJ, Yeh BW, Wu WJ, Chen LR, Shiao MS, Li CF, Shiue YL. The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. Cell Oncol (Dordr) 2023; 46:933-951. [PMID: 36920729 DOI: 10.1007/s13402-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC. METHODS Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry. RESULTS GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFβ/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis. CONCLUSIONS Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFβ/BMP/SMAD-mediated EMT in an autocrine manner.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Advanced Semiconductor Packaging and Testing, College of Semiconductor and Advanced Technology Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ren-Jie Wei
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, School of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Tainan, 71246, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan.
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
3
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
4
|
Khatib Shahidi R, M Hoffmann J, Hedjazifar S, Bonnet L, K Baboota R, Heasman S, Church C, Elias I, Bosch F, Boucher J, Hammarstedt A, Smith U. Adult mice are unresponsive to AAV8-Gremlin1 gene therapy targeting the liver. PLoS One 2021; 16:e0247300. [PMID: 33606810 PMCID: PMC7895349 DOI: 10.1371/journal.pone.0247300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Gremlin 1 (GREM1) is a secreted BMP2/4 inhibitor which regulates commitment and differentiation of human adipose precursor cells and prevents the browning effect of BMP4. GREM1 is an insulin antagonist and serum levels are high in type 2 diabetes (T2D). We here examined in vivo effects of AAV8 (Adeno-Associated Viral vectors of serotype eight) GREM 1 targeting the liver in mature mice to increase its systemic secretion and also, in a separate study, injected recombinant GREM 1 intraperitoneally. The objective was to characterize systemic effects of GREM 1 on insulin sensitivity, glucose tolerance, body weight, adipose cell browning and other local tissue effects. Methods Adult mice were injected with AAV8 vectors expressing GREM1 in the liver or receiving regular intra-peritoneal injections of recombinant GREM1 protein. The mice were fed with a low fat or high fat diet (HFD) and followed over time. Results Liver-targeted AAV8-GREM1 did not alter body weight, whole-body glucose and insulin tolerance, or adipose tissue gene expression. Although GREM1 protein accumulated in liver cells, GREM1 serum levels were not increased suggesting that it may not have been normally processed for secretion. Hepatic lipid accumulation, inflammation and fibrosis were also not changed. Repeated intraperitoneal rec-GREM1 injections for 5 weeks were also without effects on body weight and insulin sensitivity. UCP1 was slightly but significantly reduced in both white and brown adipose tissue but this was not of sufficient magnitude to alter body weight. We validated that recombinant GREM1 inhibited BMP4-induced pSMAD1/5/9 in murine cells in vitro, but saw no direct inhibitory effect on insulin signalling and pAkt (ser 473 and thr 308) activation. Conclusion GREM1 accumulates intracellularly when overexpressed in the liver cells of mature mice and is apparently not normally processed/secreted. However, also repeated intraperitoneal injections were without effects on body weight and insulin sensitivity and adipose tissue UCP1 levels were only marginally reduced. These results suggest that mature mice do not readily respond to GREMLIN 1 but treatment of murine cells with GREMLIN 1 protein in vitro validated its inhibitory effect on BMP4 signalling while insulin signalling was not altered.
Collapse
Affiliation(s)
- Roxana Khatib Shahidi
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny M Hoffmann
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahram Hedjazifar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laurianne Bonnet
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ritesh K Baboota
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie Heasman
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Christopher Church
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Jeremie Boucher
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Saeidi A, Seifi-Ski-Shahr F, Soltani M, Daraei A, Shirvani H, Laher I, Hackney AC, Johnson KE, Basati G, Zouhal H. Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial. Arch Physiol Biochem 2020; 129:640-648. [PMID: 33370549 DOI: 10.1080/13813455.2020.1856142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to determine how different resistance training protocols affect gremlin 1, macrophage migration inhibitory factor (MIF), cardiometabolic, and anthropometric measures in obese men. METHODS Forty-four males with obesity (weight: 93.2 ± 2.2 kg, BMI: 32.9 ± 1.2 kg/m2, age: 27.5 ± 9.4 years) were randomly assigned to traditional resistance training (TRT, n = 11), circuit resistance training (CRT, n = 11), interval resistance training (IRT, n = 11) or control (C, n = 11) groups. TRT group performed ten exercises at 50% of 1RM with 14 repetitions for three sets and 30 seconds rest interval between exercises and 1.5 min rest between sets, the CRT protocol included three circuits of 10 exercises, at an intensity of 50% of 1-RM, 14 repetitions with a minimum rest (< 15 s) between exercises and 3 min rest between sets, and the IRT group performed two sets of the same exercises with 50% of 1 RM, and 14 repetitions were followed with active rest of 25% of 1RM and 14 repetitions. All resistance training groups performed 60 min per session resistance exercises, 3 days per week, for 12 weeks. Measurements were taken at baseline and after 12 weeks of exercise training. RESULTS Resistance training (TRT, CRT, and IRT) significantly decreased plasma levels of gremlin (TRT from 231.0 ± 5.8 to 210.0 ± 11.6 ng/ml, CRT from 226.0 ± 7.6 to 188.0 ± 7.7 ng/ml and, IRT from 227.0 ± 6.3 to 183.0 ± 9.0 ng/ml, effect size (ES): 0.50), MIF (TRT from 251.0 ± 7.4 to 260.0 ± 6.5 ng/ml, CRT from 248.0 ± 10.9 to 214.0 ± 9.0 ng/ml and, IRT from 247.0 ± 8.9 to 196.0 ± 6.9 ng/ml, ES: 0.55) and CRP (TRT from 28.4 ± 1.7 to 23.3 ± 2.1 nmol/l, CRT from 28.5 ± 2.2 to 21.1 ± 1.8 nmol/l, IRT from 28.1 ± 1.3 to 20.8 ± 1.3 nmol/l, ES: 0.49) compared to the control group (p < .05), but these reduction were greater in the CRT and IRT groups compared to the TRT group (p < .05). CONCLUSION The CRT and IRT protocols had more beneficial improvement in gremlin 1, MIF, body composition, and cardiometabolic risk factors compared to the beneficial changes produced by TRT protocol.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Farnaz Seifi-Ski-Shahr
- Department of Physical Education and Sport Sciences, Faculty of Education and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Soltani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kelly E Johnson
- Department Kinesiology, Coastal Carolina University, Conway SC, SC, USA
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes, France
| |
Collapse
|
6
|
Kawagishi-Hotta M, Hasegawa S, Hasebe Y, Sugiura K, Akamatsu H. Gremlin 2 increased in the skin with age as a senescence-associated secretory phenotype factor. J Dermatol 2020; 47:1457-1458. [PMID: 32860241 DOI: 10.1111/1346-8138.15578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mika Kawagishi-Hotta
- Research Laboratories, NIPPON MENARD COSMETIC Co., Ltd, Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, NIPPON MENARD COSMETIC Co., Ltd, Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yuichi Hasebe
- Research Laboratories, NIPPON MENARD COSMETIC Co., Ltd, Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
May RD, Frauchiger DA, Albers CE, Tekari A, Benneker LM, Klenke FM, Hofstetter W, Gantenbein B. Application of Cytokines of the Bone Morphogenetic Protein (BMP) Family in Spinal Fusion - Effects on the Bone, Intervertebral Disc and Mesenchymal Stromal Cells. Curr Stem Cell Res Ther 2020; 14:618-643. [PMID: 31455201 PMCID: PMC7040507 DOI: 10.2174/1574888x14666190628103528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is a prevalent socio-economic burden and is often associated with damaged or degenerated intervertebral discs (IVDs). When conservative therapy fails, removal of the IVD (discectomy), followed by intersomatic spinal fusion, is currently the standard practice in clinics. The remaining space is filled with an intersomatic device (cage) and with bone substitutes to achieve disc height compensation and bone fusion. As a complication, in up to 30% of cases, spinal non-fusions result in a painful pseudoarthrosis. Bone morphogenetic proteins (BMPs) have been clinically applied with varied outcomes. Several members of the BMP family, such as BMP2, BMP4, BMP6, BMP7, and BMP9, are known to induce osteogenesis. Questions remain on why hyper-physiological doses of BMPs do not show beneficial effects in certain patients. In this respect, BMP antagonists secreted by mesenchymal cells, which might interfere with or block the action of BMPs, have drawn research attention as possible targets for the enhancement of spinal fusion or the prevention of non-unions. Examples of these antagonists are noggin, gremlin1 and 2, chordin, follistatin, BMP3, and twisted gastrulation. In this review, we discuss current evidence of the osteogenic effects of several members of the BMP family on osteoblasts, IVD cells, and mesenchymal stromal cells. We consider in vitro and in vivo studies performed in human, mouse, rat, and rabbit related to BMP and BMP antagonists in the last two decades. We give insights into the effects that BMP have on the ossification of the spine. Furthermore, the benefits, pitfalls, and possible safety concerns using these cytokines for the improvement of spinal fusion are discussed.
