1
|
Khadka NK, Haemmerle D, Davis PH, Mainali L. Mechanical Properties of Eye Lens Cortical and Nuclear Membranes and the Whole Lens. Invest Ophthalmol Vis Sci 2025; 66:27. [PMID: 39792072 PMCID: PMC11730892 DOI: 10.1167/iovs.66.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses. Methods The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface. Topographical images and force curves for the CMs and NMs were obtained via atomic force microscopy (AFM) in a fluid cell. Whole bovine lenses were affixed to custom-built glass Petri dishes, and an AFM was used to obtain force curves. Force curves were analyzed to estimate the breakthrough force, membrane stiffness (KA and Em), and lens stiffness (EL). Results The NMs containing CBDs exhibited significantly lower breakthrough force, KA, and Em than the CMs without CBDs. The Em values for CMs and NMs were significantly higher than the EL for the whole lens. Conclusions The significantly higher stiffness of the CM and NM compared to the stiffness of the whole lens suggests that slight modulation in CM and NM composition may play a crucial role in altering the overall lens stiffness. Furthermore, the NMs containing CBDs were less stiff than CMs without CBDs, suggesting that CBDs decrease lens membrane stiffness and possibly protect against lens hardening and presbyopia.
Collapse
Affiliation(s)
- Nawal K. Khadka
- Department of Physics, Boise State University, Boise, Idaho, United States
| | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, Idaho, United States
| | - Paul H. Davis
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, United States
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, Idaho, United States
- Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho, United States
| |
Collapse
|
2
|
Mainali L, Raguz M, Subczynski WK. Quantification of Age-Related Changes in the Lateral Organization of the Lipid Portion of the Intact Membranes Isolated from the Left and Right Eye Lenses of the Same Human Donor. MEMBRANES 2023; 13:189. [PMID: 36837692 PMCID: PMC9958954 DOI: 10.3390/membranes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The continuous wave EPR spin-labeling method was used to evaluate age-related changes in the amounts of phospholipids (PLs) and cholesterol (Chol) in domains present in intact, cortical, and nuclear fiber cell plasma membranes isolated separately from the left and right eye lenses of the same human donor. The relative amounts of boundary plus trapped PLs were evaluated with the PL analog 12-doxylstearic acid spin label (12-SASL) and the relative amounts of trapped Chol with the Chol analog androstane spin label (ASL). The donors ranged in age from 15 to 70 years. Both the left and right eye lenses from donors aged 60, 65, and 70 years had nuclear cataracts; additionally, the right eye lens only of the 60-year-old donor had a cortical cataract. In transparent lenses, the relative amounts of boundary plus trapped PLs increase monotonously with donor age, and, at all ages, this amount was greater in nuclear compared with cortical membranes. Moreover, in transparent lenses, the relative amount of trapped Chol increases with age in nuclear membranes. However, the EPR spectrum of ASL from cortical membranes of 15- to 60-year-old donors shows only the weakly immobilized component assigned to ASL in the bulk plus Chol bilayer domain. Only the cortical membranes of 61- to 70-year-old donors contain both weakly and strongly immobilized components. The strongly immobilized component is assigned to ASL in trapped lipids. We speculate that the age of 60 years may be considered as a "threshold" for appearance of trapped lipids in cortical membranes. The relative amounts of boundary plus trapped PLs in lenses with nuclear cataracts is lower than that predicted from the tendency of the age-dependent increase observed for transparent lenses. The differences in amounts of lipids in the indicated left and right eye domains of each donor are smaller than the differences in single donors of a similar age.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | | |
Collapse
|
3
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
4
|
Timsina R, Wellisch S, Haemmerle D, Mainali L. Binding of Alpha-Crystallin to Cortical and Nuclear Lens Lipid Membranes Derived from a Single Lens. Int J Mol Sci 2022; 23:ijms231911295. [PMID: 36232595 PMCID: PMC9570235 DOI: 10.3390/ijms231911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens. Compared to CMs, NMs have a higher percentage of membrane surface occupied by α-crystallin and binding affinity, correlating with less mobility and more order below and on the surface of NMs. α-Crystallin binding to CM and NM decreases mobility with no significant change in order and hydrophobicity below and on the surface of membranes. Our results suggest that α-crystallin mainly binds on the surface of bovine CM and NM and such surface binding of α-crystallin to membranes in clear and young lenses may play a beneficial role in membrane stability. However, with decreased cholesterol content within the CM, which mimics the decreased cholesterol content in the cataractous lens membrane, α-crystallin binding increases the hydrophobicity below the membrane surface, indicating that α-crystallin binding forms a hydrophobic barrier for the passage of polar molecules, supporting the barrier hypothesis in developing cataracts.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Correspondence: ; Tel.: +1-(208)-426-4003
| |
Collapse
|
5
|
Subczynski WK, Widomska J, Raguz M, Pasenkiewicz-Gierula M. Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics. OXYGEN (BASEL, SWITZERLAND) 2022; 2:295-316. [PMID: 36852103 PMCID: PMC9965258 DOI: 10.3390/oxygen2030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.
