1
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Wang N, Singh D, Wu Q. Astragalin attenuates diabetic cataracts via inhibiting aldose reductase activity in rats. Int J Ophthalmol 2023; 16:1186-1195. [PMID: 37602342 PMCID: PMC10398533 DOI: 10.18240/ijo.2023.08.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 08/22/2023] Open
Abstract
AIM To investigate the aldose reductase (AR) inhibition capacity of astragalin (AST) against streptozoticin-induced diabetic cataracts (DCs) in rats. METHODS Ex vivo investigations were conducted by treating the lens of a goat placed for 72h in artificial aqueous humor (AAH) of pH 7.8 at room temperature with cataract-causing substance (55 mmol/L of galactose) and in vivo studies were performed on rats via induction with streptozotocin. AST was administered at different dose levels and scrutinize for DC activity. RESULTS In diabetic rats, AST improved the body weight, blood insulin, and glucose as well as the levels of galactitol in a dose-dependent way, other biochemical parameters i.e. inflammatory mediators and cytokines, and also suppress AR activity. The level of the antioxidant parameters such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activity were also altered on a diabetic lens after the administration of the AST. CONCLUSION AST protects against lens opacification to avoid cataracts and polyols formation, indicating that it could be used as a potential therapeutic agent for diabetes.
Collapse
Affiliation(s)
- Na Wang
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi Province, China
| | - Deepika Singh
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Qiong Wu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
3
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
4
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Proc Natl Acad Sci U S A 2022; 119:e2203743119. [PMID: 35867836 PMCID: PMC9335306 DOI: 10.1073/pnas.2203743119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-β signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-β-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-β interactome. However, molecular events jointly regulated by TGF-β and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-β-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-β-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-β. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-β-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-β-regulated functions.
Collapse
|
6
|
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 2022; 11:antiox11071285. [PMID: 35883773 PMCID: PMC9311900 DOI: 10.3390/antiox11071285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
A cataract is a condition that causes 17 million people to experience blindness and is the most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural antioxidant extracts for cataract therapy may be investigated further in light of these findings, which show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose reductase and preventing apoptosis of the eye lens.
Collapse
Affiliation(s)
- Eva Imelda
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia
- Department of Ophthalmology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence:
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Rodiah Rahmawaty Lubis
- Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia;
| | - Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| | - Ade John Nursalim
- Department of Ophthalmology, General Hospital Prof. Dr. R. D. Kandou, Manado 955234, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| |
Collapse
|
7
|
Koç Ş. A possible follow-up method for diabetic heart failure patients. Int J Clin Pract 2021; 75:e14794. [PMID: 34482595 DOI: 10.1111/ijcp.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plasma osmolarity is maintained through various mechanisms. The osmolarity of the aqueous humor around the crystalline lens is correlated with plasma osmolarity. A vacuole can be formed in the lens upon changes in osmolarity. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new in the treatment of heart failure. They can cause osmotic diuresis but do not affect plasma osmolarity. OBJECTIVE It is unclear if the presence or absence of lens vacuole changes can monitor diabetic heart failure and SGLT2i treatment efficacy. METHODS Web of Science, PubMed and Scopus databases were searched for relevant articles about osmolarity, diabetes, transient receptor potential vanilloid channel, diabetic heart failure, lens vacuoles up to May 2021. MAIN MESSAGE The effect of SGLT2i on osmosis underlies its benefit to heart failure, but this in turn affects many other mechanisms. Failure to experience osmolarity changes will reduce the negative changes in terms of heart failure affected by osmolarity. A practical observable method is needed. CONCLUSIONS There is a possibility of using lens vacuoles in the follow-up of diabetic heart failure patients.