Collapse
Affiliation(s)
- Rahel Deborah May
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Christoph Emmanuel Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lorin Michael Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Frank Michael Klenke
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Qin D, Jin X, Jiang Y. Gremlin mediates the TGF-β-induced induction of profibrogenic genes in human retinal pigment epithelial cells. Exp Ther Med 2020; 19:2353-2359. [PMID: 32104303 PMCID: PMC7027231 DOI: 10.3892/etm.2020.8463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterised by the contraction and growth of fibrotic membranes on the retina and within the vitreous body. Retinal pigment epithelial (RPE) cells, a major cellular component of the fibrotic membrane, is one of the cell types that have been previously reported to associate with PVR pathogenesis. During PVR, RPE cells undergo increased cell proliferation, migration and the secretion of extracellular matrix molecules, such as fibronectin and type I collagen. A variety of cytokines and growth factors are involved in the formation of the fibrotic membrane. Although gremlin has been reported to serve an important role in the regulation of epithelial-to-mesenchymal transition in PVR, the relationship between gremlin and the expression of profibrogenic factors in human RPE cells remains unclear. In the present study, gremlin promoted RPE cell proliferation and the expression of type I collagen and fibronectin. In addition, knocking down gremlin expression by siRNA significantly suppressed the transforming growth factor (TGF)-β1- and TGF-β2-induced expression of type I collagen and fibronectin in RPE cells. These findings suggest that gremlin may serve an important role in the development of PVR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xuemin Jin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing 100044, P.R. China
| |
Collapse
|
9
|
Qin D, Jiang YR, Meng Z. Gremlin in the Vitreous of Patients with Proliferative Diabetic Retinopathy and the Downregulation of Gremlin in Retinal Pigment Epithelial Cells. J Diabetes Res 2020; 2020:9238742. [PMID: 32377526 PMCID: PMC7180400 DOI: 10.1155/2020/9238742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common causes of blindness globally. Proliferative DR (PDR), an advanced stage of DR, is characterized by the formation of fibrotic membranes at the vitreoretinal interface. The proliferation, migration, and secretion of extracellular matrix molecules in retinal pigment epithelial (RPE) cells contribute to the formation of fibrotic membranes in PDR. Gremlin has been reported to be upregulated in response to elevated glucose levels in the retina of diabetic rat and bovine pericytes. However, the role of gremlin in PDR remains unclear. In the present study, the vitreous concentrations of gremlin were significantly higher in the PDR (67.79 ± 33.96) group than in the control (45.31 ± 12.31) group, and high glucose levels induced the expression of gremlin in RPE cells. The elevated expression of extracellular matrix molecules, such as fibronectin and collagen IV, was significantly reduced by gremlin siRNA in human RPE cells under high-glucose conditions. Thus, gremlin may play a vital role in the development of PDR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-rong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China
| | - Zijun Meng
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Denton NF, Eghleilib M, Al-Sharifi S, Todorčević M, Neville MJ, Loh N, Drakesmith A, Karpe F, Pinnick KE. Bone morphogenetic protein 2 is a depot-specific regulator of human adipogenesis. Int J Obes (Lond) 2019; 43:2458-2468. [PMID: 31324879 PMCID: PMC6892741 DOI: 10.1038/s41366-019-0421-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) regulate adipogenesis but it is not clear whether they influence regional adipose tissue (AT) development in humans. OBJECTIVE To characterise BMP2 expression, BMP2-SMAD1/5/8 signalling, and BMP2's potential effect on proliferation and adipogenesis in human subcutaneous abdominal and gluteal AT and its constituent preadipocytes. METHODS BMP2 expression was measured in whole AT and immortalised preadipocytes via qPCR and Western blot; secreted/circulating BMP2 was measured by ELISA. The effect of BMP2 on preadipocyte proliferation was evaluated using a fluorescent assay. BMP2's effect on adipogenesis in immortalised preadipocytes was determined via qPCR of adipogenic markers and cellular triacylglycerol (TAG) accumulation. BMP2-SMAD1/5/8 signalling was assessed in immortalised preadipocytes via Western blot and qPCR of ID1 expression. RESULTS BMP2 was expressed and released by abdominal and gluteal AT and preadipocytes. Exogenous BMP2 dose dependently promoted adipogenesis in abdominal preadipocytes only; 50 ng/ml BMP2 increased PPARG2 expression (10-fold compared to vehicle, p < 0.001) and TAG accumulation (3-fold compared to vehicle; p < 0.001). BMP2 stimulated SMAD1/5/8 phosphorylation and ID1 expression in abdominal and gluteal preadipocytes but this was blocked by 500 nM K02288, a type 1 BMP receptor inhibitor (p < 0.001). Co-administration of 500 nM K02288 also inhibited the pro-adipogenic effect of 50 ng/ml BMP2 in abdominal cells; >90% inhibition of TAG accumulation (p < 0.001) and ~50% inhibition of PPARG2 expression (p < 0.001). The endogenous iron regulator erythroferrone reduced BMP2-SMAD1/5/8 signalling by ~30% specifically in subcutaneous abdominal preadipocytes (p < 0.01), suggesting it plays a role in restricting the expansion of the body's largest AT depot during energy deficiency. Additionally, a waist-hip ratio-increasing common polymorphism near BMP2 is an eQTL associated with ~15% lower BMP2 expression in abdominal and gluteal AT (p < 0.05) as well as altered adipocyte size in male abdominal AT (p < 0.05). CONCLUSIONS These data implicate BMP2-SMAD1/5/8 signalling in depot-specific preadipocyte development and abdominal AT expansion in humans.
Collapse
Affiliation(s)
- Nathan F Denton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mohamed Eghleilib
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sama Al-Sharifi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital NHS Trust, Oxford, UK
| | - Nellie Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander Drakesmith
- The MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital NHS Trust, Oxford, UK.