Collapse
Affiliation(s)
- Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, United States
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | | |
Collapse
|
6
|
Subczynski WK, Raguz M, Widomska J. Multilamellar Liposomes as a Model for Biological Membranes: Saturation Recovery EPR Spin-Labeling Studies. MEMBRANES 2022; 12:657. [PMID: 35877860 PMCID: PMC9321980 DOI: 10.3390/membranes12070657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
EPR spin labeling has been used extensively to study lipids in model membranes to understand their structures and dynamics in biological membranes. The lipid multilamellar liposomes, which are the most commonly used biological membrane model, were prepared using film deposition methods and investigated with the continuous wave EPR technique (T2-sensitive spin-labeling methods). These investigations provided knowledge about the orientation of lipids, their rotational and lateral diffusion, and their rate of flip-flop between bilayer leaflets, as well as profiles of membrane hydrophobicity, and are reviewed in many papers and book chapters. In the early 1980s, the saturation recovery EPR technique was introduced to membrane studies. Numerous T1-sensitive spin-label methods were developed to obtain detailed information about the three-dimensional dynamic membrane structure. T1-sensitive methods are advantageous over T2-sensitive methods because the T1 of spin labels (1-10 μs) is 10 to 1000 times longer than the T2, which allows for studies of membrane dynamics in a longer time-space scale. These investigations used multilamellar liposomes also prepared using the rapid solvent exchange method. Here, we review works in which saturation recovery EPR spin-labeling methods were applied to investigate the properties of multilamellar lipid liposomes, and we discuss their relationships to the properties of lipids in biological membranes.
Collapse
Affiliation(s)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20 093 Lublin, Poland;
| |
Collapse
|
7
|
Khadka NK, Mortimer MF, Marosvari M, Timsina R, Mainali L. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Exp Eye Res 2022; 220:109131. [PMID: 35636489 PMCID: PMC10131281 DOI: 10.1016/j.exer.2022.109131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | | | - Mason Marosvari
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
8
|
Alpha-Crystallin-Membrane Association Modulated by Phospholipid Acyl Chain Length and Degree of Unsaturation. MEMBRANES 2022; 12:membranes12050455. [PMID: 35629781 PMCID: PMC9147264 DOI: 10.3390/membranes12050455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
α-crystallin-membrane association increases with age and cataracts, with the primary association site of α-crystallin being phospholipids. However, it is unclear if phospholipids’ acyl chain length and degree of unsaturation influence α-crystallin association. We used the electron paramagnetic resonance approach to investigate the association of α-crystallin with phosphatidylcholine (PC) membranes of different acyl chain lengths and degrees of unsaturation and with and without cholesterol (Chol). The association constant (Ka) of α-crystallin follows the trends, i.e., Ka (14:0−14:0 PC) > Ka (18:0−18:1 PC) > Ka (18:1−18:1 PC) ≈ Ka (16:0−20:4 PC) where the presence of Chol decreases Ka for all membranes. With an increase in α-crystallin concentration, the saturated and monounsaturated membranes rapidly become more immobilized near the headgroup regions than the polyunsaturated membranes. Our results directly correlate the mobility and order near the headgroup regions of the membrane with the Ka, with the less mobile and more ordered membrane having substantially higher Ka. Furthermore, our results show that the hydrophobicity near the headgroup regions of the membrane increases with the α-crystallin association, indicating that the α-crystallin-membrane association forms the hydrophobic barrier to the transport of polar and ionic molecules, supporting the barrier hypothesis in cataract development.