Collapse
Affiliation(s)
- Şahbender Koç
- University of Health Sciences, Keçiören Education and Training Hospital, Ankara, Turkey
| |
Collapse
|
8
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
10
|
Failure of Oxysterols Such as Lanosterol to Restore Lens Clarity from Cataracts. Sci Rep 2019; 9:8459. [PMID: 31186457 PMCID: PMC6560215 DOI: 10.1038/s41598-019-44676-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/01/2019] [Indexed: 01/13/2023] Open
Abstract
The paradigm that cataracts are irreversible and that vision from cataracts can only be restored through surgery has recently been challenged by reports that oxysterols such as lanosterol and 25-hydroxycholesterol can restore vision by binding to αB-crystallin chaperone protein to dissolve or disaggregate lenticular opacities. To confirm this premise, in vitro rat lens studies along with human lens protein solubilization studies were conducted. Cataracts were induced in viable rat lenses cultured for 48 hours in TC-199 bicarbonate media through physical trauma, 10 mM ouabain as Na+/K+ ATPase ion transport inhibitor, or 1 mM of an experimental compound that induces water influx into the lens. Subsequent 48-hour incubation with 15 mM of lanosterol liposomes failed to either reverse these lens opacities or prevent the further progression of cataracts to the nuclear stage. Similarly, 3-day incubation of 47-year old human lenses in media containing 0.20 mM lanosterol or 60-year-old human lenses in 0.25 and 0.50 mM 25-hydroxycholesterol failed to increase the levels of soluble lens proteins or decrease the levels of insoluble lens proteins. These binding studies were followed up with in silico binding studies of lanosterol, 25-hydroxycholesterol, and ATP as a control to two wild type (2WJ7 and 2KLR) and one R120G mutant (2Y1Z) αB-crystallins using standard MOETM (Molecular Operating Environment) and Schrödinger's Maestro software. Results confirmed that compared to ATP, both oxysterols failed to reach the acceptable threshold binding scores for good predictive binding to the αB-crystallins. In summary, all three studies failed to provide evidence that lanosterol or 25-hydroxycholesterol have either anti-cataractogenic activity or bind aggregated lens protein to dissolve cataracts.
Collapse
|
11
|
Kelkar A, Kelkar J, Mehta H, Amoaku W. Cataract surgery in diabetes mellitus: A systematic review. Indian J Ophthalmol 2018; 66:1401-1410. [PMID: 30249823 PMCID: PMC6173035 DOI: 10.4103/ijo.ijo_1158_17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
India is considered the diabetes capital of the world, and a significant proportion of patients undergoing cataract surgery are diabetic. Considering this, we reviewed the principles and guidelines of managing cataract in patients with diabetes. The preoperative, intraoperative, and postoperative factors are of paramount importance in the management of diabetic cataract patients. Particularly, the early recognition and treatment of diabetic retinopathy or maculopathy before cataract surgery influence the final visual outcome and play a major role in perioperative decision-making. Better understanding of various factors responsible for favorable outcome of cataract surgery in diabetic patients may guide us in better overalll management of these patients and optimizing the results.
Collapse
Affiliation(s)
- Aditya Kelkar
- National Institute of Ophthalmology, Pune, Maharashtra, India
| | - Jai Kelkar
- National Institute of Ophthalmology, Pune, Maharashtra, India
| | - Hetal Mehta
- National Institute of Ophthalmology, Pune, Maharashtra, India
| | - Winfried Amoaku
- Department of Ophthalmology, Nottingham University Hospitals NHS Trust, University of Nottingham, Nott Inghamshire, UK
| |
Collapse
|
12
|
The optical properties of rat, porcine and human lenses in organ culture treated with dexamethasone. Exp Eye Res 2018; 170:67-75. [DOI: 10.1016/j.exer.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
|
13
|
Ji L, Cheng L, Yang Z. Upregulations of Clcn3 and P-Gp Provoked by Lens Osmotic Expansion in Rat Galactosemic Cataract. J Diabetes Res 2017; 2017:3472735. [PMID: 29527534 PMCID: PMC5735653 DOI: 10.1155/2017/3472735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/01/2017] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Lens osmotic expansion, provoked by overactivated aldose reductase (AR), is the most essential event of sugar cataract. Chloride channel 3 (Clcn3) is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp) acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract. METHODS AND RESULTS In vitro, lens epithelial cells (LECs) were primarily cultured in gradient galactose medium (10-60 mM), more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day. CONCLUSION Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.
Collapse
Affiliation(s)
- Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lixia Cheng
- Department of Endocrinology, People's Hospital of Weifang, Weifang, China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways. Sci Rep 2017; 7:9992. [PMID: 28855599 PMCID: PMC5577203 DOI: 10.1038/s41598-017-10117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.