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
12
|
Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev 2019; 20:648-658. [PMID: 30609449 PMCID: PMC6447448 DOI: 10.1111/obr.12822] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023]
Abstract
The bone morphogenetic proteins (BMPs) belong to the same superfamily as related to transforming growth factor β (TGFβ), growth and differentiation factors (GDFs), and activins. They were initially described as inducers of bone formation but are now known to be involved in morphogenetic activities and cell differentiation throughout the body, including the development of adipose tissue and adipogenic differentiation. BMP4 and BMP7 are the most studied BMPs in adipose tissue, with major roles in white adipogenesis and brown adipogenesis, respectively, but other BMPs such as BMP2, BMP6, and BMP8b as well as some inhibitors and modulators have been shown to also affect adipogenesis. It has become ever more important to understand adipose regulation, including the BMP pathways, in light of the strong links between obesity and metabolic and cardiovascular disease. In this review, we summarize the available information on BMP signaling in adipose tissue using preferentially articles that have appeared in the last decade, which together demonstrate the importance of BMP signaling in adipose biology.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.,Molecular Biology Institute, UCLA, Los Angeles, California, United States
| |
Collapse
|
13
|
Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 2019; 10:1442. [PMID: 30926814 PMCID: PMC6441020 DOI: 10.1038/s41467-019-09491-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure of articular cartilage to excessive mechanical loading is deeply involved in the pathogenesis of osteoarthritis. Here, we identify gremlin-1 as a mechanical loading-inducible factor in chondrocytes, detected at high levels in middle and deep layers of cartilage after cyclic strain or hydrostatic pressure loading. Gremlin-1 activates nuclear factor-κB signalling, leading to subsequent induction of catabolic enzymes. In mice intra-articular administration of gremlin-1 antibody or chondrocyte-specific deletion of Gremlin-1 decelerates osteoarthritis development, while intra-articular administration of recombinant gremlin-1 exacerbates this process. Furthermore, ras-related C3 botulinum toxin substrate 1 activation induced by mechanical loading enhances reactive oxygen species (ROS) production. Amongst ROS-activating transcription factors, RelA/p65 induces Gremlin-1 transcription, which antagonizes induction of anabolic genes such as Sox9, Col2a1, and Acan by bone morphogenetic proteins. Thus, gremlin-1 plays essential roles in cartilage degeneration by excessive mechanical loading. Excessive mechanical stress promotes the development of osteoarthritis. Here Chang et al. identify gremlin-1 as a factor expressed in chondrocytes in response to mechanical stress, and contributing to osteoarthritis via activation of the NF-κB pathway.
Collapse
|
14
|
Walsh SM, Worrell JC, Fabre A, Hinz B, Kane R, Keane MP. Novel differences in gene expression and functional capabilities of myofibroblast populations in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L697-L710. [PMID: 30091381 DOI: 10.1152/ajplung.00543.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial pneumonia, is characterized by excessive fibroproliferation. Key effector cells in IPF are myofibroblasts that are recruited from three potential sources: resident fibroblasts, fibrocytes, and epithelial cells. We hypothesized that IPF myofibroblasts from different sources display unique gene expression differences and distinct functional characteristics. Primary human pulmonary fibroblasts (normal and IPF), fibrocytes, and epithelial cells were activated using the profibrotic factors TGF-β and TNF-α. The resulting myofibroblasts were characterized using cell proliferation, soluble collagen, and contractility assays, ELISA, and human fibrosis PCR arrays. Genes of significance in human whole lung were validated by immunohistochemistry on human lung sections. Fibroblast-derived myofibroblasts exhibited the greatest increase in expression of profibrotic genes and genes involved in extracellular matrix remodeling and signal transduction. Functional studies demonstrated that myofibroblasts derived from fibrocytes expressed mostly soluble collagen and chemokine (C-C) motif ligand (CCL) 18 but were the least proliferative of the myofibroblast progeny. Activated IPF fibroblasts displayed the highest levels of contractility and CCL2 production. This study identified novel differences in gene expression and functional characteristics of different myofibroblast populations. Further investigation into the myofibroblast phenotype may lead to potential therapeutic targets in future IPF research.
Collapse
Affiliation(s)
- Sinead M Walsh
- School of Medicine and Conway Institute of Biomedical and Biomolecular Science, University College Dublin , Dublin , Ireland.,Department of Respiratory Medicine, Saint Vincent's University Hospital, Elm Park, Dublin , Ireland
| | - Julie C Worrell
- School of Medicine and Conway Institute of Biomedical and Biomolecular Science, University College Dublin , Dublin , Ireland
| | - Aurelie Fabre
- Department of Pathology, Saint Vincent's University Hospital , Dublin , Ireland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto , Toronto, Ontario , Canada
| | - Rosemary Kane
- School of Medicine and Conway Institute of Biomedical and Biomolecular Science, University College Dublin , Dublin , Ireland
| | - Michael P Keane
- School of Medicine and Conway Institute of Biomedical and Biomolecular Science, University College Dublin , Dublin , Ireland.,Department of Respiratory Medicine, Saint Vincent's University Hospital, Elm Park, Dublin , Ireland
| |
Collapse
|
15
|
Liu Y, Chen Z, Cheng H, Chen J, Qian J. Gremlin promotes retinal pigmentation epithelial (RPE) cell proliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling. Oncotarget 2018; 8:979-987. [PMID: 27894090 PMCID: PMC5352211 DOI: 10.18632/oncotarget.13518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
Retinopathy of prematurity (ROP) is characterized by late-phase pathologic retinal vasoproliferation. Gremlin is a novel vascular endothelial growth factors (VEGF) receptor 2 (VEGFR2) agonist and promotes angiogenic response. We demonstrated that gremlin expression was significantly increased in retinas of ROP model mice, which was correlated with VEGF upregulation. In retinal pigmentation epithelial (RPE) cells, gremlin activated VEGFR2-Akt-mTORC2 (mammalian target of rapamycin complex 2) signaling, and promoted cell proliferation, migration and VEGF production. VEGFR inhibition (by SU5416) or shRNA knockdown almost abolished gremlin-mediated pleiotropic functions in RPE cells. Further, pharmacological inhibition of Akt-mTOR, or shRNA knockdown of key mTORC2 component (Rictor or Sin1) also attenuated gremlin-exerted activities in RPE cells. We conclude that gremlin promotes RPE cell proliferation, migration and VEGF production possibly via activating VEGFR2-Akt-mTORC2 signaling. Gremlin could be a novel therapeutic target of ROP or other retinal vasoproliferation diseases.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijun Chen
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Haixia Cheng
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Chen
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Qian
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zhang YQ, Wan LY, He XM, Ni YR, Wang C, Liu CB, Wu JF. Gremlin1 Accelerates Hepatic Stellate Cell Activation Through Upregulation of TGF-Beta Expression. DNA Cell Biol 2017; 36:603-610. [PMID: 28467108 DOI: 10.1089/dna.2017.3707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gremlin1, the antagonist of bone morphogenetic protein-7 and one of the target genes of transforming growth factor (TGF)-β signal pathway, plays an important role in embryonic development and its expression decreases along with aging. To explore the expression of gremlin1 in liver fibrosis and the causal link between gremlin1 and hepatic stellate cell (HSC) activation, we detected the expression of gremlin1 in mice with hepatic fibrosis induced by porcine serum using real time quantitative PCR (RT-qPCR) and immunohistochemical staining. The hepatic fibrosis mice were evaluated by the external feature of the liver, histology, hepatic function, collagen deposition, and the expression of fibrosis-related genes (genes COLIα2 and COLIVα2) in the liver. In the HSC-T6, western blotting was used to analyze the expression of α-smooth muscle actin (α-SMA), COL1α, and TGF-β1 in conditions of overexpression of gremlin1 or gremlin1 being knocked down by specific siRNA, respectively. The results showed that the mRNA expression of the gremlin1 gene was significantly increased consistent with increased expression of COLIα2 and COLIVα2 in the liver tissue of the hepatic fibrosis mice. Increased expression of gremlin1 coincided with the same area of the collagen deposition. Furthermore, the results also showed that the expression of α-SMA, COLIα1, and TGF-β1 was consistent with the expression of gremlin1 not only in the HSC-T6 overexpressing gremlin1 but also in the HSC-T6 that gremlin1 is knocked down by specific siRNA. The findings suggest that gremlin1 might play an important role in the progression of hepatic fibrosis and that it modulates HSC activation.