Collapse
|
9
|
Timsina R, Trossi-Torres G, Thieme J, O'Dell M, Khadka NK, Mainali L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes. Curr Eye Res 2022; 47:843-853. [PMID: 35179407 DOI: 10.1080/02713683.2022.2040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This research aims to probe the interaction of α-crystallin with a model of human, porcine, and mouse lens-lipid membranes. METHODS Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes with 0 to 60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin association with these membranes were investigated using the electron paramagnetic resonance spin-labeling approach. RESULTS With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied (MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these membranes. The different MMSO and Ka for different model lens-lipid membranes with different rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity near the surface of these membranes suggested that the lipid composition also modulates α-crystallin association with membranes. Despite different lipid compositions, complete inhibition of α-crystallin association with model lens-lipid membranes was observed at saturating Chol content forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of these membranes. The decreased mobility parameter with increased α-crystallin concentration suggested that membranes near the surface became less mobile due to α-crystallin association. The decreased mobility parameter and increased maximum splitting with increased Chol content suggested that membranes became less mobile and more ordered near the surface with increased Chol content. CONCLUSIONS This study suggested that the interaction of α-crystallin with model lens-lipid membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-crystallin association with lens membrane, likely increase α-crystallin concentration in lens cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens cytoplasm homeostasis.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Jackson Thieme
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA.,Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
10
|
Subczynski WK, Widomska J, Stein N, Swartz HM. Factors determining barrier properties to oxygen transport across model and cell plasma membranes based on EPR spin-label oximetry. APPLIED MAGNETIC RESONANCE 2021; 52:1237-1260. [PMID: 36267674 PMCID: PMC9581439 DOI: 10.1007/s00723-021-01412-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/01/2023]
Abstract
This review is motivated by the exciting new area of radiation therapy using a phenomenon termed FLASH in which oxygen is thought to have a central role. Well-established principles of radiation biology and physics suggest that if oxygen has a strong role, it should be the level at the DNA. The key aspect discussed is the rate of oxygen diffusion. If oxygen freely diffuses into cells and rapidly equilibrates, then measurements in the extracellular compartment would enable FLASH to be investigated using existing methodologies that can readily measure oxygen in the extracellular compartment. EPR spin-label oximetry allows evaluation of the oxygen permeability coefficient across lipid bilayer membranes. It is established that simple fluid phase lipid bilayers are not barriers to oxygen transport. However, further investigations indicate that many physical and chemical (compositional) factor can significantly decrease this permeation. In biological cell plasma membranes, the lipid bilayer forms the matrix in which integral membrane proteins are immersed, changing organization and properties of the lipid matrix. To evaluate oxygen permeability coefficients across these complex membranes, oxygen permeation across all membrane domains and components must be considered. In this review, we consider many of the factors that affect (decrease) oxygen permeation across cell plasma membranes. Finally, we address the question, can the plasma membrane of the cell form a barrier to the free diffusion of oxygen into the cell interior? If there is a barrier then this must be considered in the investigations of the role of oxygen in FLASH.
Collapse
Affiliation(s)
- Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, Lublin, Poland
| | - Natalia Stein
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Harold M. Swartz
- Department of Radiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA
| |
Collapse
|
11
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
12
|
Timsina R, Trossi-Torres G, O'Dell M, Khadka NK, Mainali L. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. Exp Eye Res 2021; 206:108544. [PMID: 33744256 PMCID: PMC8087645 DOI: 10.1016/j.exer.2021.108544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens's fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles (SUVs) of PC, SM*, and PS with 0, 23, 33, 50, and 60 mol% Chol and PE* with 0, 9, and 33 mol% Chol were prepared using the rapid solvent exchange method followed by probe-tip sonication. The 1 mol% CSL spin-labels used during SUVs preparation distribute uniformly within the Chol/PL membrane, enabling the investigation of Chol and CBDs' role on α-crystallin binding to the membrane. For PC, SM*, and PS membranes, the binding affinity (Ka) and the maximum percentage of membrane surface occupied (MMSO) by α-crystallin decreased with an increase in Chol concentration. The Ka and MMSO became zero at 50 mol% Chol for PC and 60 mol% Chol for