Collapse
|
16
|
Viggiano E, Marabotti A, Politano L, Burlina A. Galactose-1-phosphate uridyltransferase deficiency: A literature review of the putative mechanisms of short and long-term complications and allelic variants. Clin Genet 2017; 93:206-215. [PMID: 28374897 DOI: 10.1111/cge.13030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022]
Abstract
Galactosemia type 1 is an autosomal recessive disorder of galactose metabolism, determined by a deficiency in the enzyme galactose-1-phosphate uridyltransferase (GALT). GALT deficiency is classified as severe or variant depending on biochemical phenotype, genotype and potential to develop acute and long-term complications. Neonatal symptoms usually resolve after galactose-restricted diet; however, some patients, despite the diet, can develop long-term complications, in particular when the GALT enzyme activity results absent or severely decreased. The mechanisms of acute and long-term complications are still discussed and several hypotheses are presented in the literature like enzymatic inhibition, osmotic stress, endoplasmic reticulum stress, oxidative stress, defects of glycosylation or epigenetic modification. This review summarizes the current knowledge of galactosemia, in particular the putative mechanisms of neonatal and long-term complications and the molecular genetics of GALT deficiency.
Collapse
Affiliation(s)
- E Viggiano
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital of Padua, Padua, Italy.,Cardiomyology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.,Interuniversity Center "ELFID", University of Salerno, Fisciano, Italy
| | - L Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Burlina
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital of Padua, Padua, Italy
| |
Collapse
|
17
|
Chang KC, Shieh B, Petrash JM. Influence of aldose reductase on epithelial-to-mesenchymal transition signaling in lens epithelial cells. Chem Biol Interact 2017; 276:149-154. [PMID: 28137510 DOI: 10.1016/j.cbi.2017.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
Abstract
Cataract is the most frequent cause of blindness worldwide and is treated by surgical removal of the opaque lens to restore the light path to the retina. While cataract surgery is a safe procedure, some patients develop a complication of the surgery involving opacification and wrinkling of the posterior lens capsule. This process, called posterior capsule opacification (PCO), requires a second clinical treatment that can in turn lead to additional complications. Prevention of PCO is a current unmet need in the vision care enterprise. The pathogenesis of PCO involves the transition of lens epithelial cells to a mesenchymal phenotype, designated epithelial-to-mesenchymal transition (EMT). Our previous studies showed that transgenic mice designed for overexpression of human aldose reductase developed lens defects reminiscent of PCO. In the current study, we evaluated the impact of aldose reductase (AR) on expression of expression of EMT markers in the lens. Primary lens epithelial cells from AR-transgenic mice showed downregulated expression of Foxe3 and Pax6 and increased expression of α-SMA, fibronectin and snail, a pattern of gene expression typical of cells undergoing EMT. A role for AR in these changes was further confirmed when we observed that they could be normalized by treatment of cells with Sorbinil, an AR inhibitor. Smad-dependent and Smad-independent pathways are known to contribute to EMT. Interestingly, AR overexpression induced ERK but not Smad-2 activation. These results suggest that elevation of AR may lead to activation of ERK signaling and thus play a role in TGF-β/Smad independent induction of EMT in lens epithelial cells.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Ji L, Cheng L, Yang Z. Diosgenin, a Novel Aldose Reductase Inhibitor, Attenuates the Galactosemic Cataract in Rats. J Diabetes Res 2017; 2017:7309816. [PMID: 29038789 PMCID: PMC5605930 DOI: 10.1155/2017/7309816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To seek efficient aldose reductase inhibitors (ARIs) with excellent in vitro and in vivo biological activities against rat galactosemic cataract. METHODS The method was firstly optimized to screen strong ARIs from nonoriented synthetic compounds and natural extracts. Then, diosgenin was assessed on osmotic expansion of primarily cultured lens epithelial cells (LECs) induced by galactose (50 mM). Diosgenin was administered to galactosemic rats by oral (100 and 200 mg/kg) or direct drinking (0.1%) to evaluate its anticataract effects. RESULTS Diosgenin was found as the strongest ARI with IC50 of 4.59 × 10-6 mol/L. Diosgenin (10 μM) evidently inhibited the formation of tiny vacuoles and upregulation of AR mRNA in LECs. In vivo, diosgenin delayed lens opacification, inhibited the increase of ratio of lens weight to body weight, and decreased AR activity, galactitol level, and AR mRNA expression, especially in the diosgenin drinking (0.1%) group. CONCLUSIONS Diosgenin was an efficient ARI, which not only significantly decreased the LECs' osmotic expansion in vitro but also markedly delayed progression of rat galactosemic cataract in vivo. Thus, diosgenin rich food can be recommended to diabetic subjects as dietary management to postpone the occurrence of sugar cataract, and diosgenin deserves further investigation for chronic diabetic complications.