Collapse
Affiliation(s)
- Yan-Qiong Zhang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Lin-Yan Wan
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
- 3 Digestive Medicine, The First People's Hospital of Yichang , Hubei, China
| | - Xiao-Min He
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Yi-Ran Ni
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Chang Wang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Chang-Bai Liu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Jiang-Feng Wu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| |
Collapse
|
17
|
Zeng XY, Zhang YQ, He XM, Wan LY, Wang H, Ni YR, Wang J, Wu JF, Liu CB. Suppression of hepatic stellate cell activation through downregulation of gremlin1 expression by the miR-23b/27b cluster. Oncotarget 2016; 7:86198-86210. [PMID: 27863390 PMCID: PMC5349907 DOI: 10.18632/oncotarget.13365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
The imbalance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways is a critical step in promoting hepatic stellate cell activation during hepatic fibrogenesis. Gremlin1 may impair the balance. Something remains unclear about the regulatory mechanisms of gremlin1 action on hepatic stellate cell activation and hepatic fibrosis. In the current study, gremlin1 overexpression promotes activation of hepatic stellate cells. Knockdown of gremlin1 with siRNAs suppresses hepatic stellate cell activation and attenuates hepatic fibrosis in rat model. Our results also show that miR-23b/27b cluster members bind to 3'-untranslated region of gremlin1 resulting in reduction of transforming growth factor β, α-smooth muscle actin and collagenI α1/2 gene expression. Our findings suggest that gremlin1 promotes hepatic stellate cell activation and hepatic fibrogenesis through impairment of the balance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways. The miR-23b/27b cluster suppresses activation of hepatic stellate cells through binding gremlin1 to rectify the imbalance.
Collapse
Affiliation(s)
- Xian-Yi Zeng
- The Institute of Cell Therapy, China Three Gorges University, Yichang, 443000, China
- Medical College, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yan-Qiong Zhang
- Medical College, China Three Gorges University, Yichang, 443002, China
- Institute of Liver Diseases, China Three Gorges University, Yichang, 443002, China
| | - Xiao-Min He
- Medical College, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Lin-Yan Wan
- The Institute of Cell Therapy, China Three Gorges University, Yichang, 443000, China
- Medical College, China Three Gorges University, Yichang, 443002, China
- The First People's Hospital of Yichang, Hubei Yichang, 443000, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Institute of Liver Diseases, China Three Gorges University, Yichang, 443002, China
| | - Hu Wang
- The Institute of Cell Therapy, China Three Gorges University, Yichang, 443000, China
- Medical College, China Three Gorges University, Yichang, 443002, China
- The First People's Hospital of Yichang, Hubei Yichang, 443000, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yi-Ran Ni
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Jie Wang
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Jiang-Feng Wu
- The Institute of Cell Therapy, China Three Gorges University, Yichang, 443000, China
- Medical College, China Three Gorges University, Yichang, 443002, China
- The First People's Hospital of Yichang, Hubei Yichang, 443000, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Institute of Liver Diseases, China Three Gorges University, Yichang, 443002, China
| | - Chang-Bai Liu
- The Institute of Cell Therapy, China Three Gorges University, Yichang, 443000, China
- Medical College, China Three Gorges University, Yichang, 443002, China
- The First People's Hospital of Yichang, Hubei Yichang, 443000, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Institute of Liver Diseases, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
18
|
Ji C, Huang JW, Xu QY, Zhang J, Lin MT, Tu Y, He L, Bi ZG, Cheng B. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling. Oncotarget 2016; 7:84748-84757. [PMID: 27713170 PMCID: PMC5356696 DOI: 10.18632/oncotarget.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant.
Collapse
Affiliation(s)
- Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Jin-wen Huang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Qiu-yun Xu
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Meng-ting Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ying Tu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Institute of Dermatology, Kunming 650032, Yunnan, China
| | - Li He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Institute of Dermatology, Kunming 650032, Yunnan, China
| | - Zhi-gang Bi
- Department of Dermatology, BenQ Medical Center, Nanjing Medical University, Nanjing 210019, Jiangsu, China
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| |
Collapse
|
19
|
Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, Wang H, Li D, Wang XY, Feng WJ, Li ZK, Hu GL, Zhang X, Chen XD. Gremlin2 Suppression Increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells Via the BMP-2/Smad/Runx2 Signaling Pathway. J Cell Biochem 2016; 118:286-297. [PMID: 27335248 DOI: 10.1002/jcb.25635] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP-2 pathway has been well-defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP-2 within the range of 0-1 μg/mL, and significant increases were evident at 48, 72, and 96 h after BMP-2 treatment. Si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP-2/Smad/Runx2 pathway played an important role in the process. This study showed that si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs via the BMP-2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286-297, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuan-Dong Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xu-Yi Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Wei-Jia Feng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuo-Kai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
20
|
Pelli A, Väyrynen JP, Klintrup K, Mäkelä J, Mäkinen MJ, Tuomisto A, Karttunen TJ. Gremlin1 expression associates with serrated pathway and favourable prognosis in colorectal cancer. Histopathology 2016; 69:831-838. [PMID: 27257976 DOI: 10.1111/his.13006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
AIMS Gremlin1 is a bone morphogenetic protein (BMP) antagonist with a suggested role in colorectal cancer (CRC) progression. We have analysed Gremlin1 protein expression in CRC and assessed its correlation with clinicopathological characteristics, including developmental pathway and prognosis. METHODS AND RESULTS Material included a non-selected series of 148 surgically treated CRC cases. The tumour-node-metastasis (TNM) stage, histological grade and inflammatory infiltrate at the invasive margin were assessed, and tumours were classified to serrated or non-serrated types. Immunohistochemistry was conducted to evaluate Gremlin1 expression. Prognosis (60-month follow-up) was analysed by Kaplan-Meier methods and Cox regression analysis. Gremlin1 expression was detected in epithelial cells both in normal mucosa and in carcinomas. Abundant expression in carcinomas associated with low TNM stage (P = 0.044), low histological grade (P = 0.044), serrated histology (P = 0.033 or P = 0.053 depending on the classification cut-off) and intensive inflammatory infiltrate at the invasive margin (P = 0.044), and was a stage independent indicator of extended survival (P = 0.029). CONCLUSIONS Gremlin1 protein expression in CRC associates with low tumour stage and extended survival independently of tumour stage, suggesting that it represents a relevant prognostic indicator in CRC. High expression in carcinomas with serrated histology suggests a potential role for Gremlin1 in the serrated pathway of CRC.
Collapse
Affiliation(s)
- Ari Pelli
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Juha P Väyrynen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Kai Klintrup
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Jyrki Mäkelä
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Markus J Mäkinen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Anne Tuomisto
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland. .,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.
| |
Collapse
|
21
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
22
|
Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW. Gremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 2015; 138 Pt 3:256-67. [DOI: 10.1016/j.mod.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
|
23
|
Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 2015; 466:55-68. [DOI: 10.1042/bj20140771] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gremlin1 has a distinct preference for which bone morphogenetic protein it binds to in kidney epithelial cells. Grem1–BMP-2 complexes are favoured over other BMPs, and this may play an important role in fibrotic kidney disease.