SM* membranes, representing that complete inhibition of α-crystallin binding was possible before the formation of CBDs within the PC membrane but only after the formation of CBDs within the SM* membrane. The Ka and MMSO did not reach zero even at 60 mol% Chol in the PS membrane, representing CBDs at this Chol concentration were not sufficient for complete inhibition of α-crystallin binding to the PS membrane. Both the Ka and MMSO were zero at 0, 9, and 33 mol% Chol in the PE* membrane, representing no binding of α-crystallin to the PE* membrane with and without Chol. The mobility parameter profiles decreased with an increase in α-crystallin binding to the membranes; however, the decrease was more pronounced for the membrane with lower Chol concentration. These results imply that the membranes become more immobilized near the headgroup regions with an increase in α-crystallin binding; however, the Chol antagonizes the capacity of α-crystallin to decrease the mobility near the headgroup regions of the membranes. The maximum splitting profiles remained the same with an increase in α-crystallin concentration, but there was an increase in the maximum splitting with an increase in the Chol concentration in the membranes. It implies that membrane order near the headgroup regions does not change with an increase in α-crystallin concentration but increases with an increase in Chol concentration in the membrane. Based on our data, we hypothesize that the Chol and CBDs decrease hydrophobicity (increase polarity) near the membrane surface, inhibiting the hydrophobic binding of α-crystallin to the membranes. Thus, our data suggest that Chol and CBDs play a positive physiological role by preventing α-crystallin binding to lens membranes and possibly protecting against cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | | | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, 83725, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
13
|
Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L. Mechanical properties of the high cholesterol-containing membrane: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183625. [PMID: 33891910 DOI: 10.1016/j.bbamem.2021.183625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Erica Rowe
- Department of Biology, Boise State University, Boise, ID, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
14
|
Stein N, Subczynski WK. Differences in the properties of porcine cortical and nuclear fiber cell plasma membranes revealed by saturation recovery EPR spin labeling measurements. Exp Eye Res 2021; 206:108536. [PMID: 33716012 DOI: 10.1016/j.exer.2021.108536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Eye lens membranes are complex biological samples. They consist of a variety of lipids that form the lipid bilayer matrix, integral proteins embedded into the lipid bilayer, and peripheral proteins. This molecular diversity in membrane composition induces formation of lipid domains with particular physical properties that are responsible for the maintenance of proper membrane functions. These domains can be, and have been, effectively described in terms of the rotational diffusion of lipid spin labels and oxygen collision with spin labels using the saturation recovery (SR) electron paramagnetic resonance method and, now, using stretched exponential function for the analysis of SR signals. Here, we report the application of the stretched exponential function analysis of SR electron paramagnetic resonance signals coming from cholesterol analog, androstane spin label (ASL) in the lipid bilayer portion of intact fiber cell plasma membranes (IMs) isolated from the cortex and nucleus of porcine eye lenses. Further, we compare the properties of these IMs with model lens lipid membranes (LLMs) derived from the total lipids extracted from cortical and nuclear IMs. With this approach, the IM can be characterized by the continuous probability density distribution of the spin-lattice relaxation rates associated with the rotational diffusion of a spin label, and by the distribution of the oxygen transport parameter within the IM (i.e., the collision rate of molecular oxygen with the spin label). We found that the cortical and nuclear LLMs possess very different, albeit homogenous, spin lattice relaxation rates due to the rotational diffusion of ASL, indicating that the local rigidity around the spin label in nuclear LLMs is considerably greater than that in cortical LLMs. However, the oxygen transport parameter around the spin label is very similar and slightly heterogenous for LLMs from both sources. This heterogeneity was previously missed when distinct exponential analysis was used. The spin lattice relaxation rates due to either the rotational diffusion of ASL or the oxygen collision with the spin label in nuclear IMs have slower values and wider distributions compared with those of cortical IMs. From this evidence, we conclude that lipids in nuclear IMs are less fluid and more heterogeneous than those in cortical membranes. Additionally, a comparison of properties of IMs with corresponding LLMs, and lipid and protein composition analysis, allow us to conclude that the decreased lipid-to-protein ratio not only induces greater rigidity of nuclear IMs, but also creates domains with the considerably decreased and variable oxygen accessibility. The advantages and disadvantages of this method, as well as its use for the cluster analysis, are discussed.