Collapse
Affiliation(s)
- Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lixia Cheng
- Department of Endocrinology, Weifang People's Hospital, Weifang, China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Kador PF, Wyman M, Oates PJ. Aldose reductase, ocular diabetic complications and the development of topical Kinostat(®). Prog Retin Eye Res 2016; 54:1-29. [PMID: 27102270 PMCID: PMC11844803 DOI: 10.1016/j.preteyeres.2016.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a major health problem with devastating effects on ocular health in both industrialized and developing countries. The control of hyperglycemia is critical to minimizing the impact of DM on ocular tissues because inadequate glycemic control leads to ocular tissue changes that range from a temporary blurring of vision to permanent vision loss. The biochemical mechanisms that promote the development of diabetic complications have been extensively studied. As a result, a number of prominent biochemical pathways have been identified. Among these, the two-step sorbitol pathway has been the most extensively investigated; nevertheless, it remains controversial. To date, long-term pharmacological studies in animal models of diabetes have demonstrated that the onset and development of ocular complications that include keratopathy, retinopathy and cataract can be ameliorated by the control of excess metabolic flux through aldose reductase (AR). Clinically the alleles of AR have been linked to the rapidity of onset and severity of diabetic ocular complications in diabetic patient populations around the globe. In spite of these promising preclinical and human genetic rationales, several clinical trials of varying durations with structurally diverse aldose reductase inhibitors (ARIs) have shown limited success or failure in preventing or arresting diabetic retinopathy. Despite these clinical setbacks, topical ARI Kinostat(®) promises to find a home in clinical veterinary ophthalmology where its anticipated approval by the FDA will present an alternative treatment paradigm to cataract surgery in diabetic dogs. Here, we critically review the role of AR in diabetes mellitus-linked ocular disease and highlight the development of Kinostat(®) for cataract prevention in diabetic dogs. In addition to the veterinary market, we speculate that with further safety and efficacy studies in humans, Kinostat(®) or a closely related product could have a future role in treating diabetic keratopathy.
Collapse
Affiliation(s)
- Peter F Kador
- College of Pharmacy and Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE, USA; Therapeutic Vision, Inc., Omaha, NE, USA.
| | - Milton Wyman
- Therapeutic Vision, Inc., Omaha, NE, USA; College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
20
|
Kyei S, Koffuor GA, Ramkissoon P, Abu EK, Sarpong JF. Anti-Cataract Potential ofHeliotropium indicumLinn on Galactose-Induced Cataract in Sprague-Dawley Rats. Curr Eye Res 2016; 42:394-401. [DOI: 10.1080/02713683.2016.1198486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Samuel Kyei
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| | - George A. Koffuor
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Paul Ramkissoon
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emmanuel K. Abu
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| | - Josephine F. Sarpong
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| |
Collapse
|
21
|
Díez-Dacal B, Sánchez-Gómez FJ, Sánchez-Murcia PA, Milackova I, Zimmerman T, Ballekova J, García-Martín E, Agúndez JAG, Gharbi S, Gago F, Stefek M, Pérez-Sala D. Molecular Interactions and Implications of Aldose Reductase Inhibition by PGA1 and Clinically Used Prostaglandins. Mol Pharmacol 2016; 89:42-52. [PMID: 26487510 DOI: 10.1124/mol.115.100693] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 02/14/2025] Open
Abstract
Aldose reductase (AKR1B1) is a critical drug target because of its involvement in diabetic complications, inflammation, and tumorigenesis. However, to date, development of clinically useful inhibitors has been largely unsuccessful. Cyclopentenone prostaglandins (cyPGs) are reactive lipid mediators that bind covalently to proteins and exert anti-inflammatory and antiproliferative effects in numerous settings. By pursuing targets for modification by cyPGs we have found that the cyPG PGA1 binds to and inactivates AKR1B1. A PGA1-AKR1B1 adduct was observed, both by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and by SDS-PAGE using biotinylated PGA1 (PGA1-B). Insight into the molecular interactions between AKR1B1 and PGA1 was advanced by molecular modeling. This anticipated the addition of PGA1 to active site Cys298 and the potential reversibility of the adduct, which was supported experimentally. Indeed, loss of biotin label from the AKR1B1-PGA1-B adduct was favored by glutathione, indicating a retro-Michael reaction, which unveils new implications of cyPG-protein interaction. PGA1 elicited only marginal inhibition of aldehyde reductase (AKR1A1), considered responsible for the severe adverse effects of many AKR1B1 inhibitors. Interestingly, other prostaglandins (PGs) inhibited the enzyme, including non-electrophilic PGE1 and PGE2, currently used in clinical practice. Moreover, both PGA1 and PGE1 reduced the formation of sorbitol in an ex-vivo model of diabetic cataract to an extent comparable to that attained by the known AKR inhibitor epalrestat. Taken together, these results highlight the role of PGs as AKR1B1 inhibitors and the interest in PG-related molecules as leads for the development of novel pharmacological tools.