Collapse
|
24
|
The effects of Gremlin1 on human umbilical cord blood hematopoietic progenitors. Blood Cells Mol Dis 2015; 54:103-9. [DOI: 10.1016/j.bcmd.2014.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/21/2022]
|
25
|
Common genetic variants (rs4779584 and rs10318) at 15q13.3 contributes to colorectal adenoma and colorectal cancer susceptibility: evidence based on 22 studies. Mol Genet Genomics 2014; 290:901-12. [PMID: 25475391 DOI: 10.1007/s00438-014-0970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/25/2014] [Indexed: 01/20/2023]
Abstract
Several genome-wide association studies on colorectal cancer (CRC) have reported similar findings of a new susceptibility locus, 15q13.3. After that, a number of studies have reported that the rs4779584 and rs10318 polymorphisms at chromosome 15q13.3 have been implicated in CRC and colorectal adenoma (CRA) risk; however, these studies have yielded inconsistent results. To investigate this inconsistency, we performed a meta-analysis of 22 studies involving a total of 48,468 CRC cases, 4,189 CRA cases, and 85,105 controls for the two polymorphisms to evaluate its effect on genetic susceptibility for CRC/CRA. Potential sources of heterogeneity and publication bias were also systematically explored. Overall, the summary odds ratio (OR) of rs4779584-T variant for CRC was 1.13 (95 % CI 1.09-1.16, P < 10(-5)) and 1.15 (95 % CI 1.04-1.28, P = 0.006) for CRA. After stratified by ethnicity, significantly increased CRC risks were found for rs4779584 polymorphism among East Asians and Caucasians, while no significant associations were detected among African American and other ethnic populations. A meta-analysis of studies on the rs10318 polymorphism also showed significant overall association with CRC, yielding a per-allele OR of 1.13 (95 % CI 1.02-1.24, P = 0.02). In the subgroup analysis by ethnicity, significantly increased CRC risks were found in Caucasians; whereas no significant associations were found among East Asians and African Americans. This meta-analysis demonstrated that the rs4779584 and rs10318 polymorphism at 15q13.3 is a risk factor associated with increased CRC/CRA susceptibility, but these associations vary in different ethnic populations.
Collapse
|
26
|
Muzio G, Martinasso G, Baino F, Frairia R, Vitale-Brovarone C, Canuto RA. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering. J Biomater Appl 2014; 29:728-36. [DOI: 10.1177/0885328214541974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Germana Martinasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Roberto Frairia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Vitale-Brovarone
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Rosa A Canuto
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Gremlin-2 is a BMP antagonist that is regulated by the circadian clock. Sci Rep 2014; 4:5183. [PMID: 24897937 PMCID: PMC4046123 DOI: 10.1038/srep05183] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023] Open
Abstract
Tendons are prominent members of the family of fibrous connective tissues (FCTs), which collectively are the most abundant tissues in vertebrates and have crucial roles in transmitting mechanical force and linking organs. Tendon diseases are among the most common arthropathy disorders; thus knowledge of tendon gene regulation is essential for a complete understanding of FCT biology. Here we show autonomous circadian rhythms in mouse tendon and primary human tenocytes, controlled by an intrinsic molecular circadian clock. Time-series microarrays identified the first circadian transcriptome of murine tendon, revealing that 4.6% of the transcripts (745 genes) are expressed in a circadian manner. One of these genes was Grem2, which oscillated in antiphase to BMP signaling. Moreover, recombinant human Gremlin-2 blocked BMP2-induced phosphorylation of Smad1/5 and osteogenic differentiation of human tenocytes in vitro. We observed dampened Grem2 expression, deregulated BMP signaling, and spontaneously calcifying tendons in young CLOCKΔ19 arrhythmic mice and aged wild-type mice. Thus, disruption of circadian control, through mutations or aging, of Grem2/BMP signaling becomes a new focus for the study of calcific tendinopathy, which affects 1-in-5 people over the age of 50 years.
Collapse
|
28
|
Meta-analysis of the rs4779584 polymorphism and colorectal cancer risk. PLoS One 2014; 9:e89736. [PMID: 24586997 PMCID: PMC3933649 DOI: 10.1371/journal.pone.0089736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/22/2014] [Indexed: 01/04/2023] Open
Abstract
Purpose Several researchers have suggested that the rs4779584 (15q13.3) polymorphism is associated with
an increased risk of developing colorectal cancer (CRC). However, past results remain inconclusive.
We addressed this controversy by performing a meta-analysis of the relationship between rs4779584 of
GREM1-SCG5 and colorectal cancer. Methods We selected 12 case-control studies involving 11,769 cases of CRC and 14,328 healthy controls.
The association between the rs4779584 polymorphism and CRC was examined by the overall odds ratio
(OR) with a 95% confidence interval (CI). We used different genetic model analyses,
sensitivity analyses, and assessments of bias in our meta-analysis. Results GREM1-SCG5 rs4779584 polymorphisms were associated with CRC in all of the
genetic models that were examined in this meta-analysis of 12 case-control studies. Conclusion GREM1-SCG5 rs4779584 polymorphisms may increase the risk of developing
colorectal cancer.
Collapse
|
29
|
Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H, Bavoil PM, Mahurkar A, Myers GSA. Simultaneous transcriptional profiling of bacteria and their host cells. PLoS One 2013; 8:e80597. [PMID: 24324615 PMCID: PMC3851178 DOI: 10.1371/journal.pone.0080597] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.
Collapse
Affiliation(s)
- Michael S. Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yezhou Sun
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcus C. Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elliott F. Drabek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Umar Farooq
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Huizhong Shou
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Patrik M. Bavoil
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Garry S. A. Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Li G, Li Y, Liu S, Shi Y, Chi Y, Liu G, Shan T. Gremlin aggravates hyperglycemia-induced podocyte injury by a TGFβ/smad dependent signaling pathway. J Cell Biochem 2013; 114:2101-13. [PMID: 23553804 DOI: 10.1002/jcb.24559] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Gremlin is a bone morphogenic protein (BMP) antagonist and is elevated in diabetic kidney tissues. In the early course of diabetic nephropathy (DN), podocyte are injured. We studied the protein and gene expression of gremlin in mice podocytes cultured in hyperglycemia ambient. The role of gremlin on podocyte injury and the likely signaling pathways involved were determined. Expression of gremlin was visualized by confocal microscopy. Recombinant mouse gremlin and small interfering RNA (siRNA) targeting to gremlin1 identified the role played by gremlin on podocytes. Study of canonical (smad2/3) and non-canonical (p38MAPK and JNK1/2) transforming growth factor beta (TGFβ)/smad mediated signaling revealed the putative signaling mechanisms involved. Smad2/3 siRNA and TGFβ receptor inhibition (SB431542) were used to probe canonical TGFβ/smad signaling in gremlin-induced podocyte injury. Apoptosis of podocytes was measured by TUNEL assay. Gremlin expression was enhanced in high glucose cultured mouse podocytes, and was localized predominantly in the cytoplasm and negligibly on the cell membrane. Not only expression of nephrin and synaptopodin were decreased on treatment with gremlin, but also synaptopodin rearrangement and nephrin relocalization were evident. Knockdown gremlin1 or smad2/3 by siRNA, and inhibition of TGFβR (SB431542) attenuated podocyte injury. Inhibition of canonical TGF-β signal blocked the injury of gremlin on podocytes. In conclusion, gremlin was clearly elevated in high glucose cultured mouse podocytes, and likely employed endogenous canonical TGFβ1/Smad signaling to induce podocyte injury. Knockdown gremlin1 by siRNA may be clinically useful in the attenuation of podocyte injury.
Collapse
Affiliation(s)
- Guiying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | | | | | | | | | | | | |
Collapse
|
31
|
McCormack N, O'Dea S. Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell Signal 2013; 25:2856-62. [PMID: 24044921 DOI: 10.1016/j.cellsig.2013.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a process in which fully differentiated epithelial cells lose many of their epithelial characteristics and adopt features typical of mesenchymal cells, thus allowing cells to become migratory and invasive. EMT is a critical process in development and its role in cancer and fibrosis is becoming increasingly recognised. It is also becoming apparent that EMT is not just restricted to embryonic development and disease in adults, but in fact may be an important process for the maintenance and regeneration of adult tissue architecture. While transforming growth factor-β (TGF-β) is considered a prototypic inducer of EMT, relatively little is known about other signalling molecules that regulate EMT. Bone morphogenic proteins (BMPs) are members of the TGF-β superfamily and 20 different human BMPs have been identified. Originally named for their effects on bone, these proteins are now considered to be key morphogenetic signals that orchestrate tissue architecture throughout the body. BMP2, -4 and -7 are the best studied to date. There are disparate reports of the roles of BMPs in EMT during development, cancer and fibrosis. Here, we present an overview of this literature as well as the emerging role of EMT in tissue regeneration and the involvement of BMPs in regulating this process.
