1
|
Skrehot HC, Alsoudi AF, Schefler AC. Co-occurrence of EIF1AX, SF3B1, or BAP1 variants in uveal melanomas: A case series and review. Am J Ophthalmol Case Rep 2025; 38:102327. [PMID: 40271082 PMCID: PMC12017928 DOI: 10.1016/j.ajoc.2025.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/08/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Purpose The purpose of this study is to present a case series of patients with co-occurrence of either BRCA1 associated protein-1 (BAP1), eukaryotic translation initiation factor 1A, X-chromosomal (EIF1AX), or splicing factor 3B subunit 1 (SF3B1) in the detection and treatment of a uveal melanoma (UM) prior to the development of metastatic disease. Observations This is a retrospective case series of ten patients with UM demonstrating co-occurrence of either BAP1, EIF1AX, or SF3B1 variants treated at a single ocular oncology clinic by a senior ocular oncologist between 2020 and 2024. Charts were reviewed and data on medical history, demographics, tumor characteristics, genetic testing, follow up, as well as fundus photo and B-scan ocular ultrasound were collected. The average age of the patients was 58.5 years old. The mean length of follow up was 18.2 months. Four patients had guanosine nucleotide-binding protein alpha-11 (GNA11) variants and six had guanosine nucleotide-binding protein Q (GNAQ) variants. Four patients had germline BAP1 variants. Four patients had a combination of EIF1AX and BAP1 variants. Three patients had a combination of EIF1AX and SF3B1 variants. Three patients had a combination of SF3B1 and BAP1 variants. Eight UM were gene expression profile (GEP) Class 1A and two UM were GEP Class 1B. Seven UM were preferentially expressed antigen in melanoma (PRAME) negative and three UM were PRAME positive. All patients had cytologic confirmation of the diagnosis of UM: seven had cytology results of spindle cells and three had results of mixed spindle and epithelioid cells. All patients were treated with Iodine-125 (I-125) plaque brachytherapy. Conclusions and importance We present a case series of patients with the co-occurrence of EIF1AX, SF3B1, or BAP1. With distinct genomic aberrations, transcriptional features, and clinical outcomes, EIF1AX, SF3B1, and BAP1 are thought to be mutually exclusive. The present case series demonstrates rare exceptions to this general pattern and speculates on the early molecular steps of UM which may lead to these rare mutation combinations.
Collapse
Affiliation(s)
- Henry C. Skrehot
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Amer F. Alsoudi
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Amy C. Schefler
- Retina Consultants of Texas, Houston, TX, USA
- Blanton Eye Institute, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Mariani P, Pierron G, Ait Rais K, Bouhadiba T, Rodrigues M, Malaise D, Lumbroso-Le Rouic L, Barnhill R, Stern MH, Servois V, Ramtohul T. A Clinico-Genetic Score Incorporating Disease-Free Intervals and Chromosome 8q Copy Numbers: A Novel Prognostic Marker for Recurrence and Survival Following Liver Resection in Patients with Liver Metastases of Uveal Melanoma. Cancers (Basel) 2024; 16:3407. [PMID: 39410027 PMCID: PMC11475758 DOI: 10.3390/cancers16193407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Surgical treatment of liver metastases of uveal melanoma (LMUM) could be proposed for selected patients. This retrospective study examined the prognostic significance of the genetic profiles of liver metastases after LMUM resection. A total of 86 patients treated with resection for LMUM, who underwent genetic analysis of liver metastasis, were included. A multivariable Cox model identified the independent predictors of recurrence-free survival (RFS) and overall survival (OS). The disease-free interval (DFI) and a chromosome 8q surgain (>3 copies) were independent predictors and categorized patients into three risk groups with distinct postoperative prognoses. For the low-, intermediate-, and high-risk scores of recurrence, the median RFS values were 15 months (95% CI: 10-22), 6 months (95% CI: 4-11), and 4 months (95% CI: 2-7), and the median OS values were 86 months (95% CI: 55-NR), 25 months (95% CI: 17-48), and 19 months (95% CI: 12-22), respectively. The predictive accuracy of this scoring system was demonstrated by a mean area under the curve (AUC(t)) of 0.77 (95% CI: 0.65-0.90) for RFS and 0.81 (95% CI: 0.70-0.92) for OS. This novel score, based on a DFI of ≤24 months combined with a chromosome 8q surgain, identifies patients at a high risk of early recurrence and could help clinicians to propose perioperative treatment.
Collapse
Affiliation(s)
- Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Gaëlle Pierron
- Department of Genetics, Somatic Genetic Unit, Institut Curie, PSL Research University, 75005 Paris, France; (G.P.); (K.A.R.)
| | - Khadija Ait Rais
- Department of Genetics, Somatic Genetic Unit, Institut Curie, PSL Research University, 75005 Paris, France; (G.P.); (K.A.R.)
| | - Toufik Bouhadiba
- Department of Surgical Oncology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Manuel Rodrigues
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France;
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), 75005 Paris, France;
| | - Denis Malaise
- Department of Ocular Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (D.M.); (L.L.-L.R.)
- Inserm U1288, Institut Curie, PSL Research University, 91400 Orsay, France
| | - Livia Lumbroso-Le Rouic
- Department of Ocular Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (D.M.); (L.L.-L.R.)
| | - Raymond Barnhill
- Department of Translational Research, Institut Curie, 75005 Paris, France;
| | - Marc-Henri Stern
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), 75005 Paris, France;
| | - Vincent Servois
- Department of Radiology, Institut Curie, PSL Research University, 75005 Paris, France; (V.S.); (T.R.)
| | - Toulsie Ramtohul
- Department of Radiology, Institut Curie, PSL Research University, 75005 Paris, France; (V.S.); (T.R.)
| |
Collapse
|
3
|
Alsoudi AF, Skrehot HC, Chévez-Barrios P, Divatia M, De La Garza M, Bretana ME, Schefler AC. COMPREHENSIVE MOLECULAR PROFILING OF UVEAL MELANOMA EVALUATED WITH GENE EXPRESSION PROFILING, PREFERENTIALLY EXPRESSED ANTIGEN IN MELANOMA EXPRESSION, AND NEXT-GENERATION SEQUENCING. Retina 2024; 44:1580-1589. [PMID: 39167579 DOI: 10.1097/iae.0000000000004153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE To determine the association between gene-expression profiling (GEP), next-generation sequencing (NGS), preferentially expressed antigen in melanoma (PRAME) features, and metastatic risk in patients with uveal melanoma (UM). METHODS A retrospective analysis of patients with UM treated by brachytherapy or enucleation by a single ocular oncologist was conducted from November 2020 and July 2022. Clinicopathologic features, patient outcomes, GEP classification, NGS, and PRAME results were recorded. RESULTS Comprehensive GEP, PRAME, and NGS testing was performed on 135 UMs. The presence of eukaryotic translation initiation factor 1A, X-chromosomal and splicing factor 3B subunit 1 mutations was significantly associated with GEP class 1A and GEP class 1B, respectively. The presence of BRCA- associated protein-1 mutation was significantly associated with GEP class 2. The average largest basal diameter for tumors with eukaryotic translation initiation factor 1A, X-chromosomal mutations was significantly smaller than those with splicing factor 3B subunit 1 mutations and BRCA1-associated protein-1 mutations. Class 2 tumors metastasized sooner than GEP class 1 tumors. Tumors with splicing factor 3B subunit 1 and/or BRCA1-associated protein-1 mutations metastasized sooner compared with tumors that had either no driver mutation or no mutations at all. Tumors with splicing factor 3B subunit 1 did not have a significantly different time to metastasis compared with tumors with BRCA1-associated protein-1 (P value = 0.97). Forty tumors (30%) were PRAME positive, and the remaining 95 tumors (70%) were PRAME negative. Tumors with PRAME-positive status did not have a significantly different time to metastasis compared with tumors without PRAME-positive status (P value = 0.11). CONCLUSION GEP, NGS, and PRAME expression analysis help determine different levels of metastatic risk in UM. Although other prognostic tests exist, the following study reports on the use of NGS for metastatic prognostication in UM. However, limitations of NGS exist, especially with small lesions that are technically difficult to biopsy.