Collapse
Affiliation(s)
- Beatriz Díez-Dacal
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Francisco J Sánchez-Gómez
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Pedro A Sánchez-Murcia
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Ivana Milackova
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Tahl Zimmerman
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Jana Ballekova
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Elena García-Martín
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - José A G Agúndez
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Severine Gharbi
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Federico Gago
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Milan Stefek
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| | - Dolores Pérez-Sala
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (B.D.-D., F.J.S.-G., T.Z., D.P.-S.); Department of Biomedical Sciences, Universidad de Alcalá, Madrid, Spain (P.A.S.-M., F.G.); Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia (I.M., J.B., M.S.); Department of Pharmacology, University of Extremadura, Cáceres, Spain (E.G.-M., J.A.G.A.); Centro Nacional de Biotecnología, Madrid, Spain (S.G.)
| |
Collapse
|
22
|
Ji L, Li C, Shen N, Huan Y, Liu Q, Liu S, Shen Z. A simple and stable galactosemic cataract model for rats. Int J Clin Exp Med 2015; 8:12874-12881. [PMID: 26550203 PMCID: PMC4612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/24/2015] [Indexed: 06/05/2023]
Abstract
Rat galactosemic cataract is commonly used in the investigation of sugar cataract. In current study, 21-day sprague-dawley (SD) rats were randomly divided into two groups (n=42), which were fed by normal water and galactose solution (12.5%-10%) for 18 days respectively. Every 3 days, lens opacity was observed by a slit lamp, and 6 rats of each group were executed for the analysis of aldose reductase (AR) activity, galactitol level and AR mRNA expression. Morphological results showed that small vacuoles initially appeared in the equatorial area before the 6th day, then subsequently extended to the whole anterior capsule, and eventually developed to mature cataract on the 18th day. AR of galactosemic lenses was significantly activated in the first stage and then slowly dropped to the end accompanied by the related changes of galactitol. AR mRNA expression also was upregulated and reached the peak at the 6th day. This study appears to confirm that galactosemic cataract can be induced for 21-day SD rats by only drinking 12.5% to 10% galactose solution, and this model is simple, economical and stable as to meet the research needs.
Collapse
Affiliation(s)
- Lixia Ji
- Department of Pharmacology, Medical College of Qingdao UniversityQingdao, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Ning Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| |
Collapse
|
23
|
Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens Biology and Biochemistry. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:169-201. [PMID: 26310155 DOI: 10.1016/bs.pmbts.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary function of the lens resides in its transparency and ability to focus light on the retina. These require both that the lens cells contain high concentrations of densely packed lens crystallins to maintain a refractive index constant over distances approximating the wavelength of the light to be transmitted, and a specific arrangement of anterior epithelial cells and arcuate fiber cells lacking organelles in the nucleus to avoid blocking transmission of light. Because cells in the lens nucleus have shed their organelles, lens crystallins have to last for the lifetime of the organism, and are specifically adapted to this function. The lens crystallins comprise two major families: the βγ-crystallins are among the most stable proteins known and the α-crystallins, which have a chaperone-like function. Other proteins and metabolic activities of the lens are primarily organized to protect the crystallins from damage over time and to maintain homeostasis of the lens cells. Membrane protein channels maintain osmotic and ionic balance across the lens, while the lens cytoskeleton provides for the specific shape of the lens cells, especially the fiber cells of the nucleus. Perhaps most importantly, a large part of the metabolic activity in the lens is directed toward maintaining a reduced state, which shelters the lens crystallins and other cellular components from damage from UV light and oxidative stress. Finally, the energy requirements of the lens are met largely by glycolysis and the pentose phosphate pathway, perhaps in response to the avascular nature of the lens. Together, all these systems cooperate to maintain lens transparency over time.