Collapse
Affiliation(s)
- Natasha McCormack
- Institute of Immunology, National University of Ireland Maynooth, Ireland.
| | | |
Collapse
|
32
|
Sethi A, Wordinger RJ, Clark AF. Gremlin utilizes canonical and non-canonical TGFβ signaling to induce lysyl oxidase (LOX) genes in human trabecular meshwork cells. Exp Eye Res 2013; 113:117-27. [PMID: 23748100 DOI: 10.1016/j.exer.2013.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
The TGFβ/BMP signaling pathways are involved in glaucomatous damage to the trabecular meshwork (TM) leading to elevated intraocular pressure (IOP), which is a major risk factor for the development and progression of glaucoma. The BMP antagonist gremlin is elevated in glaucomatous TM cells and tissues and can directly elevate IOP. Gremlin utilizes the TGFβ2/SMAD pathway to induce TM extracellular matrix (ECM) proteins. The purpose of this study is to determine whether expression of the ECM cross-linking lysyl oxidase (LOX) genes is regulated by gremlin in cultured human TM cells. Human TM cells were treated with recombinant gremlin, and expression of the LOX genes was examined by quantitative RT-PCR and western immunoblotting. TM cells were pretreated with TGFBR inhibitors (LY364947 or SB431542), an inhibitor of the SMAD signaling pathway (SIS3), or with JNK (SP600125) and p38 MAPK (SB203580) inhibitors to identify the signaling pathway(s) involved in gremlin induction of LOX protein expression. All five LOX genes (LOX and LOXL1-4) were induced by gremlin. Gremlin induction of LOX genes and protein expression was blocked by TGFBR inhibitors as well as by inhibitors of the SMAD3, JNK and p38 MAPK signaling pathways. We conclude that gremlin employs both canonical TGFβ/SMAD and the non-canonical JNK and p38 MAPK signaling pathways to induce LOX genes and proteins in cultured human TM cells. Increased LOX levels may be at least partially responsible for gremlin-mediated IOP elevation and increased aqueous humor outflow resistance leading to glaucoma.
Collapse
Affiliation(s)
- Anirudh Sethi
- Department of Cell Biology & Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
33
|
Mao W, Millar JC, Wang WH, Silverman SM, Liu Y, Wordinger RJ, Rubin JS, Pang IH, Clark AF. Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci 2012; 53:7043-51. [PMID: 22956608 DOI: 10.1167/iovs.12-9664] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE We previously discovered elevated levels of secreted frizzled-related protein 1 (sFRP1), the Wnt signaling pathway inhibitor, in the glaucomatous trabecular meshwork (GTM), and found that key canonical Wnt signaling pathway genes are expressed in the trabecular meshwork (TM). The purpose of our study was to determine whether a functional canonical Wnt signaling pathway exists in the human TM (HTM). METHODS Western immunoblotting and/or immunofluorescent microscopy were used to study β-catenin translocation as well as the actin cytoskeleton in transformed and primary HTM cells. A TCF/LEF luciferase assay was used to study functional canonical Wnt signaling, which was confirmed further by WNT3a-induced expression of a pathway target gene, AXIN2, via quantitative PCR. Intravitreal injection of an Ad5 adenovirus expressing Dickkopf-related protein-1 (DKK1) was used to study the in vivo effect of canonical Wnt signaling on IOP in mice. RESULTS WNT3a induced β-catenin translocation in the HTM, which was blocked by co-treatment with sFRP1. Similarly, WNT3a enhanced luciferase levels in TCF/LEF luciferase assays, which also were blocked by sFRP1. Furthermore, AXIN2 expression was elevated significantly by WNT3a. However, neither WNT3a nor sFRP1 affected actin cytoskeleton organization, which theoretically could be regulated by noncanonical Wnt signaling in HTM cells. Exogenous DKK1, a specific inhibitor for the canonical Wnt signaling pathway, or sFRP1 elevated mouse IOP to equivalent levels. CONCLUSIONS There is a canonical Wnt signaling pathway in the TM, and this canonical Wnt pathway, but not the noncanonical Wnt signaling pathway, regulates IOP.
Collapse
Affiliation(s)
- Weiming Mao
- Department of Cell Biology and Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pangas SA. Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol Reprod Dev 2012; 79:666-79. [PMID: 22847922 DOI: 10.1002/mrd.22076] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/13/2012] [Indexed: 11/08/2022]
Abstract
Genetic or environmental factors that affect the endowment of oocytes, their assembly into primordial follicles, or their subsequent entry into the growing follicle pool can disrupt reproductive function and may underlie disorders such as primary ovarian insufficiency. Mouse models have been instrumental in identifying genes important in ovarian development, and a number of genes now associated with ovarian dysfunction in women were first identified as causing reproductive defects in knockout mice. The transforming growth factor beta (TGFB) family consists of developmentally important growth factors that include the TGFBs, anti-Müllerian hormone (AMH), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factor 9 (GDF9). The ovarian primordial follicle pool is the source of oocytes in adults. Development of this pool can be grossly divided into three key processes: (1) establishment of oocytes during embryogenesis followed by (2) assembly and (3) activation of the primordial follicle. Disruptions in any of these processes may cause reproductive dysfunction. Most members of the TGFB family show pivotal roles in each of these areas. Understanding the phenotypes of various mouse models for this protein family will be directly relevant to understanding how disruptions in TGFB family signaling result in reproductive diseases in women and will present new areas for development of tailored diagnostics and interventions for infertility.
Collapse
Affiliation(s)
- Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
35
|
Liu H, Yi Q, Liao Y, Feng J, Qiu M, Tang L. Characterizing the role of mechanical signals in gene regulatory networks using Long SAGE. Gene 2012; 501:153-163. [PMID: 22525039 DOI: 10.1016/j.gene.2012.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/13/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
A systems understanding of mechanical regulation is critical for determining how cells proliferate and differentiate. To better understand the biological process in which mechanical signals regulate cells, we globally investigated the gene expression profiling via long serial analysis of gene expression (Long SAGE) in osteoblasts after exposure to mechanical stretching. The analysis showed that the differentially expressed genes were related with many physiological processes, including signal transduction, cell proliferation and apoptosis. Several genes that were seldom or never studied in osteoblasts have been found in this study. We further analyzed the signal pathways and provided gene regulatory networks activated by mechanical signals. Many changed genes in our data were contributed to ECM-integrin-FAK mediated pathway and mainly influenced actin-cytoskeleton dynamic remodeling, cell proliferation and differentiation. We also provided evidence supporting the hypothesis that endoplasmic reticulum and mitochondrion were combined to dedicate to calcium regulation. Taken together, our experiments provided a systemic view on biological processes and mechanotransduction network in osteoblasts, suggesting that mechanical signals regulate osteoblast through a greater diversity of interactions and pathways than previously appreciated.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | |
Collapse
|
36
|
Mao W, Rubin JS, Anoruo N, Wordinger RJ, Clark AF. SFRP1 promoter methylation and expression in human trabecular meshwork cells. Exp Eye Res 2012; 97:130-6. [PMID: 22248913 DOI: 10.1016/j.exer.2012.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/21/2011] [Accepted: 01/03/2012] [Indexed: 11/15/2022]
Abstract
Glaucoma is a leading cause of blindness worldwide. In primary open angle glaucoma (POAG) patients, impaired trabecular meshwork (TM) function results in elevated intraocular pressure (IOP), which is the primary risk factor of developing optic neuropathy. Our previous studies showed that Wnt signaling pathway components are expressed in the human TM (HTM), and the Wnt inhibitor, secreted frizzled-related protein 1 (SFRP1) is elevated in the glaucomatous TM (GTM). Elevated SFRP1 increased IOP in mice eyes and in perfusion cultured anterior segments of the human eye. However, the cause of elevated SFRP1 in the GTM remains unknown. Promoter methylation plays a key role in regulating SFRP1 expression in certain cancer cells. In light of this, we studied whether promoter methylation is also involved in SFRP1 differential expression in the TM. Two normal TM (NTM) and two GTM cell strains were cultured for an additional 7 days after they were confluent. RNA and genomic DNA (gDNA) were isolated simultaneously to compare SFRP1 expression levels by quantitative PCR (qPCR) and to determine SFRP1 promoter methylation status by bisulfite conversion and methylation-sensitive high resolution melting analysis (MS-HRM). To study whether DNA methylation inhibitors affect SFRP1 expression in TM cells, the four TM cell strains were treated with or without 2 μM 5-aza-2'-deoxycytidine (AZA-dC) for 4 days. RNA was isolated to compare SFRP1 expression by qPCR. In addition, a human cancer cell line, NCI-H460, was used as a positive control. We found that the two GTM cell strains had significantly higher expression levels of SFRP1 than the two NTM cell strains. However, the SFRP1 promoter of all four TM cell strains was unmethylated. In addition, AZA-dC treatment did not affect SFRP1 expression in any of the TM cell strains (n = 3, p > 0.05). In contrast, the hypermethylated SFRP1 promoter of NCI-H460 cells was partially demethylated by the same treatment. AZA-dC treatment also elevated SFRP1 expression by approximately two fold in NCI-H460 cells (n = 3, p < 0.01). Our data suggest that the differential expression of SFRP1 in HTM cells is not due to differential promoter methylation.