Collapse
Affiliation(s)
- Amer F Alsoudi
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Henry C Skrehot
- School of Medicine, Baylor College of Medicine, Houston, Texas
| | - Patricia Chévez-Barrios
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Genomic Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, Texas
- Blanton Eye Institute, Weill Cornell Medicine, Houston Methodist Hospital, Houston, Texas; and
| | - Mukul Divatia
- Department of Pathology and Genomic Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, Texas
| | - Maria De La Garza
- Department of Pathology and Genomic Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, Texas
| | | | - Amy C Schefler
- Blanton Eye Institute, Weill Cornell Medicine, Houston Methodist Hospital, Houston, Texas; and
- Retina Consultants of Texas, Houston, Texas
| |
Collapse
|
4
|
Tura A, Herfs V, Maaßen T, Zuo H, Vardanyan S, Prasuhn M, Ranjbar M, Kakkassery V, Grisanti S. Quercetin Impairs the Growth of Uveal Melanoma Cells by Interfering with Glucose Uptake and Metabolism. Int J Mol Sci 2024; 25:4292. [PMID: 38673877 PMCID: PMC11049862 DOI: 10.3390/ijms25084292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Monosomy 3 in uveal melanoma (UM) increases the risk of lethal metastases, mainly in the liver, which serves as the major site for the storage of excessive glucose and the metabolization of the dietary flavonoid quercetin. Although primary UMs with monosomy 3 exhibit a higher potential for basal glucose uptake, it remains unknown as to whether glycolytic capacity is altered in such tumors. Herein, we initially analyzed the expression of n = 151 genes involved in glycolysis and its interconnected branch, the "pentose phosphate pathway (PPP)", in the UM cohort of The Cancer Genome Atlas Study and validated the differentially expressed genes in two independent cohorts. We also evaluated the effects of quercetin on the growth, survival, and glucose metabolism of the UM cell line 92.1. The rate-limiting glycolytic enzyme PFKP was overexpressed whereas the ZBTB20 gene (locus: 3q13.31) was downregulated in the patients with metastases in all cohorts. Quercetin was able to impair proliferation, viability, glucose uptake, glycolysis, ATP synthesis, and PPP rate-limiting enzyme activity while increasing oxidative stress. UMs with monosomy 3 display a stronger potential to utilize glucose for the generation of energy and biomass. Quercetin can prevent the growth of UM cells by interfering with glucose metabolism.
Collapse
Affiliation(s)
- Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; (V.H.); (T.M.); (H.Z.); (S.V.); (M.P.); (V.K.); (S.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
van Poppelen NM, Cassoux N, Turunen JA, Naus NC, Verdijk RM, Vaarwater J, Cohen V, Papastefanou VP, Kiratli H, Saakyan SV, Tsygankov AY, Rospond-Kubiak I, Mudhar HS, Salvi SM, Kiilgaard JF, Heegaard S, Moulin AP, Saornil MA, Garciá-Alvarez C, Fili M, Eide NA, Meyer P, Kivelä TT, de Klein A, Kilic E, Al-Jamal RT. The Pediatric and Young Adult Choroidal and Ciliary Body Melanoma Genetic Study, A Survey by the European Ophthalmic Oncology Group. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38573618 PMCID: PMC10996971 DOI: 10.1167/iovs.65.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/28/2023] [Indexed: 04/05/2024] Open
Abstract
Purpose To explore the genetic background of choroidal and ciliary body melanoma among children and young adults, with special focus on BAP1 germline variants in this age group. Methods Patients under the age of 25 and with confirmed choroidal or ciliary body melanoma were included in this retrospective, multicenter observational study. Nuclear BAP1 immunopositivity was used to evaluate the presence of functional BAP1 in the tumor. Next-generation sequencing using Ion Torrent platform was used to determine pathogenic variants of BAP1, EIF1AX, SF3B1, GNAQ and GNA11 and chromosome 3 status in the tumor or in DNA extracted from blood or saliva. Survival was analyzed using Kaplan-Meier estimates. Results The mean age at diagnosis was 17 years (range 5.0-24.8). A germline BAP1 pathogenic variant was identified in an 18-year-old patient, and a somatic variant, based mainly on immunohistochemistry, in 13 (42%) of 31 available specimens. One tumor had a somatic SF3B1 pathogenic variant. Disomy 3 and the absence of a BAP1 pathogenic variant in the tumor predicted the longest metastasis-free survival. Males showed longer metastasis-free survival than females (P = 0.018). Conclusions We did not find a stronger-than-average BAP1 germline predisposition for choroidal and ciliary body melanoma among children and young adults compared to adults. Males had a more favorable survival and disomy 3, and the absence of a BAP1 mutation in the tumor tissue predicted the most favorable metastasis-free survival. A BAP1 germline pathogenic variant was identified in one patient (1%), and a somatic variant based mainly on immunohistochemistry in 13 (42%).
Collapse
Affiliation(s)
- Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nathalie Cassoux
- Department of Ophthalmology, Curie Institute, Université Paris Cité UFR Médecine, Paris, France
| | - Joni A. Turunen
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert M. Verdijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden Universital Medical Center, Leiden, The Netherlands
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Victoria Cohen
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| | | | - Hayyam Kiratli
- Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Svetlana V. Saakyan
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Alexander Y. Tsygankov
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Iwona Rospond-Kubiak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznán, Poland
| | - Hardeep S. Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Sachin M. Salvi
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Jens F. Kiilgaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre P. Moulin
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Maria A. Saornil
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Ciro Garciá-Alvarez
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Maria Fili
- Department of Ophthalmology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nils A. Eide
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Peter Meyer
- Department of Ophthalmology, Basel University Hospital, Basel, Switzerland
| | - Tero T. Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emine Kilic
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rana'a T. Al-Jamal
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
6
|
Sundaramurthi H, Tonelotto V, Wynne K, O'Connell F, O’Reilly E, Costa-Garcia M, Kovácsházi C, Kittel A, Marcone S, Blanco A, Pallinger E, Hambalkó S, Piulats Rodriguez JM, Ferdinandy P, O'Sullivan J, Matallanas D, Jensen LD, Giricz Z, Kennedy BN. Ergolide mediates anti-cancer effects on metastatic uveal melanoma cells and modulates their cellular and extracellular vesicle proteomes. OPEN RESEARCH EUROPE 2023; 3:88. [PMID: 37981907 PMCID: PMC10654492 DOI: 10.12688/openreseurope.15973.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Background Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Eve O’Reilly
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Agnes Kittel
- Institute of Experimental Medicine, Budapest, Hungary
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
| | - Eva Pallinger
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| |
Collapse
|
7
|
Sundaramurthi H, Tonelotto V, Wynne K, O'Connell F, O’Reilly E, Costa-Garcia M, Kovácsházi C, Kittel A, Marcone S, Blanco A, Pallinger E, Hambalkó S, Piulats Rodriguez JM, Ferdinandy P, O'Sullivan J, Matallanas D, Jensen LD, Giricz Z, Kennedy BN. Ergolide mediates anti-cancer effects on metastatic uveal melanoma cells and modulates their cellular and extracellular vesicle proteomes. OPEN RESEARCH EUROPE 2023; 3:88. [PMID: 37981907 PMCID: PMC10654492 DOI: 10.12688/openreseurope.15973.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 07/01/2024]
Abstract
BACKGROUND Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. METHODS Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. RESULTS Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. CONCLUSIONS Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Eve O’Reilly
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Agnes Kittel
- Institute of Experimental Medicine, Budapest, Hungary
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
| | - Eva Pallinger
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| |
Collapse
|
8
|
Liau S, Wang JZ, Zagarella E, Paulus P, Dang NHQH, Rawling T, Murray M, Zhou F. An update on inflammation in uveal melanoma. Biochimie 2023; 212:114-122. [PMID: 37105300 DOI: 10.1016/j.biochi.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Uveal melanoma (UM) is the primary ocular cancer with upto 50% of patients dying from metastasis. Although rare, it is deadly as patients with metastatic UM seldom survive beyond 18 months after diagnosis. Chemotherapeutics have no proven efficacy, including immunotherapies that have been tried as current treatment options but produce marginal improvement in overall survival for UM patients. While therapeutics are low in efficacy, there is an urgent need to explore novel targets in the treatment of UM. This review provides an update on the contribution of inflammation to UM with a focus on exploring potential therapeutic targets related to the inflammatory tumour microenvironment. As a tumour promoting event, inflammation is one of the hallmarks of cancers. The presence of the inflammatory phenotype characterised by the abundance of immune mediators and proinflammatory cytokines surrounding UM tumours, is a potential area to explore novel therapeutic targets. Despite decades of investigation regarding the role UM tumour microenvironment has played, that of inflammation in UM progression remains poorly understood. With advancement of technologies, an understanding of the prognosis of UM has been accelerated. Excitingly, novel therapeutic targets related to the inflammatory tumour microenvironment have been identified and relevant studies are underway in their preliminary phases, illustrating optimistic results.
Collapse
Affiliation(s)
- Sebastian Liau
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Janney Z Wang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ethan Zagarella
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paus Paulus
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nguyen Huong Que Hiep Dang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Martel A, Mograbi B, Romeo B, Gastaud L, Lalvee S, Zahaf K, Fayada J, Nahon-Esteve S, Bonnetaud C, Salah M, Tanga V, Baillif S, Bertolotto C, Lassalle S, Hofman P. Assessment of Different Circulating Tumor Cell Platforms for Uveal Melanoma: Potential Impact for Future Routine Clinical Practice. Int J Mol Sci 2023; 24:11075. [PMID: 37446253 DOI: 10.3390/ijms241311075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Liquid biopsy and circulating tumor cell (CTC) screening has gained interest over the last two decades for detecting almost all solid malignancies. To date, the major limitation in terms of the applicability of CTC screening in daily clinical practice is the lack of reproducibility due to the high number of platforms available that use various technologies (e.g., label-dependent versus label-free detection). Only a few studies have compared different CTC platforms. The aim of this study was to compare the efficiency of four commercially available CTC platforms (Vortex (VTX-1), ClearCell FX, ISET, and Cellsearch) for the detection and identification of uveal melanoma cells (OMM 2.3 cell line). Tumor cells were seeded in RPMI medium and venous blood from healthy donors, and then processed similarly using these four platforms. Melan-A immunochemistry was performed to identify tumor cells, except when the Cellsearch device was used (automated identification). The mean overall recovery rates (with mean recovered cells) were 39.2% (19.92), 22.2% (11.31), 8.9% (4.85), and 1.1% (0.20) for the ISET, Vortex (VTX-1), ClearCell FX, and CellSearch platforms, respectively. Although paramount, the recovery rate is not sufficient to assess a CTC platform. Other parameters, such as the purpose for using a platform (diagnosis, genetics, drug sensitivity, or patient-derived xenograft models), reproducibility, purity, user-friendliness, cost-effectiveness, and ergonomics, should also be considered before they can be used in daily clinical practice and are discussed in this article.