Collapse
Affiliation(s)
- J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca McGreal
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ales Cvekl
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
24
|
King K, Rosenthal A. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms. Osteoarthritis Cartilage 2015; 23:841-50. [PMID: 25837996 PMCID: PMC5530368 DOI: 10.1016/j.joca.2015.03.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 02/02/2023]
Abstract
Projected increases in the prevalence of both diabetes mellitus (DM) and osteoarthritis (OA) ensure their common co-existence. In an era of increasing attention to personalized medicine, understanding the influence of common comorbidities such as DM should result in improved care of patients with OA. In this narrative review, we summarize the literature addressing the interactions between DM and OA spanning the years from 1962 to 2014. We separated studies depending on whether they investigated clinical populations, animal models, or cells and tissues. The clinical literature addressing the influence of DM on OA and its therapeutic outcomes suggests that DM may augment the development and severity of OA and that DM increases risks associated with joint replacement surgery. The few high quality studies using animal models also support an adverse effect of DM on OA. We review strengths and weaknesses of the common rodent models of DM. The heterogeneous literature derived from studies of articular cells and tissues also supports the existence of biochemical and biomechanical changes in articular tissues in DM, and begins to characterize molecular mechanisms activated in diabetic-like environs which may contribute to OA. Increasing evidence from the clinic and the laboratory supports an adverse effect of DM on the development, severity, and therapeutic outcomes for OA. To understand the mechanisms through which DM contributes to OA, further studies are clearly necessary. Future studies of DM-influenced mechanisms may shed light on general mechanisms of OA pathogenesis and result in more specific and effective therapies for all OA patients.
Collapse
Affiliation(s)
- K.B. King
- Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, USA,Surgical Service, Orthopaedic Service, Eastern Colorado Health Care System, Veterans Affairs, Denver, CO, USA
| | - A.K. Rosenthal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA,Medicine Service, Rheumatology Service, The Clement J. Zablocki Medical Center, Veterans Affairs, Milwaukee, WI, USA,Address correspondence and reprint requests to: A.K. Rosenthal, Zablocki VA Medical Center, 5000 W. National Avenue, Milwaukee, WI 53295-1000, USA. Tel: 1-(414)-955-7027; Fax: 1-(414)-955-6205
| |
Collapse
|
25
|
Kador PF, Guo C, Kawada H, Randazzo J, Blessing K. Topical nutraceutical Optixcare EH ameliorates experimental ocular oxidative stress in rats. J Ocul Pharmacol Ther 2015; 30:593-602. [PMID: 25188009 DOI: 10.1089/jop.2014.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Based on the hypothesis that oral nutraceuticals do not adequately reach all ocular tissues in the anterior segment, we evaluated the ability of a 3% concentration of the ingredients in a topical nutraceutical antioxidant formulation called Optixcare Eye Health (Optixcare EH) to ameliorate oxidative stress in rat models of age-related ocular diseases. METHODS Diabetes was induced by tail-vein injection of streptozotocin, and the development of cataracts was monitored by slit lamp. Young rats were exposed to ultraviolet (UV) light, and the reduction in lens glutathione (GSH) levels and increase in 4-hydroxynonenol (4-HNE) were measured. Oxidative stress in the neural retina was generated by exposure of dark-adapted rats to 1,000 lx of light, and oxidative stress markers were measured. Dry eye was induced in rats by twice daily (b.i.d.) subcutaneous scopolamine injections. Topical Optixcare EH was administered b.i.d. and compared in select experiments to the multifunctional antioxidant JHX-4, the topical aldose reductase inhibitor (ARI) Kinostat™, oral Ocu-GLO™, and the topical ocular comfort agents Optixcare Eye Lube, Optixcare Eye Lube + Hyaluron, and Idrop Vet Plus hyaluronic acid. RESULTS In diabetic rats, topical ARI treatment prevented cataract formation while the nutraceuticals delayed their development with Optixcare EH>Ocu-GLO. In UV-exposed rats, the reduction of GSH and increase in 4-HNE in the lens were normalized in order JHX-4>Optixcare EH>Ocu-GLO. In the retina, oxidative stress markers were reduced better by oral JHX-4 compared with topical Optixcare EH. In the scopolamine-induced dry-eye rats, tear flow was maintained by Optixcare EH treatment, while none of the comfort agents examined altered tear flow. CONCLUSIONS Topical administration of a 3% concentration of the ingredients in Optixcare EH reduces experimentally induced reactive oxygen species in rats exposed to several sources of ocular oxidative stress. In addition, Optixcare EH maintains tear volume in scopolamine-induced dry eye. This suggests that in the anterior segment, the ingredients in Optixcare EH may have clinical potential against ocular oxidative stress.