Collapse
Affiliation(s)
- Natalia Stein
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
15
|
Stein N, Subczynski WK. Oxygen Transport Parameter in Plasma Membrane of Eye Lens Fiber Cells by Saturation Recovery EPR. APPLIED MAGNETIC RESONANCE 2021; 52:61-80. [PMID: 33776217 PMCID: PMC7992188 DOI: 10.1007/s00723-020-01237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Indexed: 06/02/2023]
Abstract
A probability distribution of rate constants contained within an exponential-like saturation recovery (SR) electron paramagnetic resonance signal can be constructed using stretched exponential function fitting parameters. Previously (Stein et al. Appl. Magn. Reson. 2019.), application of this method was limited to the case where only one relaxation process, namely spin-lattice relaxations due to the rotational diffusion of the spin labels in the intact eye-lens membranes, contributed to an exponential-like SR signal. These conditions were achieved for thoroughly deoxygenated samples. Here, the case is described where the second relaxation process, namely Heisenberg exchange between the spin label and molecular oxygen that occurs during bimolecular collisions, contributes to the decay of SR signals. We have further developed the theory for application of stretched exponential function to analyze SR signals involving these two processes. This new approach allows separation of stretched exponential parameters, namely characteristic stretched rates and heterogeneity parameters for both processes. Knowing these parameters allowed us to separately construct the probability distributions of spin-lattice relaxation rates determined by the rotational diffusion of spin labels and the distribution of relaxations induced strictly by collisions with molecular oxygen. The later distribution is determined by the distribution of oxygen diffusion concentration products within the membrane, which forms a sensitive new way to describe membrane fluidity and heterogeneity. This method was validated in silico and by fitting SR signals from spin-labeled intact nuclear fiber cell plasma membranes extracted from porcine eye lenses equilibrated with different fractions of air.
Collapse
Affiliation(s)
- N. Stein
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - W. K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
16
|
Raguz M, Kumar SN, Zareba M, Ilic N, Mainali L, Subczynski WK. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Cell Biochem Biophys 2019; 77:309-317. [PMID: 31625023 DOI: 10.1007/s12013-019-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. This high Chol content forms pure Chol bilayer domains (CBDs) and Chol crystals in model membranes and membranes formed from the total lipid extracts from human lenses. CBDs have been detected using electron paramagnetic resonance (EPR) spin-labeling approaches. Here, we confirm the presence of CBDs in giant unilamellar vesicles prepared using the electroformation method from Chol/1-palmitoyl-2-oleoylphosphocholine and Chol/distearoylphosphatidylcholine mixtures. Confocal microscopy experiments using phospholipid (PL) analog (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid) and cholesterol analog fluorescent probes (23-(dipyrrometheneboron difluoride)-24-norcholesterol) were performed, allowing us to make three major conclusions: (1) In all membranes with a Chol/PL mixing ratio (expressed as a molar ratio) >2, pure CBDs were formed within the bulk PL bilayer saturated with Chol. (2) CBDs were present as the pure Chol bilayer and not as separate patches of Chol monolayers in each leaflet of the PL bilayer. (3) CBDs, presented as single large domains, were always located at the top of giant unilamellar vesicles, independent of the change in sample orientation (right-side-up/upside-down). Results obtained with confocal microscopy and fluorescent Chol and PL analogs, combined with those obtained using EPR and spin-labeled Chol and PL analogs, contribute to the understanding of the organization of lipids in the fiber cell plasma membranes of the human eye lens.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia. .,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Suresh N Kumar
- Department of Pathology, CRI Imaging Core, Translational and Biomedical Research Center, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Mariusz Zareba
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology, Medical College of Wisconsin Eye Institute, Milwaukee, WI, USA
| | - Nada Ilic
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physics, Boise State University, 1910 University Drive, Boise, Idaho, 83725, USA
| | | |
Collapse
|
17
|
Stein N, Mainali L, Hyde JS, Subczynski WK. Characterization of the distribution of spin-lattice relaxation rates of lipid spin labels in fiber cell plasma membranes of eye lenses with a stretched-exponential function. APPLIED MAGNETIC RESONANCE 2019; 50:903-918. [PMID: 31244509 PMCID: PMC6594395 DOI: 10.1007/s00723-019-01119-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/19/2019] [Indexed: 06/02/2023]
Abstract
The stretched exponential function (SEF) was used to analyze and interpret saturation recovery (SR) electron paramagnetic resonance (EPR) data obtained from spin-labeled porcine eye-lens membranes. This function has two fitting parameters: the characteristic spin-lattice relaxation rate (T 1str -1) and the stretching parameter (β), which ranges between zero and one. When β = 1, the function is a single exponential. It is assumed that the SEF arises from a distribution of single exponential functions, each described by a T 1 value. Because T 1 -1s are determined primarily by the rotational diffusion of spin labels, they are a measure of membrane fluidity. Since β describes the distribution of T 1 -1s, it can be interpreted as a measure of membrane heterogeneity. The SEF was used to analyze SR data obtained from intact cortical and nuclear fiber cell plasma membranes extracted from the eye lenses of two-year old animals and spinlabeled with phospholipid- and cholesterol-analogs. The lipid environment sensed by these probe molecules was found to be less fluid and more heterogeneous in nuclear membranes than in cortical membranes. Parameters T 1str -1 and β were also used for a multivariate K-means cluster analysis of stretched-exponential data. This analysis indicates that SEF data can be assigned accurately to clusters in nuclear or cortical membranes. In future work, the SEF will be applied to analyze data from human eye lenses of donors with differing health histories.