Collapse
Affiliation(s)
- Arnaud Martel
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Baharia Mograbi
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Barnabe Romeo
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Lauris Gastaud
- Oncology Department, Antoine Lacassagne Cancer Center, 06 000 Nice, France
| | - Salome Lalvee
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Julien Fayada
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Sacha Nahon-Esteve
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, 06 100 Nice, France
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Myriam Salah
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Virginie Tanga
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
| | - Corine Bertolotto
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, 06 100 Nice, France
| | - Sandra Lassalle
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Paul Hofman
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| |
Collapse
|
10
|
Rola AC, Kalirai H, Taktak AFG, Eleuteri A, Krishna Y, Hussain R, Heimann H, Coupland SE. A Retrospective Analysis of 10 Years of Liver Surveillance Undertaken in Uveal Melanoma Patients Treated at the Supraregional "Liverpool Ocular Oncology Centre", UK. Cancers (Basel) 2022; 14:cancers14092187. [PMID: 35565316 PMCID: PMC9102800 DOI: 10.3390/cancers14092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Around 45% of patients with uveal melanoma (UM) develop liver metastases on average 3 years after diagnosis of the primary tumour. After clinical detection of metastases, median patient survival is approximately one year. Early identification of metastases through liver surveillance is important so that targeted treatment can benefit affected patients, aiming to prolong their survival. The aim of our retrospective study was to investigate and correlate the characteristics of UM patients diagnosed and treated at a UK supraregional referral center, the Liverpool Ocular Oncology Centre (LOOC), and who were included in the Centre’s liver screening programs for screening for liver metastases. “Real-world” data on the frequency of liver screening in patients after diagnosis and treatment of primary UM are lacking. Through the liver screening program, we found that metastases were detected in 37% of the 615 UM patients studied. A new output based on the prognostic indices of the Liverpool Uveal Melanoma Prognosticator Online version 3 (LUMPO3) model was fitted to the dataset of these patients and accurately estimated the time of onset of metastases. Abstract Purpose: To determine liver screening frequency and modality in UM patients following primary treatment, and the characteristics of detected metastases. Methods: A 10-year retrospective study of 615 UM patients undergoing liver surveillance in Liverpool. Information was collected from liver scan reports of these patients. Results: Of 615 UM patients analyzed, there were 337 men (55%) and 278 women (45%). Median age at primary treatment was 61 years (range, 22–94). At study end, median follow-up was 5.1 years, with 375 patients (61%) alive and 240 deceased (39%). Of the deceased patients, 187 (78%) died due to metastatic UM; 24 (10%) deaths were due to other causes; and 29 (12%) patients died of unknown conditions. In total, 3854 liver scans were performed in the 615 UM patients, with a median of 6.2 scans per patient (range, 1–40). Liver MRI was most frequently performed (62.8%). In total, 229 (37%) UM patients developed metastases during the study period: 150 were detected via liver surveillance and 79 were observed post-mortem. Conclusions: Metastatic UM onset is related to the size and genetic profiles of the primary UM, and can be predicted using the model LUMPO3. Regular liver surveillance allowed for timely detection of metastases, and through metastasectomy can lead to prolongation of life in some patients.
Collapse
Affiliation(s)
- Alda Cunha Rola
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Liverpool Clinical Laboratories, Department of Cellular Pathology, Liverpool University Hospitals Foundation Trust, Liverpool L7 8XP, UK
| | - Azzam F. G. Taktak
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Department of Medical Physics and Clinical Engineering, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Antonio Eleuteri
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Department of Medical Physics and Clinical Engineering, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Yamini Krishna
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Liverpool Clinical Laboratories, Department of Cellular Pathology, Liverpool University Hospitals Foundation Trust, Liverpool L7 8XP, UK
| | - Rumana Hussain
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Liverpool Ocular Oncology Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Heinrich Heimann
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Liverpool Ocular Oncology Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of System Molecular and Integrative Biology, University of Liverpool, 6 West Derby Street, William Henry Duncan Building, Liverpool L7 8TX, UK; (A.C.R.); (H.K.); (A.F.G.T.); (A.E.); (Y.K.); (R.H.); (H.H.)
- Liverpool Clinical Laboratories, Department of Cellular Pathology, Liverpool University Hospitals Foundation Trust, Liverpool L7 8XP, UK
- Correspondence: ; Tel.: +44-0151-794-9104
| |
Collapse
|
11
|
Rantala ES, Hernberg MM, Piperno-Neumann S, Grossniklaus HE, Kivelä TT. Metastatic uveal melanoma: The final frontier. Prog Retin Eye Res 2022; 90:101041. [PMID: 34999237 DOI: 10.1016/j.preteyeres.2022.101041] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Treatment of primary intraocular uveal melanoma has developed considerably, its driver genes are largely unraveled, and the ways to assess its risk for metastases are very precise, being based on an international staging system and genetic data. Unfortunately, the risk of distant metastases, which emerge in approximately one half of all patients, is unaltered. Metastases are the leading single cause of death after uveal melanoma is diagnosed, yet no consensus exists regarding surveillance, staging, and treatment of disseminated disease, and survival has not improved until recently. The final frontier in conquering uveal melanoma lies in solving these issues to cure metastatic disease. Most studies on metastatic uveal melanoma are small, uncontrolled, retrospective, and do not report staging. Meta-analyses confirm a median overall survival of 10-13 months, and a cure rate that approaches nil, although survival exceeding 5 years is possible, estimated 2% either with first-line treatment or with best supportive care. Hepatic ultrasonography and magnetic resonance imaging as surveillance methods have a sensitivity of 95-100% and 83-100%, respectively, to detect metastases without radiation hazard according to prevailing evidence, but computed tomography is necessary for staging. No blood-based tests additional to liver function tests are generally accepted. Three validated staging systems predict, each in defined situations, overall survival after metastasis. Their essential components include measures of tumor burden, liver function, and performance status or metastasis free interval. Age and gender may additionally influence survival. Exceptional mutational events in metastases may make them susceptible to checkpoint inhibitors. In a large meta-analysis, surgical treatment was associated with 6 months longer median overall survival as compared to conventional chemotherapy and, recently, tebentafusp as first-line treatment at the first interim analysis of a randomized phase III trial likewise provided a 6 months longer median overall survival compared to investigator's choice, mostly pembrolizumab; these treatments currently apply to selected patients. Promoting dormancy of micrometastases, harmonizing surveillance protocols, promoting staging, identifying predictive factors, initiating controlled clinical trials, and standardizing reporting will be critical steppingstones in reaching the final frontier of curing metastatic uveal melanoma.
Collapse
Affiliation(s)
- Elina S Rantala
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL 220, FI-00029, HUS, Helsinki, Finland.
| | - Micaela M Hernberg
- Comprehensive Cancer Center, Department of Oncology, Helsinki University Hospital and University of Helsinki, Paciuksenkatu 3, PL 180, FI-00029, HUS, Helsinki, Finland.
| | | | - Hans E Grossniklaus
- Section of Ocular Oncology, Emory Eye Center, 1365 Clifton Road B, Atlanta, GA, 30322, USA.
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL 220, FI-00029, HUS, Helsinki, Finland.
| |
Collapse
|
12
|
Seedor RS, Orloff M, Sato T. Genetic Landscape and Emerging Therapies in Uveal Melanoma. Cancers (Basel) 2021; 13:5503. [PMID: 34771666 PMCID: PMC8582814 DOI: 10.3390/cancers13215503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite successful treatment of primary uveal melanoma, up to 50% of patients will develop systemic metastasis. Metastatic disease portends a poor outcome, and no adjuvant or metastatic therapy has been FDA approved. The genetic landscape of uveal melanoma is unique, providing prognostic and potentially therapeutic insight. In this review, we discuss our current understanding of the molecular and cytogenetic mutations in uveal melanoma, and the importance of obtaining such information. Most of our knowledge is based on primary uveal melanoma and a better understanding of the mutational landscape in metastatic uveal melanoma is needed. Clinical trials targeting certain mutations such as GNAQ/GNA11, BAP1, and SF3B1 are ongoing and promising. We also discuss the role of liquid biopsies in uveal melanoma in this review.