Collapse
Affiliation(s)
- Weiming Mao
- North Texas Eye Research Institute, Department of Cell Biology & Anatomy, University of North Texas Health Science Center, CBH440, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
37
|
Sethi A, Jain A, Zode GS, Wordinger RJ, Clark AF. Role of TGFbeta/Smad signaling in gremlin induction of human trabecular meshwork extracellular matrix proteins. Invest Ophthalmol Vis Sci 2011; 52:5251-9. [PMID: 21642622 DOI: 10.1167/iovs.11-7587] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The bone morphogenic protein (BMP) antagonist gremlin is elevated in glaucomatous trabecular meshwork (TM) cells and tissues and elevates intraocular pressure (IOP). Gremlin also blocks BMP4 inhibition of transforming growth factor (TGF)-β2 induction of TM extracellular matrix (ECM) proteins. The purpose of this study was to determine whether Gremlin regulates ECM proteins in cultured human TM cells. METHODS Human TM cells were treated with recombinant gremlin to determine the effects on ECM gene and protein expression. Expression of the ECM genes FN, COL1, PAI1, and ELN was examined in cultured human TM cells by quantitative RT-PCR and Western immunoblot analysis. TM cells were pretreated with TGFBR inhibitors (LY364947, SB431542 or TGFBR1/TGFB2 siRNAs), inhibitors of the Smad signaling pathway (SIS3 or Smad2/3/4 siRNAs), or CTGF siRNA to identify the signaling pathway(s) involved in gremlin induction of ECM gene and protein expression. RESULTS All ECM genes analyzed (FN, COL1, PAI1, and ELN) were induced by gremlin. This gremlin induction of ECM genes and protein expression was blocked by inhibitors of TGFBR and the canonical Smad2/3/4 and CTGF signaling pathways. CONCLUSIONS Gremlin employs canonical TGFβ2/Smad signaling to induce ECM genes and proteins in cultured human TM cells. Gremlin also induces both TGFβ2 and CTGF, which can act downstream to mediate some of these ECM changes in TM cells.
Collapse
Affiliation(s)
- Anirudh Sethi
- Department of Cell Biology and Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | |
Collapse
|
38
|
Kupfer SS, Anderson JR, Hooker S, Skol A, Kittles RA, Keku TO, Sandler RS, Ellis NA. Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology 2010; 139:1677-85, 1685.e1-8. [PMID: 20659471 PMCID: PMC3721963 DOI: 10.1053/j.gastro.2010.07.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 07/16/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies of colorectal cancer (CRC) have identified risk variants in 10 genomic regions. None of these studies included African Americans, who have the highest incidence and mortality from CRC in the United States. For the 10 genomic regions, we performed an association study of Americans of African and European descent. METHODS We genotyped 22 single nucleotide polymorphisms (SNPs) in DNA samples from 1194 patients with CRC (795 African Americans and 399 European Americans) and 1352 controls (985 African Americans and 367 European Americans). At chromosome 8q24.21 region 3, we analyzed 6 SNPs from 1000 African American cases and 1393 controls. Association testing was done using multivariate logistic regression controlling for ancestry, age, and sex. RESULTS Among African Americans, the SNP rs6983267 at 8q24.21 was not associated with CRC (odds ratio, 1.18; P = .12); instead, the 8q24.21 SNP rs7014346 (odds ratio, 1.15; P = .03) was associated with CRC in this population. At 15q13.3, rs10318 was associated with CRC in both populations. At 11q23.1, rs3802842 was significantly associated with rectal cancer risk only among African Americans (odds ratio, 1.34; P = .01); this observation was made in previous studies. Among European Americans, SNPs at 8q24.21, 11q23.1, and 16q22.1 were significantly associated with CRC, and the odds ratios were of the same magnitude and direction for all SNPs tested, consistent with previously published studies. In contrast, in African Americans, the opposite allele of rs10795668 at 10p14 was associated with colorectal cancer (odds ratio, 1.35; P = .04), and altogether the odds ratios were in the opposite direction for 9 of the 22 SNPs tested. CONCLUSIONS There is genetic heterogeneity in CRC associations in Americans of African versus European descent.
Collapse
Affiliation(s)
- Sonia S. Kupfer
- Department of Medicine, Section of Gastroenterology University of Chicago Medical Center, Chicago, IL
| | - Jeffrey R. Anderson
- Department of Medicine, Section of Gastroenterology University of Chicago Medical Center, Chicago, IL
| | - Stanley Hooker
- Department of Medicine, Section of Genetic Medicine University of Chicago Medical Center, Chicago, IL
| | - Andrew Skol
- Department of Medicine, Section of Genetic Medicine University of Chicago Medical Center, Chicago, IL
| | - Rick A. Kittles
- Department of Medicine, Section of Genetic Medicine University of Chicago Medical Center, Chicago, IL
| | - Temitope O. Keku
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC
| | - Robert S. Sandler
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC
| | - Nathan A. Ellis
- Department of Medicine, Section of Gastroenterology University of Chicago Medical Center, Chicago, IL
| |
Collapse
|
39
|
Animal models of typical heterotopic ossification. J Biomed Biotechnol 2010; 2011:309287. [PMID: 20981294 PMCID: PMC2963134 DOI: 10.1155/2011/309287] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/28/2010] [Indexed: 01/07/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of
marrow-containing bone outside of the normal skeleton. Acquired HO
following traumatic events is a common and costly clinical
complication. In contrast, hereditary HO is rarer, progressive,
and life-threatening. Substantial effort has been directed towards
understanding the mechanisms underlying HO and finding efficient
treatments. However, one crucial limiting factor has been the lack
of relevant animal models. This article reviews the major
currently available animal models, summarizes some of the insights
gained from these studies, and discusses the potential future
challenges and directions in HO research.