Collapse
Affiliation(s)
- Natalia Stein
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - James S. Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
18
|
de M Barbosa R, Ribeiro LNM, Casadei BR, da Silva CMG, Queiróz VA, Duran N, de Araújo DR, Severino P, de Paula E. Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics 2018; 10:E231. [PMID: 30441802 PMCID: PMC6321380 DOI: 10.3390/pharmaceutics10040231] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dibucaine (DBC) is among the more potent long-acting local anesthetics (LA), and it is also one of the most toxic. Over the last decades, solid lipid nanoparticles (SLN) have been developed as promising carriers for drug delivery. In this study, SLN formulations were prepared with the aim of prolonging DBC release and reducing its toxicity. To this end, SLN composed of two different lipid matrices and prepared by two different hot-emulsion techniques (high-pressure procedure and sonication) were compared. The colloidal stability of the SLN formulations was tracked in terms of particle size (nm), polydispersity index (PDI), and zeta potential (mV) for 240 days at 4 °C; the DBC encapsulation efficiency was determined by the ultrafiltration/centrifugation method. The formulations were characterized by differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and release kinetic experiments. Finally, the in vitro cytotoxicity against 3T3 fibroblast and HaCaT cells was determined, and the in vivo analgesic action was assessed using the tail flick test in rats. Both of the homogenization procedures were found suitable to produce particles in the 200 nm range, with good shelf stability (240 days) and high DBC encapsulation efficiency (~72⁻89%). DSC results disclosed structural information on the nanoparticles, such as the lower crystallinity of the lipid core vs. the bulk lipid. EPR measurements provided evidence of DBC partitioning in both SLNs. In vitro (cytotoxicity) and in vivo (tail flick) experiments revealed that the encapsulation of DBC into nanoparticles reduces its intrinsic cytotoxicity and prolongs the anesthetic effect, respectively. These results show that the SLNs produced are safe and have great potential to extend the applications of dibucaine by enhancing its bioavailability.
Collapse
Affiliation(s)
- Raquel de M Barbosa
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
- Pharmacy Department, UNINASSAU-Natal College, Natal 59080-400, RN, Brazil.
| | - Ligia N M Ribeiro
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Bruna R Casadei
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Camila M G da Silva
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Viviane A Queiróz
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Nelson Duran
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-861, SP, Brazil.
| | - Daniele R de Araújo
- Human and Natural Sciences Center, Federal University of ABC, Santo André 09210-580, SP, Brazil.
| | - Patrícia Severino
- Institute of Technology and Research. Av. Murilo Dantas, 300, Aracaju 49032-490, SE, Brazil.
| | - Eneida de Paula
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| |
Collapse
|
19
|
Mainali L, O'Brien WJ, Subczynski WK. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes. Exp Eye Res 2018; 178:72-81. [PMID: 30278157 DOI: 10.1016/j.exer.2018.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Four purported lipid domains are expected in plasma membranes of the eye lens fiber cells. Three of these domains, namely, bulk, boundary, and trapped lipids, have been detected. The cholesterol bilayer domain (CBD), which has been detected in lens lipid membranes prepared from the total lipids extracted from fiber cell plasma membranes, has not yet been detected in intact fiber cell plasma membranes. Here, a saturation-recovery electron paramagnetic resonance spin-labeling method has been developed that allows identification of CBDs in intact fiber cell plasma membranes of eye lenses. This method is based on saturation-recovery signal measurements of the cholesterol-analog spin label located in the lipid bilayer portion of intact fiber cell membranes as a function of the partial pressure of molecular oxygen with which the samples are equilibrated. The capabilities and limitations of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses where CBDs were detected in porcine nuclear intact membranes for which CBDs were also detected in lens lipid membranes. CBDs were not detected in porcine cortical intact and lens lipid membranes. CBDs were detected in intact membranes isolated from both cortical and nuclear fiber cells of lenses obtained from human donors. The cholesterol content in fiber cell membranes of these donors was always high enough to induce the formation of CBDs in cortical as well as nuclear lens lipid membranes. The results obtained for intact membranes, when combined with those obtained for lens lipid membranes, advance our understanding of the role of high cholesterol content and CBDs in lens biology, aging, and/or cataract formation.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - William J O'Brien
- Department of Ophthalmology and Visual Science, Eye Institute, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
20
|
Mainali L, Camenisch TG, Hyde JS, Subczynski WK. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains. APPLIED MAGNETIC RESONANCE 2017; 48:1355-1373. [PMID: 29805201 PMCID: PMC5967259 DOI: 10.1007/s00723-017-0921-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Indexed: 06/02/2023]
Abstract
The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t-test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.