Collapse
Affiliation(s)
- Rino S. Seedor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.O.); (T.S.)
| | | | | |
Collapse
|
13
|
Maaßen T, Vardanyan S, Brosig A, Merz H, Ranjbar M, Kakkassery V, Grisanti S, Tura A. Monosomy-3 Alters the Expression Profile of the Glucose Transporters GLUT1-3 in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21249345. [PMID: 33302435 PMCID: PMC7762573 DOI: 10.3390/ijms21249345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Monosomy-3 in uveal melanoma (UM) cells increases the risk of fatal metastases. The gene encoding the low-affinity glucose transporter GLUT2 resides on chromosome 3q26.2. Here, we analyzed the expression of the glucose transporters GLUT1, GLUT2, and GLUT3 with regard to the histological and clinical factors by performing immunohistochemistry on the primary tumors of n = 33 UM patients. UMs with monosomy-3 exhibited a 57% lower immunoreactivity for GLUT2 and a 1.8×-fold higher ratio of GLUT1 to total GLUT1-3. The combined levels of GLUT1-3 proteins were reduced in the irradiated but not the non-irradiated tumors with monosomy-3. GLUT3 expression was stronger in the irradiated samples with disomy-3 versus monosomy-3, but the ratio of the GLUT3 isoform to total GLUT1-3 did not differ with regard to the monosomy-3 status in the irradiated or non-irradiated subgroups. Systemic metastases were associated with the presence of monosomy-3 in the primary and circulating tumor cells as well as a higher GLUT1 ratio. Upregulation of the high-affinity glucose transporter GLUT1 possibly as a compensation for the low-affinity isoform GLUT2 may be enhancing the basal glucose uptake in the UM cells with monosomy-3. Prevention of hyperglycemia might, therefore, be a valuable approach to delay the lethal UM metastases.
Collapse
Affiliation(s)
- Tjorge Maaßen
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Siranush Vardanyan
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Anton Brosig
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Hartmut Merz
- Reference Center for Lymph Node Pathology and Haematopathology, 23562 Lübeck, Germany;
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Vinodh Kakkassery
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
- Correspondence: ; Tel.: +49-451-500-43912
| |
Collapse
|
14
|
Rodriguez-Vidal C, Fernandez-Diaz D, Fernandez-Marta B, Lago-Baameiro N, Pardo M, Silva P, Paniagua L, Blanco-Teijeiro MJ, Piñeiro A, Bande M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers (Basel) 2020; 12:E2557. [PMID: 32911759 PMCID: PMC7565536 DOI: 10.3390/cancers12092557] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION More than 50% of patients with uveal melanoma end up developing metastases. Currently, there is no standard first-line treatment that facilitates proper management of the metastatic disease. METHODS A systematic review of the last 40 years in PubMed with an exhaustive and strict selection of studies was conducted, in which the unit of measurement was overall survival (OS) expressed in Kaplan-Meier curves or numerically. RESULTS After the selection process, 110 articles were included. Regional therapies, such as intra-arterial liver chemotherapy (OS: 2, 9-22 months), isolated liver perfusion (OS: 9, 6-27, 4 months), or selective internal radiation therapy (OS: 18 months in monotherapy and 26 months in combination with other therapies) showed some superiority when compared to systemic therapies, such as chemotherapy (OS: 4, 6-17 months), immunotherapy (OS: 5-19, 1 month), immunosuppression (OS: 11 months), or targeted therapy (OS: 6-12 months), without being significant. CONCLUSIONS The results of this review suggest that there are no important differences in OS when comparing the different current treatment modalities. Most of the differences found seem to be explained by the heterogenicity of the different studies and the presence of biases in their design, rather than actual extensions of patient survival.
Collapse
Affiliation(s)
- Cristina Rodriguez-Vidal
- Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903 Barakaldo-Vizcaya, Spain;
| | - Daniel Fernandez-Diaz
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Beatriz Fernandez-Marta
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pardo
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Paula Silva
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15705 Santiago de Compostela, Spain
| | - Laura Paniagua
- Department of Ophthalmology, University Hospital of Coruña, Praza Parrote s/n, 15006 A Coruña, Spain;
| | - María José Blanco-Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Antonio Piñeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Manuel Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| |
Collapse
|
15
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
16
|
Thornton S, Kalirai H, Aughton K, Coupland SE. Unpacking the genetic etiology of uveal melanoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1785872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sophie Thornton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| | - Karen Aughton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| |
Collapse
|
17
|
Rowcroft A, Loveday BPT, Thomson BNJ, Banting S, Knowles B. Systematic review of liver directed therapy for uveal melanoma hepatic metastases. HPB (Oxford) 2020; 22:497-505. [PMID: 31791894 DOI: 10.1016/j.hpb.2019.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uveal melanoma (UM) is a rare malignancy with a propensity for metastasis to the liver. Systemic chemotherapy is typically ineffective in these patients with liver metastases and overall survival is poor. There are no evidence-based guidelines for management of UM liver metastases. The aim of this study was to review the evidence for management of UM liver metastases. METHODS A systematic review of English literature publications was conducted across Ovid Medline, Ovid MEDLINE and Cochrane CENTRAL databases until April 2019. The primary outcome was overall survival, with disease free survival as a secondary outcome. RESULTS 55 studies were included in the study, with 2446 patients treated overall. The majority of these studies were retrospective, with 17 of 55 including comparative data. Treatment modalities included surgery, isolated hepatic perfusion (IHP), hepatic artery infusion (HAI), transarterial chemoembolization (TACE), selective internal radiotherapy (SIRT) and Immunoembolization (IE). Survival varied greatly between treatments and between studies using the same treatments. Both surgery and liver-directed treatments were shown to have benefit in selected patients. CONCLUSION Predominantly retrospective and uncontrolled studies suggest that surgery and locoregional techniques may prolong survival. Substantial variability in patient selection and study design makes comparison of data and formulation of recommendations challenging.
Collapse
Affiliation(s)
- Alistair Rowcroft
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin P T Loveday
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Benjamin N J Thomson
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Simon Banting
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Brett Knowles
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Rossi E, Schinzari G, Zizzari IG, Maiorano BA, Pagliara MM, Sammarco MG, Fiorentino V, Petrone G, Cassano A, Rindi G, Bria E, Blasi MA, Nuti M, Tortora G. Immunological Backbone of Uveal Melanoma: Is There a Rationale for Immunotherapy? Cancers (Basel) 2019; 11:cancers11081055. [PMID: 31357439 PMCID: PMC6721347 DOI: 10.3390/cancers11081055] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
No standard treatment has been established for metastatic uveal melanoma (mUM). Immunotherapy is commonly used for this disease even though UM has not been included in phase III clinical trials with checkpoint inhibitors. Unfortunately, only a minority of patients obtain a clinical benefit with immunotherapy. The immunological features of mUM were reviewed in order to understand if immunotherapy could still play a role for this disease.
Collapse
Affiliation(s)
- Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University, 00162 Rome, Italy
| | - Brigida Anna Maiorano
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Monica Maria Pagliara
- Ophtalmology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Grazia Sammarco
- Ophtalmology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Fiorentino
- Pathology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluigi Petrone
- Pathology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Cassano
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Guido Rindi
- Pathology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
| | - Emilio Bria
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University, 00162 Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
19
|
Boru G, Cebulla CM, Sample KM, Massengill JB, Davidorf FH, Abdel-Rahman MH. Heterogeneity in Mitogen-Activated Protein Kinase (MAPK) Pathway Activation in Uveal Melanoma With Somatic GNAQ and GNA11 Mutations. Invest Ophthalmol Vis Sci 2019; 60:2474-2480. [PMID: 31173078 PMCID: PMC6557618 DOI: 10.1167/iovs.18-26452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The activation of the mitogen-activated protein kinase (MAPK) pathway has been suggested as the major downstream target when GNAQ and GNA11 (GNAQ/11) are mutated in uveal melanoma (UM). However, clinical trials with single agent MEK inhibitor showed no clinical significance in altering the overall outcome of the disease in UM; therefore, we investigated the correlation between naturally occurring mutations in GNAQ/11 and activation of MAPK pathway in vivo in primary UM. Methods Screening for activating mutations in codons 183 and 209 of GNAQ/11 was carried out by sequencing and restriction fragment length polymorphism (RFLP) in a cohort of 42 primary UM. Activation of the MAPK pathway and other potential downstream signals was assessed by immunohistochemistry and/or Western blot analysis. Potential downstream signaling of mutant and wild type GNAQ/11 was studied by transient transfection assay in nonmutant cell lines. Results Somatic mutations in GNAQ/11 were observed in 35/42 (83.3%) of primary UM. Tumors with GNAQ/11 mutations showed variations in the activation of ERK1/2 with significant tumor heterogeneity. Weak and undetectable ERK1/2 activation was observed in 4/35 (11.4%) and 8/35 (22.9%) of the GNAQ/11 mutant UM, respectively. Tumor heterogeneity of GNAQ/11 mutations was also observed in a subset of tumors. Conclusions Our results indicate that there is marked variation in MAPK activation in UM with GNAQ/11 mutations. Thus, GNAQ/11 mutational status is not a sufficient biomarker to adequately predict UM patient responses to single-agent selective MEK inhibitor therapy.