Collapse
|
40
|
Fu YP, Hallman DM, Gonzalez VH, Klein BEK, Klein R, Hayes MG, Cox NJ, Bell GI, Hanis CL. Identification of Diabetic Retinopathy Genes through a Genome-Wide Association Study among Mexican-Americans from Starr County, Texas. J Ophthalmol 2010; 2010:861291. [PMID: 20871662 PMCID: PMC2939442 DOI: 10.1155/2010/861291] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/22/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
To identify genetic loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas, completed physical examinations including fundus photography for diabetic retinopathy grading. Individuals with moderate-to-severe non-proliferative and proliferative diabetic retinopathy were defined as cases. Direct genotyping was performed using the Affymetrix GeneChip Human Mapping 100 K Set, and SNPs passing quality control criteria were used to impute markers available in HapMap Phase III Mexican population (MXL) in Los Angeles, California. Two directly genotyped markers were associated with severe diabetic retinopathy at a P-value less than .0001: SNP rs2300782 (P = 6.04 × 10(-5)) mapped to an intron region of CAMK4 (calcium/calmodulin-dependent protein kinase IV) on chromosome 5, and SNP rs10519765 (P = 6.21 × 10(-5)) on chromosomal 15q13 in the FMN1 (formin 1) gene. Using well-imputed markers based on the HapMap III Mexican population, we identified an additional 32 SNPs located in 11 chromosomal regions with nominal association with severe diabetic retinopathy at P-value less than .0001. None of these markers were located in traditional candidate genes for diabetic retinopathy or diabetes itself. However, these signals implicate genes involved in inflammation, oxidative stress and cell adhesion for the development and progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Yi-Ping Fu
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, P.O. Box 20186, Houston, TX 77225, USA
| | - D. Michael Hallman
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, P.O. Box 20186, Houston, TX 77225, USA
| | | | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - M. Geoffrey Hayes
- Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nancy J. Cox
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Graeme I. Bell
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Craig L. Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, P.O. Box 20186, Houston, TX 77225, USA
| |
Collapse
|
41
|
Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys 2010; 56:59-71. [PMID: 19949890 DOI: 10.1007/s12013-009-9071-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study is to set up single molecular secreted phosphoprotein 1 (SPP1) upstream invasive network of lung adenocarcinoma. This paper proposed an integrated method based on linear programming and a decomposition procedure with integrated analysis of the significant function cluster using Kappa statistics and fuzzy heuristic clustering. Our study proved that only modules appearing in lung adenocarcinoma include cytokine module (CXCL13, GREM1_2 inhibition), cell adhesion module (COL11A1_2 activation; CDH3 inhibition), and receptor binding module (NMU activation; CXCL13, GREM1_2 inhibition), which increase the invasion of cancer cell. We compared skeletal development, signal, biological regulation, sequence variant modules between human normal adjacent tissues and lung adenocarcinoma. SPP1 skeletal development module appears in human normal adjacent tissues (COL11A1_1 activation; COL10A1 inhibition), whereas in lung adenocarcinoma (COL11A1_2, COL1A2 activation); signal module appears in human normal adjacent tissues (COL11A1_1, CXCL13, MMP11, SPINK1 activation; COL10A1, COL3A1 inhibition), whereas in lung adenocarcinoma (COL11A1_2, COL1A2, MMP12 activation; CDH3, CXCL13, GREM1_2, MMP11, SPINK1 inhibition); biological regulation module appears in human normal adjacent tissues (CXCL13, MKI67, PYCR1 activation; NEK2, SPDEF, TOP2A_2, TOX3_1 inhibition), whereas in lung adenocarcinoma (HMGB3, MKI67, NMU, PYCR1, TOX3_2 activation; CXCL13, SPDEF, TOP2A_2 inhibition); sequence variant module appears in human normal adjacent tissues (COL11A1_1, MKI67, MMP11 activation; ASPM, COL10A1, COL3A1, NEK2, TMPRSS4, TOP2A_2 inhibition), whereas in lung adenocarcinoma (COL11A1_2, COL1A2, HMMR, MKI67, MMP12 activation; ABCC3, ASPM, CDH3, MMP11, TOP2A_2 inhibition). It can be deduced that modules above in human normal adjacent tissues reflect the invasive inhibition of normal cells, whereas in lung adenocarcinoma increase the invasion of cancer cell. Our study of SPP1 upstream invasive network may be useful to identify novel and potentially targets for prognosis and therapy of lung adenocarcinoma.
Collapse
|
42
|
Turgut F, Bolton WK. Potential new therapeutic agents for diabetic kidney disease. Am J Kidney Dis 2010; 55:928-40. [PMID: 20138415 DOI: 10.1053/j.ajkd.2009.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/12/2009] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease, and both the incidence and prevalence of diabetic nephropathy continue to increase. Currently, various treatment regimens and combinations of therapies provide only partial renoprotection. It is obvious that new approaches are desperately needed to retard the progression of diabetic nephropathy. Recently, a number of new agents have been described that have the potential to delay the progression of diabetic kidney disease and minimize the growing burden of end-stage renal disease. These include inhibitors and breakers of advanced glycation end products, receptor antagonists for advanced glycation end products, protein kinase C inhibitors, NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitors, glycosaminoglycans, endothelin receptor antagonists, antifibrotic agents, and growth factor inhibitors. This review addresses these promising new therapeutic agents for delaying the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Faruk Turgut
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
43
|
Zode GS, Clark AF, Wordinger RJ. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation. Glia 2009; 57:755-66. [PMID: 19031438 DOI: 10.1002/glia.20803] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The characteristic cupping of the optic nerve head (ONH) in glaucoma is associated with elevated TGF-beta2 and increased synthesis and deposition of extracellular matrix (ECM) proteins. In addition to TGF-beta2, the human ONH also expresses bone morphogenetic proteins (BMPs) and BMP receptors, which are members of the TGF-beta superfamily. We examined the potential effects of BMP4 and the BMP antagonist gremlin on TGF-beta2 induction of ECM proteins in ONH cells. BMP-4 dose dependently inhibited TGF-beta2-induced fibronectin (FN) and PAI-1 expression in ONH astrocytes and lamina cribrosa (LC) cells and also reduced TGF-beta2 stimulation of collagen I, collagen VI, and elastin. Addition of gremlin blocked this BMP-4 response, increasing cellular and secreted FN as well as PAI-1 levels in both cell types. Gremlin was expressed in ONH tissues and ONH cells, and gremlin protein levels were significantly increased in the LC region of human glaucomatous ONH tissues. Interestingly, recombinant gremlin dose dependently increased ECM protein expression in cultured ONH astrocytes and LC cells. Gremlin stimulation of ECM required activation of TGF-beta receptor and R-Smad3. TGF-beta2 increased gremlin mRNA expression and protein levels in ONH cells. Inhibition of either the type I TGF-beta receptor or Smad3 phosphorylation blocked TGF-beta2-induced gremlin expression. In conclusion, BMP4 blocked the TGF-beta2 induction of ECM proteins in ONH cells. The BMP antagonist gremlin reversed this inhibition, allowing TGF-beta2 stimulation of ECM synthesis. Increased expression of gremlin in the glaucomatous ONH may further exacerbate TGF-beta2 effects on ONH ECM metabolism by inhibiting BMP-4 antagonism of TGF-beta2 signaling. Modulation of the ECM via gremlin provides a novel therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Gulab S Zode
- Department of Cell Biology and Genetics, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA
| | | | | |
Collapse
|
44
|
Zhang Y, Zhang Q. Bone morphogenetic protein-7 and Gremlin: New emerging therapeutic targets for diabetic nephropathy. Biochem Biophys Res Commun 2009; 383:1-3. [PMID: 19303394 DOI: 10.1016/j.bbrc.2009.03.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/16/2009] [Indexed: 01/14/2023]
Abstract
Specific therapies of diabetic nephropathy (DN) are not available, and current treatment strategies are limited to management of blood glucose levels and control of hypertension. The re-activation of developmental programs in DN suggests new potential therapeutic targets. Bone morphogenetic protein-7 (BMP-7) and its antagonist, Gremlin is revealed to be involved in renal development and diabetic nephropathy. This article reviews the changes of BMP-7 and Gremlin in diabetic kidney, the protective effects on diabetic nephropathy when targeting BMP-7 and Gremlin, and the possible mechanism. The reorganization of the re-activation of Gremlin and BMP-7 in diabetic kidney had shed light on the identification of novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, PR China.
| | | |
Collapse
|