Collapse
Affiliation(s)
| | | | | | - Witold K. Subczynski
- Corresponding Author: Witold K. Subczynski, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: (414) 955-4038; Fax: (414) 955-6512;
| |
Collapse
|
21
|
Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations. Biophys J 2017; 112:2336-2347. [PMID: 28591606 PMCID: PMC5474842 DOI: 10.1016/j.bpj.2017.04.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention.
Collapse
|
22
|
Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr Eye Res 2017; 42:721-731. [PMID: 27791387 PMCID: PMC5409882 DOI: 10.1080/02713683.2016.1231325] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/28/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE This research was undertaken to document the changes in the organization and properties of human lens lipid membranes that occur with age. METHODS Human lens lipid membranes prepared from the total lipids extracted from clear lens cortices and nuclei of donors from age groups 0-20 and 21-40 years were investigated. An electron paramagnetic resonance technique and nitroxide spin labels (analogues of phospholipids and cholesterol) were used. RESULTS Two distinct lipid domains, the phospholipid-cholesterol domain (PCD) and the pure cholesterol bilayer domain (CBD), were detected in all investigated membranes. Profiles of the acyl chain order, fluidity, hydrophobicity, and oxygen transport parameter across discriminated coexisting lipid domains were assessed. Independent of the age-related changes in phospholipid composition, the physical properties of the PCD remained the same for all age groups and were practically identical for cortical and nuclear membranes. However, the properties of pure CBDs changed significantly with the age of the donor and were related to the size of the CBD, which increased with the age of the donor and was greater in nuclear than in cortical membranes. A more detailed analysis revealed that the size of the CBD was determined mainly by the cholesterol content in the membrane. CONCLUSIONS This paper presents data from four age groups: 0-20, 21-40, 41-60, and 61-70 years. Data from age groups 41-60 and 61-70 years were published previously. Combining the previously published data with those data obtained in the present work allowed us to show the changes in the organization of cortical and nuclear lens lipid membranes as functions of age and cholesterol. It seems that the balance between age-related changes in membrane phospholipid composition and cholesterol content plays an integral role in the regulation of cholesterol-dependent processes in fiber cell membranes and in the maintenance of fiber cell membrane homeostasis.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J. O’Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
23
|
Subczynski WK, Mainali L, Raguz M, O'Brien WJ. Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp Eye Res 2016; 156:79-86. [PMID: 26988627 DOI: 10.1016/j.exer.2016.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022]
Abstract
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development.
Collapse
Affiliation(s)
- Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes. Exp Eye Res 2015; 140:179-186. [PMID: 26384651 DOI: 10.1016/j.exer.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/29/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t-test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than the differences observed for human intact fiber cell membranes [Raguz, M. Mainali, L., O'Brien, W.J., and Subczynski, W.K. (2015) Exp. Eye Res.]. Lipids in porcine nuclear fiber cell plasma membranes were more rigid and less permeable to oxygen than in human nuclear membranes. Most likely the significant differences in the lipid composition were responsible for the observed differences.
Collapse
|
25
|
Casadei BR, De Oliveira Carvalho P, Riske KA, Barbosa RDM, De Paula E, Domingues CC. Brij detergents reveal new aspects of membrane microdomain in erythrocytes. Mol Membr Biol 2015; 31:195-205. [PMID: 25222860 DOI: 10.3109/09687688.2014.949319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.