Collapse
Affiliation(s)
- Getachew Boru
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
| | - Colleen M. Cebulla
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
| | - Klarke M. Sample
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
| | - James B. Massengill
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
| | - Frederick H. Davidorf
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
| | - Mohamed H. Abdel-Rahman
- Department of Ophthalmology, the Ohio State University, Columbus, Ohio, Unites States
,Division of Human Genetics, the Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
20
|
BAP1 expression is prognostic in breast and uveal melanoma but not colon cancer and is highly positively correlated with RBM15B and USP19. PLoS One 2019; 14:e0211507. [PMID: 30716094 PMCID: PMC6361507 DOI: 10.1371/journal.pone.0211507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
BAP1 is a tumor suppressor gene important to the development and prognosis of many cancers, especially uveal melanoma (UM). Its role in more common cancers such as breast and colon cancer is largely unknown. We collected the transcriptome profiling data sets from the TCGA uveal melanoma (TCGA-UVM), breast cancer (TCGA-BRCA), and colon cancer (TCGA-COAD) projects to analyze the expression of BAP1. We found that patients with UM and breast cancer, but not colon cancer, who died had a lower level of BAP1 gene expression compared to surviving patients. Importantly, in breast cancer patients, the lowest BAP1 expression levels corresponded to the dead young patients (age at diagnosis < 46). Since the number of cases in TCGA-BRCA was much higher than TCGA-UVM, we obtained highly correlated genes with BAP1 in invasive breast carcinomas. Then, we tested if these genes are also highly correlated with BAP1 in UM and colon cancer. We found that BAP1 is highly positively correlated with RBM15B and USP19 expression in invasive breast carcinoma, UM, and colon adenocarcinoma. All three genes are located in close proximity on the 3p21 tumor suppressor region that is commonly altered in many cancers.
Collapse
|
21
|
Dogrusöz M, Jager MJ. Genetic prognostication in uveal melanoma. Acta Ophthalmol 2018; 96:331-347. [PMID: 29105334 DOI: 10.1111/aos.13580] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022]
Abstract
Uveal melanoma (UM) is a rare tumour with a high propensity to metastasize. Although no effective treatment for metastases yet exists, prognostication in UM is relevant for patient counselling, planning of follow-up and stratification in clinical trials. Besides conventional clinicopathologic characteristics, genetic tumour features with prognostic significance have been identified. Non-random chromosome aberrations such as monosomy 3 and gain of chromosome 8q are strongly correlated with metastatic risk, while gain of chromosome 6p indicates a low risk. Recently, mutations in genes such as BAP1, SF3B1 and EIF1AX have been shown to be related to patient outcome. Genetics of UM is a rapidly advancing field, which not only contributes to the understanding of the pathogenesis of this cancer, but also results in further refinement of prognostication. Concomitantly, advances have been made in the use of genetic tests. New methods for genetic typing of UM have been developed. Despite the considerable progress made recently, many questions remain, such as those relating to the reliability of prognostic genetic tests, and the use of biopsied or previously irradiated tumour tissue for prognostication by genetic testing. In this article, we review genetic prognostic indicators in UM, also comparing available genetic tests, addressing the clinical application of genetic prognostication and discussing future perspectives for improving genetic prognostication in UM.
Collapse
Affiliation(s)
- Mehmet Dogrusöz
- Department of Ophthalmology; Leiden University Medical Center; Leiden The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
22
|
Singh M, Tyagi SC. Genes and genetics in eye diseases: a genomic medicine approach for investigating hereditary and inflammatory ocular disorders. Int J Ophthalmol 2018; 11:117-134. [PMID: 29376001 DOI: 10.18240/ijo.2018.01.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Past 25y have witnessed an exponential increase in knowledge and understanding of ocular diseases and their respective genetic underpinnings. As a result, scientists have mapped many genes and their variants that can influence vision and health of our eyes. Based on these findings, it is becoming clear that an early diagnosis employing genetic testing can help evaluate patients' conditions for instituting treatment plan(s) and follow-up care to avoid vision complications later. For example, knowing family history becomes crucial for inherited eye diseases as it can benefit members in family who may have similar eye diseases or predispositions. Therefore, gathering information from an elaborate examination along with complete assessment of past medical illness by ophthalmologists followed by consultation with geneticists can help create a roadmap for making diagnosis and treatment precise and beneficial. In this review, we present an update on ocular genomic medicine that we believe has tremendous potential towards unraveling genetic implications in ocular diseases and patients' susceptibilities. We also discuss translational aspects of genetic ophthalmology and genome engineering that may help advance molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Suresh C Tyagi
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
23
|
Pérez-Alea M, Vivancos A, Caratú G, Matito J, Ferrer B, Hernandez-Losa J, Cortés J, Muñoz E, Garcia-Patos V, Recio JA. Genetic profile of GNAQ-mutated blue melanocytic neoplasms reveals mutations in genes linked to genomic instability and the PI3K pathway. Oncotarget 2018; 7:28086-95. [PMID: 27057633 PMCID: PMC5053711 DOI: 10.18632/oncotarget.8578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
Melanomas arising in association with a common or cellular blue nevus (MABN) comprise a relatively rare and heterogeneous group of lethal melanomas. Although GNAQ is known to be frequently mutated in common blue nevus, cellular blue nevus (CBN) and MABN and these malignant lesions present gross chromosome alterations harboring BAP1 mutations, little is known about other mutations that contribute to the development and progression of these neoplasms. Thus, the genetic profile of these tumors is important to increase the number of intervention and treatment modalities. Here, we characterized and genetically profiled two different sections of a rare MABN and two CBNs from three different patients. All of the samples harbored a GNAQ mutation, exhibited RAS pathway activation, and harbored additional mutations in genes associated with genomic instability and epigenetic regulation (KMT2C, FANCD2, ATR, ATRX, NBN, ERCC2, SETD2, and WHSC1). In addition, all neoplasms harbored mutations that directly or indirectly affected either the regulation or activation of the PI3K pathway (PIK3CA, NF1, INPP5B and GSK3B). Our results not only help understand the genetic complexity of these blue melanocytic lesions but provide a rationale to use the combination of PI3K/MTOR and MEK1/2 inhibitors against these types of tumors.
Collapse
Affiliation(s)
- Mileidys Pérez-Alea
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Oncology Program, Vall d'Hebron Research institute, VHIR-Vall d'Hebron Hospital, Barcelona-UAB 08035, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group Translational Research Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Ginevra Caratú
- Cancer Genomics Group Translational Research Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Judit Matito
- Cancer Genomics Group Translational Research Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Berta Ferrer
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Oncology Program, Vall d'Hebron Research institute, VHIR-Vall d'Hebron Hospital, Barcelona-UAB 08035, Barcelona, Spain.,Anatomy Pathology Department, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Javier Hernandez-Losa
- Anatomy Pathology Department, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Javier Cortés
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Eva Muñoz
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Oncology Program, Vall d'Hebron Research institute, VHIR-Vall d'Hebron Hospital, Barcelona-UAB 08035, Barcelona, Spain.,Clinical Oncology Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Vicente Garcia-Patos
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Oncology Program, Vall d'Hebron Research institute, VHIR-Vall d'Hebron Hospital, Barcelona-UAB 08035, Barcelona, Spain.,Dermatology Department, Vall d'Hebron Hospital, Barcelona-UAB, Barcelona 08035, Spain
| | - Juan A Recio
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Oncology Program, Vall d'Hebron Research institute, VHIR-Vall d'Hebron Hospital, Barcelona-UAB 08035, Barcelona, Spain
| |
Collapse
|
24
|
Tura A, Merz H, Reinsberg M, Lüke M, Jager MJ, Grisanti S, Lüke J. Analysis of monosomy-3 in immunomagnetically isolated circulating melanoma cells in uveal melanoma patients. Pigment Cell Melanoma Res 2017; 29:583-9. [PMID: 27390171 DOI: 10.1111/pcmr.12507] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
Monosomy-3 in primary uveal melanoma (UM) is associated with a high risk of metastasis and mortality. Although circulating melanoma cells (CMC) can be found in most UM patients, only approximately 50% of the patients develop metastases. We utilized a novel immuno-FISH assay to detect chromosome-3 in intact CMC isolated by dual immunomagnetic enrichment. Circulating melanoma cells were detected in 91% of the patients (n = 44) with primary non-metastatic UM, of which 58% were positive for monosomy-3. The monosomy-3 status of CMC corresponded to the monosomy-3 status of the primary tumor in 10 of the 11 patients where this could be tested. Monosomy-3 in the CMC was associated with an advanced tumor stage (P = 0.046) and was detected in all four patients who developed metastasis within the follow-up period of 4 yr. This non-invasive technique may enable the identification of UM patients at risk for metastasis particularly when a primary tumor specimen is unavailable.
Collapse
Affiliation(s)
- Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany.
| | - Hartmut Merz
- Department of Pathology, University of Lübeck, Lübeck, Germany
| | | | - Matthias Lüke
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Julia Lüke
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Farquhar N, Thornton S, Coupland SE, Coulson JM, Sacco JJ, Krishna Y, Heimann H, Taktak A, Cebulla CM, Abdel-Rahman MH, Kalirai H. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 4:26-38. [PMID: 29416875 PMCID: PMC5783957 DOI: 10.1002/cjp2.86] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Uveal melanoma (UM) is a rare aggressive intraocular tumour with a propensity for liver metastases, occurring in ∼50% of patients. The tumour suppressor BAP1 is considered to be key in UM progression. Herein, we present the largest study to date investigating cellular expression patterns of BAP1 protein in 165 UMs, correlating these patterns to prognosis. Full clinical, histological, genetic, and follow‐up data were available for all patients. BAP1 gene sequencing was performed on a subset of 26 cases. An independent cohort of 14 UMs was examined for comparison. Loss of nuclear BAP1 (nBAP1) protein expression was observed in 54% (88/165) UMs. nBAP1 expression proved to be a significant independent prognostic parameter: it identified two subgroups within monosomy 3 (M3) UM, which are known to have a high risk of metastasis. Strikingly, nBAP1‐positiveM3 UMs were associated with prolonged survival compared to nBAP1‐negative M3 UMs (Log rank, p = 0.014). nBAP1 protein loss did not correlate with a BAP1 mutation in 23% (6/26) of the UMs analysed. Cytoplasmic BAP1 protein (cBAP1) expression was also observed in UM: although appearing ‘predominantly diffuse’ in most nBAP1‐negative UM, a distinct ‘focal perinuclear’ expression pattern – localized immediately adjacent to the cis Golgi – was seen in 31% (18/59). These tumours tended to carry loss‐of‐function BAP1 mutations. Our study demonstrates loss of nBAP1 expression to be the strongest prognostic marker in UM, confirming its importance in UM progression. Our data suggest that non‐genetic mechanisms account for nBAP1 loss in a small number of UMs. In addition, we describe a subset of nBAP1‐negative UM, in which BAP1 is sequestered in perinuclear bodies, most likely within Golgi, warranting further mechanistic investigation.
Collapse
Affiliation(s)
- Neil Farquhar
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Sophie Thornton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Cellular PathologyRoyal Liverpool University HospitalLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Medical OncologyClatterbridge Cancer CentreClatterbridgeUK
| | - Yamini Krishna
- Department of Cellular PathologyRoyal Liverpool University HospitalLiverpoolUK
| | - Heinrich Heimann
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Liverpool Ocular Oncology CentreRoyal Liverpool University HospitalLiverpoolUK
| | - Azzam Taktak
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Medical Physics & Clinical EngineeringRoyal Liverpool University HospitalLiverpoolUK
| | - Colleen M Cebulla
- Department of Ophthalmology and Visual ScienceHavener Eye Institute, The Ohio State UniversityColumbusOHUSA
| | - Mohamed H Abdel-Rahman
- Department of Ophthalmology and Visual ScienceHavener Eye Institute, The Ohio State UniversityColumbusOHUSA.,Division of Human Genetics, Department of Internal MedicineThe Ohio State UniversityColumbusOHUSA
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| |
Collapse
|
26
|
Shields CL, Say EAT, Hasanreisoglu M, Saktanasate J, Lawson BM, Landy JE, Badami AU, Sivalingam MD, Hauschild AJ, House RJ, Daitch ZE, Mashayekhi A, Shields JA, Ganguly A. Personalized Prognosis of Uveal Melanoma Based on Cytogenetic Profile in 1059 Patients over an 8-Year Period: The 2017 Harry S. Gradle Lecture. Ophthalmology 2017; 124:1523-1531. [PMID: 28495150 DOI: 10.1016/j.ophtha.2017.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To determine the personalized rate of uveal melanoma-related metastasis on the basis of individual tumor cytogenetic profile. DESIGN Retrospective case series. PARTICIPANTS A total of 1059 patients with uveal melanoma. METHODS Fine-needle aspiration biopsy (FNAB) for DNA amplification and whole genome array-based assay were performed for analysis of chromosomes 3, 6, and 8. MAIN OUTCOME MEASURES Melanoma-related metastasis. RESULTS The mean patient age was 57 years, and most were white (1026/1059, 97%). The melanoma involved the choroid (938/1059, 89%), ciliary body (85/1059, 8%), or iris (36/1059, 3%), with 19% being macular in location. The mean largest basal diameter was 11 mm (median, 12 mm; range, 3-24 mm), and mean thickness was 5 mm (median, 4 mm; range, 1-20 mm). On the basis of individual chromosomal mutations, risk for metastasis was increased for chromosome 3 partial monosomy (hazard ratio [HR], 2.84; P = 0.001), 3 complete monosomy (HR, 6.7, P < 0.001), 6q loss (HR, 3.1, P = 0.003), 8p loss (HR, 21.5, P < 0.001), and 8q gain (HR, 9.8, P < 0.001). Kaplan-Meier estimate for melanoma-related metastasis in 1, 3, 5, and 7 years for 3 partial monosomy was 1%, 5%, 14%, and 17%; for 3 complete monosomy was 3%, 19%, 28%, and 37%; for 6q loss was 8%, 23%, 49%, and 49%; for 8p loss was 8%, 29%, not estimable (NE), and NE; and for 8q gain was 6%, 21%, 35%, 48%, respectively. On the basis of personalized cytogenetic profiles, Kaplan-Meier estimates (1, 3, and 5 years) for melanoma-related metastasis for 3, 6, and 8 disomy (1%, 1%, 4% [HR, 1]) were low compared with the higher-risk combinations of 3 complete monosomy, 6p gain, and 8q gain (0%, 29%, 29% [HR, 10.6, P = 0.02]); 3 complete monosomy, 6 disomy, 8q gain, and 8p gain (14%, 14%, NE [HR, 18.3, P = 0.02]); 3 complete monosomy, 6 disomy, and 8q gain (8%, 27%, 39% [HR, 19.5, P < 0.001]); and 3 complete monosomy, 6 disomy, 8q gain, and 8p loss (3%, 28%, NE [HR, 31.6, P < 0.001]), respectively. CONCLUSIONS Risk for melanoma-related metastasis strongly correlates with personalized cytogenetic profiles, with 5-year Kaplan-Meier estimates ranging from 4% with chromosomes 3, 6, and 8 disomy up to 39% for 3 complete monosomy, 6 disomy, and 8q gain.
Collapse
Affiliation(s)
- Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Emil Anthony T Say
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Murat Hasanreisoglu
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jarin Saktanasate
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brendan M Lawson
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey E Landy
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anjali U Badami
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Meera D Sivalingam
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexander J Hauschild
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert J House
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zachary E Daitch
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arman Mashayekhi
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jerry A Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Comparing the Prognostic Value of BAP1 Mutation Pattern, Chromosome 3 Status, and BAP1 Immunohistochemistry in Uveal Melanoma. Am J Surg Pathol 2017; 40:796-805. [PMID: 27015033 DOI: 10.1097/pas.0000000000000645] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uveal melanoma (UM), a tumor of the eye, can be divided into 2 major classes correlating with patients' prognosis. Gene expression profiles and chromosome 3 status are correlated with tumor classification and prognosis. Somatic BAP1 mutations are another feature largely restricted to metastatic UM. Here we performed thorough BAP1 mutation analysis including sequencing and gene dosage analysis of all BAP1 coding exons as well as methylation analysis of the promoter CpG island in a set of 66 UMs. The results were compared with the BAP1 protein expression as determined by immunohistochemistry and the tumor-related survival of the patients. BAP1 sequencing and gene dosage analysis of BAP1 exons by multiplex ligation-dependent probe amplification revealed a mutation in 33 (89%) of 37 tumors with monosomy 3 (M3) or isodisomy 3. BAP1 mutations were not detected in any of the 28 tumors with disomy 3 or partial monosomy 3 (partM3). Most of the sequence mutations (21 of 28) were frame-shift, splice-site, or nonsense mutations leading to a premature termination codon. BAP1 protein as determined by immunohistochemistry was absent in all samples with a BAP1 mutation irrespective of the functional type of mutation. Kaplan-Meier analysis revealed a highly significant association between BAP1 protein staining and patients' survival (P=0.0004). The association between BAP1 mutation status and tumor-related survival was less pronounced but still significant (P=0.0023). We conclude that BAP1 protein staining is favorable over BAP1 mutation screening by Sanger sequencing for prognostic testing of UM patients.