Collapse
Affiliation(s)
- Bruna Renata Casadei
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp) , Campinas , Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Exp Eye Res 2015; 132:78-90. [PMID: 25617680 DOI: 10.1016/j.exer.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023]
Abstract
The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 44:91-102. [PMID: 25502634 DOI: 10.1007/s00249-014-1004-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Human lens-lipid membranes prepared from the total lipids extracted from clear and cataractous lens cortexes and nuclei of 61-70-year-old donors by use of a rapid solvent-exchange method were investigated. The measured cholesterol-to-phospholipid (Chol/PL) molar ratio in these membranes was 1.8 and 4.4 for cortex and nucleus of clear lenses, respectively, and 1.14 and 1.45 for cataractous lenses. Properties and organization of the lipid bilayer were investigated by use of electron paramagnetic resonance spin-labeling methods. Formation of Chol crystals was confirmed by use of differential scanning calorimetry. Pure cholesterol bilayer domains (CBDs) were formed in all the membranes investigated. It was shown that in clear lens membranes of the nucleus, Chol exists in three different environments: (1) dispersed in phospholipid bilayers (PCDs), (2) in CBDs, and (3) in Chol crystals. In clear lens membranes of the cortex, and in cortical and nuclear cataractous lens membranes, Chol crystals were not detected, because of the lower Chol content. Profiles of membrane properties (alkyl-chain order, fluidity, oxygen transport, and hydrophobicity) across the PCD were very similar for clear and cataractous membranes. Profiles of the oxygen transport parameter across the CBD were, however, different for cortical clear and cataractous membranes-the amount and size of CBDs was less in cataractous membranes. These results suggest that high Chol content, formation of CBDs, and formation of Chol crystals should not be regarded as major predispositions for the development of age-related cataracts.
Collapse
|
28
|
Mainali L, Sidabras JW, Camenisch TG, Ratke JJ, Raguz M, Hyde JS, Subczynski WK. Spin-label W-band EPR with seven-loop-six-gap resonator: Application to lens membranes derived from eyes of a single donor. APPLIED MAGNETIC RESONANCE 2014; 45:1343-1358. [PMID: 25541571 PMCID: PMC4273494 DOI: 10.1007/s00723-014-0578-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Spin-label W-band (94 GHz) EPR with a five-loop-four-gap resonator (LGR) was successfully applied to study membrane properties (L. Mainali, J.S. Hyde, W.K. Subczynski, Using spin-label W-band EPR to study membrane fluidity in samples of small volume, J. Magn. Reson. 226 (2013) 35-44). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop-six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jason W. Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Joseph J. Ratke
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - James S. Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens. Exp Eye Res 2014; 120:138-51. [PMID: 24486794 DOI: 10.1016/j.exer.2014.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
30
|
Mainali L, Raguz M, Subczynski WK. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. J Phys Chem B 2013; 117:8994-9003. [PMID: 23834375 DOI: 10.1021/jp402394m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
31
|
Mainali L, Raguz M, O'Brien WJ, Subczynski WK. Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:1432-40. [PMID: 23438364 PMCID: PMC3633468 DOI: 10.1016/j.bbamem.2013.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Human lens lipid membranes prepared using a rapid solvent exchange method from the total lipids extracted from the clear lens cortex and nucleus of 41- to 60-year-old donors were investigated using electron paramagnetic resonance spin-labeling. Profiles of the phospholipid alkyl-chain order, fluidity, oxygen transport parameter, and hydrophobicity were assessed across coexisting membrane domains. Membranes prepared from the lens cortex and nucleus were found to contain two distinct lipid environments, the bulk phospholipid-cholesterol domain and the cholesterol bilayer domain (CBD). The alkyl chains of phospholipids were strongly ordered at all depths, indicating that the amplitude of the wobbling motion of alkyl chains was small. However, profiles of the membrane fluidity, which explicitly contain time (expressed as the spin-lattice relaxation rate) and depend on the rotational motion of spin labels, show relatively high fluidity of alkyl chains close to the membrane center. Profiles of the oxygen transport parameter and hydrophobicity have a rectangular shape and also indicate a high fluidity and hydrophobicity of the membrane center. The amount of CBD was greater in nuclear membranes than in cortical membranes. The presence of the CBD in lens lipid membranes, which at 37°C showed a permeability coefficient for oxygen about 60% smaller than across a water layer of the same thickness, would be expected to raise the barrier for oxygen transport across the fiber cell membrane. Properties of human membranes are compared with those obtained for membranes made of lipids extracted from cortex and nucleus of porcine and bovine eye lenses.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|