Collapse
|
28
|
Vogl TJ, Koch SA, Lotz G, Gebauer B, Willinek W, Engelke C, Brüning R, Zeile M, Wacker F, Vogel A, Radeleff B, Scholtz JE. Percutaneous Isolated Hepatic Perfusion as a Treatment for Isolated Hepatic Metastases of Uveal Melanoma: Patient Outcome and Safety in a Multi-centre Study. Cardiovasc Intervent Radiol 2017; 40:864-872. [PMID: 28144756 DOI: 10.1007/s00270-017-1588-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Percutaneous isolated hepatic perfusion (PIHP) with Melphalan has been developed as a treatment for patients with isolated hepatic metastases of uveal melanoma. We discuss patient outcome and safety in a retrospective multi-centre study. MATERIALS AND METHODS Between 2012 and 2016 18 patients with un-resectable isolated hepatic metastases of uveal melanoma received single or repeated PIHP with Melphalan (n = 35) at seven sites. Progression-free time, overall survival time (OS) and tumour response by means of RECIST 1.1 criteria were evaluated. Peri- and post-procedural adverse events (AE) were registered. Patients' life quality was assessed using four-point scale questionnaires. RESULTS Of 18 patients, initial PIHP treatment resulted in partial response (PR) in eight, stable disease (SD) in seven and progressive disease (PD) in three cases. Nine patients underwent second PIHP with PR in eight cases and PD in one case. Six patients were evaluated after third PIHP with PR in five patients and SD in one patient. Two patients received fourth PIHP with PD in both cases. Median OS was 9.6 months (range 1.6-41.0 months). Median progression-free survival time was 12.4 months (range 0.9-41.0 months) with 1-year survival of 44%. Most common post-procedural AE grade 3 and 4 were temporary leukopenia (n = 11) and thrombocytopenia (n = 8). Patients' self-assessments showed good ratings for overall health and quality of life with only slight changes after PIHP, and a high degree of satisfaction with PIHP treatment. CONCLUSION PIHP with Melphalan proved to be a relatively safe, minimal-invasive and repeatable treatment for patients with non-resectable hepatic metastases of uveal melanoma.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Silvia A Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Gösta Lotz
- Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Gebauer
- Department of Diagnostic and Interventional Radiology, Campus Charité Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Winfried Willinek
- Department of Diagnostic and Interventional Radiology, Brüderkrankenhaus Trier, Nordallee 1, 54292, Trier, Germany
| | - Christoph Engelke
- Department of Diagnostic and Interventional Radiology, Evangelisches Krankenhaus Göttingen-Weende gGmbH, An der Lutter 24, 37075, Göttingen, Germany
| | - Roland Brüning
- Department of Diagnostic and Interventional Radiology, Asklepios Klinik Barmbek, Rübenkamp 220, 22291, Hamburg, Germany
| | - Martin Zeile
- Department of Diagnostic and Interventional Radiology, Asklepios Klinik Barmbek, Rübenkamp 220, 22291, Hamburg, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Boris Radeleff
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Voßstraße 2, 69115, Heidelberg, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge StreetSuite 400, Boston, MA, 02141, USA.
| |
Collapse
|
29
|
Next-Generation Sequencing Reveals Pathway Activations and New Routes to Targeted Therapies in Cutaneous Metastatic Melanoma. Am J Dermatopathol 2017; 39:1-13. [PMID: 28045747 DOI: 10.1097/dad.0000000000000729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Comprehensive genomic profiling of clinical samples by next-generation sequencing (NGS) can identify one or more therapy targets for the treatment of metastatic melanoma (MM) with a single diagnostic test. METHODS NGS was performed on hybridization-captured, adaptor ligation-based libraries using DNA extracted from 4 formalin-fixed paraffin-embedded sections cut at 10 microns from 30 MM cases. The exons of 182 cancer-related genes were fully sequenced using the Illumina HiSeq 2000 at an average sequencing depth of 1098X and evaluated for genomic alterations (GAs) including point mutations, insertions, deletions, copy number alterations, and select gene fusions/rearrangements. Clinically relevant GAs (CRGAs) were defined as those identifying commercially available targeted therapeutics or therapies in registered clinical trials. RESULTS The 30 American Joint Committee on Cancer Stage IV MM included 17 (57%) male and 13 (43%) female patients with a mean age of 59.5 years (range 41-83 years). All MM samples had at least 1 GA, and an average of 2.7 GA/sample (range 1-7) was identified. The mean number of GA did not differ based on age or sex; however, on average, significantly more GAs were identified in amelanotic and poorly differentiated MM. GAs were most commonly identified in BRAF (12 cases, 40%), CDKN2A (6 cases, 20%), NF1 (8 cases, 26.7%), and NRAS (6 cases, 20%). CRGAs were identified in all patients, and represented 77% of the GA (64/83) detected. The median and mean CRGAs per tumor were 2 and 2.1, respectively (range 1-7). CONCLUSION Comprehensive genomic profiling of MM, using a single diagnostic test, uncovers an unexpectedly high number of CRGA that would not be identified by standard of care testing. Moreover, NGS has the potential to influence therapy selection and can direct patients to enter relevant clinical trials evaluating promising targeted therapies.
Collapse
|
30
|
Minca EC, Tubbs RR, Portier BP, Wang Z, Lanigan C, Aronow ME, Triozzi PL, Singh A, Cook JR, Saunthararajah Y, Plesec TP, Schoenfield L, Cawich V, Sulpizio S, Schultz RA. Genomic microarray analysis on formalin-fixed paraffin-embedded material for uveal melanoma prognostication. Cancer Genet 2014; 207:306-15. [PMID: 25442074 DOI: 10.1016/j.cancergen.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022]
Abstract
Cytogenetic alterations are strong outcome prognosticators in uveal melanoma (UVM). Monosomy 3 (-3) and MYC amplification at 8q24 are commonly tested by fluorescence in situ hybridization (FISH). Alternatively, microarray analysis provides whole genome data, detecting partial chromosome loss, loss of heterozygosity (LOH), or abnormalities unrepresented by FISH probes. Nonfixed frozen tissue is conventionally used for microarray analysis but may not always be available. We assessed the feasibility of genomic microarray analysis for high resolution interrogation of UVM using formalin-fixed paraffin-embedded tissue (FFPET) as an alternative to frozen tissue (FZT). Enucleations from 44 patients (clinical trial NCT00952939) yielded sufficient DNA from FFPET (n = 34) and/or frozen tissue (n = 41) for comparative genomic hybridization and select single nucleotide polymorphism analysis (CGH/SNP) on Roche-NimbleGen OncoChip arrays. CEP3 FISH analysis was performed on matched cytology ThinPrep material. CGH/SNP analysis was successful in 30 of 34 FFPET and 41 of 41 FZT samples. Of 27 paired FFPET/FZT samples, 26 (96.3%) were concordant for at least four of six major recurrent abnormalities (-3, +8q, -1p, +6p, -6q, -8p), and 25 of 27 (92.6%) were concordant for -3. Results of CGH/SNP were concordant with the CEP3 FISH results in 27 of 30 (90%) FFPET and 38 of 41 (92.6%) FZT cases; partial -3q was detected in two CEP3 FISH-negative cases and whole chromosome 3, 4, and 6 SNP-LOH in one case. CGH detection of -3, +8q, -8p on FFPET and FZT showed significant correlation with the clinical outcome measures (metastasis development, time to progression, survival). Results of the UVM genotyping by CGH/SNP on FFPET are highly concordant with those of the FZT analysis and with those of the CEP3 FISH analysis, and therefore CGH/SNP is a practical method for UVM prognostication. Genome-wide coverage provides additional data with potential relevance to UVM biology, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Eugen C Minca
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raymond R Tubbs
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bryce P Portier
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Wang
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher Lanigan
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary E Aronow
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Arun Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Thomas P Plesec
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn Schoenfield
- Departments of Molecular and Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Victoria Cawich
- Signature Genomics Laboratories, Perkin Elmer, Spokane, WA, USA
| | - Scott Sulpizio
- Signature Genomics Laboratories, Perkin Elmer, Spokane, WA, USA
| | - Roger A Schultz
- Signature Genomics Laboratories, Perkin Elmer, Spokane, WA, USA.
| |
Collapse
|
31
|
van Essen TH, van Pelt SI, Versluis M, Bronkhorst IHG, van Duinen SG, Marinkovic M, Kroes WGM, Ruivenkamp CAL, Shukla S, de Klein A, Kiliç E, Harbour JW, Luyten GPM, van der Velden PA, Verdijk RM, Jager MJ. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol 2014; 98:1738-43. [PMID: 25147369 DOI: 10.1136/bjophthalmol-2014-305047] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To determine whether BAP1 gene and protein expression associates with different prognostic parameters in uveal melanoma and whether BAP1 expression correctly identifies patients as being at risk for metastases, following enucleation of the primary tumour. METHODS Thirty cases of uveal melanoma obtained by enucleation between 1999 and 2004 were analysed for a variety of prognostic markers, including histological characteristics, chromosome aberrations obtained by fluorescence in situ hybridisation (FISH) and single nucleotide polymorphism (SNP) analysis and gene expression profiling. These parameters were compared with BAP1 gene expression and BAP1 immunostaining. RESULTS The presence of monosomy of chromosome 3 as identified by the different chromosome 3 tests showed significantly increased HRs (FISH on isolated nuclei cut-off 30%: HR 11.6, p=0.002; SNP analysis: HR 20.3, p=0.004) for death due to metastasis. The gene expression profile class 2, based on the 15-gene expression profile, similarly provided a significantly increased HR for a poor outcome (HR 8.5, p=0.005). Lower BAP1 gene expression and negative BAP1 immunostaining (50% of 28 tumours were immunonegative) were both associated with these markers for prognostication: FISH cut-off 30% monosomy 3 (BAP1 gene expression: p=0.037; BAP1 immunostaining: p=0.001), SNP-monosomy 3 (BAP1 gene expression: p=0.008; BAP1 immunostaining: p=0.002) and class 2 profile (BAP1 gene expression: p<0.001; BAP1 immunostaining: p=0.001) and were themselves associated with an increased risk of death due to metastasis (BAP1 gene expression dichotomised: HR 8.7, p=0.006; BAP1 immunostaining: HR 4.0, p=0.010). CONCLUSIONS Loss of BAP1 expression associated well with all of the methods currently used for prognostication and was itself predictive of death due to metastasis in uveal melanoma after enucleation, thereby emphasising the importance of further research on the role of BAP1 in uveal melanoma.
Collapse
Affiliation(s)
- T Huibertus van Essen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Sake I van Pelt
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Inge H G Bronkhorst
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shruti Shukla
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Annelies de Klein
- Department of Human Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Human Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J William Harbour
- Ocular Oncology Service, Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rob M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
32
|
Cornejo KM, Hutchinson L, Cosar EF, Smith T, Tomaszewicz K, Dresser K, Deng A. Is it a primary or metastatic melanocytic neoplasm of the central nervous system?: A molecular based approach. Pathol Int 2014; 63:559-64. [PMID: 24274719 DOI: 10.1111/pin.12107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/03/2013] [Indexed: 12/11/2022]
Abstract
Primary melanocytic neoplasms of the central nervous system (CNS) are uncommon and must be distinguished from metastatic lesions as patients with metastatic disease carry a worse prognosis. Therefore, tools to aid in the diagnosis of a primary CNS melanocytic neoplasm would be of clinical utility. Primary CNS melanocytic neoplasms, including uveal melanomas have frequent mutations in GNAQ and GNA11, but are rare in cutaneous and mucosal melanomas. Additionally, primary uveal melanomas often exhibit monosomy 3 conferring an elevated risk of metastasis. We present a 63 year-old male with a melanocytic neoplasm in the thoracic spinal cord. Molecular studies revealed the tumor contained a GNAQ mutation and four-color fluorescent in situ hybridization (FISH) composed of chromosome enumeration probes for 3, 7, 17 and a locus specific probe for 9p21/CDKN2A yielded a normal result (i.e. two copies per cell), favoring a primary versus metastatic melanocytic neoplasm of the CNS. We report a case in which the combination of mutational analysis and FISH aided in identifying the origin of the neoplasm.
Collapse
Affiliation(s)
- Kristine M Cornejo
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Genetic and clinico-pathologic analysis of metastatic uveal melanoma. Mod Pathol 2014; 27:175-83. [PMID: 23887304 DOI: 10.1038/modpathol.2013.138] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 11/08/2022]
Abstract
Uveal melanoma is the most common malignant tumor of the adult eye. Fifty percent of tumors will eventually metastasize, and there are no effective treatments for them. Recent studies of uveal melanoma have identified activating mutations in GNAQ and GNA11, loss-of-function mutations in the tumor suppressor gene BAP1, and recurrent mutations in codon 625 of SF3B1. Previous studies have reported the existence of a higher frequency of GNA11 than GNAQ mutations, frequent BAP1 loss, and rare SF3B1 mutations in metastatic uveal melanoma. We analyzed a cohort of 30 uveal melanoma metastases for the occurrence of GNAQ, GNA11, and SF3B1 mutations, as well as BAP1 loss, and correlated these parameters with clinical and histopathologic features. Most (92%) tumors were composed of cells with an epithelioid or mixed (<100% spindle cells) morphology. Tumor samples composed exclusively of spindle cells were rare (n=2, 8%). Most tumors showed a moderate to marked degree of nuclear pleomorphism (n=24, 96%), and contained hyperchromatic, vesicular nuclei with variably conspicuous nucleoli. GNA11 mutations were considerably more frequent than GNAQ mutations (GNA11, GNAQ, and wild-type in 18 (60%), 6 (20%), and 6 (20%) cases, respectively). SF3B1 mutation was found in 1 of 26 tumors (4%), whereas loss of BAP1 expression was present in 13 of 16 tumors (81%). Patients with GNA11-mutant tumors had poorer disease-specific survival (60.0 vs 121.4 months, P=0.03) and overall survival (50.6 vs 121.4 months, P=0.03) than those with tumors lacking GNA11 mutations. The survival data, combined with the predominance of GNA11 mutations in metastases, raises the possibility that GNA11-mutant tumors may be associated with a higher risk of metastasis and poorer prognosis than GNAQ-mutant tumors. Further studies of uveal melanoma are required to investigate the functional and prognostic relevance of oncogenic mutations in GNA11 and GNAQ.
Collapse
|
34
|
BAP1 protein loss by immunohistochemistry: A potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology 2013; 45:651-6. [DOI: 10.1097/pat.0000000000000002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Surriga O, Rajasekhar VK, Ambrosini G, Dogan Y, Huang R, Schwartz GK. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther 2013; 12:2817-26. [PMID: 24140933 DOI: 10.1158/1535-7163.mct-13-0499] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uveal melanoma is the most common primary intraocular malignant tumor in adults and half of the primary tumors will develop fatal metastatic disease to the liver and the lung. Crizotinib, an inhibitor of c-Met, anaplastic lymphoma kinase (ALK), and ROS1, inhibited the phosphorylation of the c-Met receptor but not of ALK or ROS1 in uveal melanoma cells and tumor tissue. Consequently, migration of uveal melanoma cells was suppressed in vitro at a concentration associated with the specific inhibition of c-Met phosphorylation. This effect on cell migration could be recapitulated with siRNA specific to c-Met but not to ALK or ROS1. Therefore, we developed a uveal melanoma metastatic mouse model with EGFP-luciferase-labeled uveal melanoma cells transplanted by retro-orbital injections to test the effect of crizotinib on metastasis. In this model, there was development of melanoma within the eye and also metastases to the liver and lung at 7 weeks after the initial transplantation. When mice were treated with crizotinib starting 1 week after the transplantation, we observed a significant reduction in the development of metastases as compared with untreated control sets. These results indicate that the inhibition of c-Met activity alone may be sufficient to strongly inhibit metastasis of uveal melanoma from forming, suggesting crizotinib as a potential adjuvant therapy for patients with primary uveal melanoma who are at high risk for the development of metastatic disease.
Collapse
Affiliation(s)
- Oliver Surriga
- Corresponding Author: Gary K. Schwartz, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065.
| | | | | | | | | | | |
Collapse
|
36
|
Martín-Algarra S, Fernández-Figueras MT, López-Martín JA, Santos-Briz A, Arance A, Lozano MD, Berrocal A, Ríos-Martín JJ, Espinosa E, Rodríguez-Peralto JL. Guidelines for biomarker testing in metastatic melanoma: a National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2013; 16:362-73. [DOI: 10.1007/s12094-013-1090-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
|
37
|
Koopmans AE, Vaarwater J, Paridaens D, Naus NC, Kilic E, de Klein A. Patient survival in uveal melanoma is not affected by oncogenic mutations in GNAQ and GNA11. Br J Cancer 2013; 109:493-6. [PMID: 23778528 PMCID: PMC3721402 DOI: 10.1038/bjc.2013.299] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mutations in GNAQ and GNA11, encoding the oncogenic G-protein alpha subunit q and 11, respectively, occur frequently in the majority of uveal melanomas. METHODS Exons 4 and 5 from GNAQ and GNA11 were amplified and sequenced from 92 ciliary body and choroidal melanomas. The mutation status was correlated with disease-free survival (DFS) and other parameters. RESULTS None of the tumours harboured a GNAQ exon 4 mutation. A GNAQ mutation in exon 5 codon 209 was found in 46 out of 92 (50.0%) of the tumours. Only 1 out of 92 (1.1%) melanomas showed a mutation in GNA11 exon 4 codon 183, whereas 39 out of 92 (42.4%) harboured a mutation in exon 5 of GNA11 codon 209. Six tumours did not show any mutations in exons 4 and 5 of these genes. Univariate analyses showed no correlation between DFS and the mutation status. CONCLUSION GNAQ and GNA11 mutations are, in equal matter, not associated with patient outcome.
Collapse
Affiliation(s)
- A E Koopmans
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Current World Literature. Curr Opin Oncol 2013; 25:205-208. [DOI: 10.1097/cco.0b013e32835ec49f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
The impact of selected factors on early diagnosis of multiple primary cancers in patients with uveal melanoma. Contemp Oncol (Pozn) 2013; 17:510-4. [PMID: 24592138 PMCID: PMC3934038 DOI: 10.5114/wo.2013.38914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/21/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY To find differences between a group of patients with intraocular melanoma and another primary cancer and a group of patients with no identifiable second primary cancer. MATERIAL AND METHODS The analysis involved 240 participants, selected from patients who were treated for uveal melanoma at the Department of Ophthalmology and Ocular Oncology of the Jagiellonian University Medical College between the year 1998 and 2007. Among those patients 97 were diagnosed with one or more independent primary cancers. Those patients were subject to a comparative analysis with a second group of 143 patients who had uveal melanoma with no identifiable second primary cancer. RESULTS STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN THE GROUP OF PATIENTS WITH INTRAOCULAR MELANOMA AND ANOTHER PRIMARY CANCER, AND THE GROUP OF PATIENTS WITH UVEAL MELANOMA (BUT WITHOUT ANOTHER DIAGNOSED PRIMARY NEOPLASM) WERE AS FOLLOWS: more common family history of cancer, better education, living in cities (especially with a population over 500 thousand), previous surgery except for uveal melanoma, and two or less than two pregnancies in the case of women. CONCLUSIONS This analysis revealed that more common family history of cancer, better education, living in cities (especially with a population over 500 thousand), previous surgery, except for uveal melanoma, and two or less than two pregnancies in the case of women, were associated with a higher rate of detection of multiple primary cancers.
Collapse
|