Collapse
Affiliation(s)
- Peter F Kador
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska
| | | | | | | | | |
Collapse
|
26
|
Abdelkader H, Alany RG, Pierscionek B. Age-related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol 2015; 67:537-50. [DOI: 10.1111/jphp.12355] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/26/2014] [Indexed: 01/21/2023]
Abstract
Abstract
Objectives
The search for anticataract drugs has been continuing for decades; some treatments no longer exist but antioxidants are still of much interest.
Key findings
The primary function of the human lens, along with the cornea, is to refract light so that it is correctly focused onto the retina for optimum image quality. With age, the human lens undergoes morphological, biochemical and physical changes leading to opacification. Age-related or senile cataract is one of the main causes of visual impairment in the elderly; given the lack of access to surgical treatment in many parts of the world, cataract remains a major cause of sight loss. Surgical treatment is the only means of treating cataract; this approach, however, has limitations and complications.
Summary
This review discusses the anatomy and physiology of the lens and the changes that are understood to occur with ageing and cataract formation to identify potential areas for effective therapeutic intervention. Experimental techniques and agents used to induce cataract in animal models, the advantages and disadvantages of potential pharmacological treatments specific barriers to delivery of exogenous antioxidants to the lens and the prospects for future research are discussed.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Pharmacy and Chemistry, Kingston University London, London, UK
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Mina, Egypt
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Pharmacy and Chemistry, Kingston University London, London, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Barbara Pierscionek
- Vision Cognition and Neuroscience Theme, Faculty of Science, Engineering and Computing, Kingston University London, London, UK
| |
Collapse
|
27
|
Snow A, Shieh B, Chang KC, Pal A, Lenhart P, Ammar D, Ruzycki P, Palla S, Reddy GB, Petrash JM. Aldose reductase expression as a risk factor for cataract. Chem Biol Interact 2014; 234:247-53. [PMID: 25541468 DOI: 10.1016/j.cbi.2014.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 12/11/2022]
Abstract
Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the lens to disturbances in signaling through the ERK and JNK pathways and thereby alter the balance of cell growth and apoptosis that is critical to lens transparency and homeostasis.
Collapse
Affiliation(s)
- Anson Snow
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - Arttatrana Pal
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - Patricia Lenhart
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - David Ammar
- Department of Ophthalmology, University of Colorado Denver, CO, USA
| | - Philip Ruzycki
- Department of Ophthalmology, Rocky Mountain Lions Eye Institute, University of Colorado Denver, Aurora, CO, USA
| | - Suryanarayana Palla
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 604, India
| | - G Bhanuprakesh Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 604, India
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado Denver, CO, USA.
| |
Collapse
|
28
|
del Nogal M, Troyano N, Calleros L, Griera M, Rodriguez-Puyol M, Rodriguez-Puyol D, Ruiz-Torres MP. Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells. Int J Biochem Cell Biol 2014; 54:98-110. [DOI: 10.1016/j.biocel.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 02/06/2023]
|
29
|
Kondo T, Ishiga-Hashimoto N, Nagai H, Takeshita A, Mino M, Morioka H, Kusakabe KT, Okada T. Expression of transforming growth factor β and fibroblast growth factor 2 in the lens epithelium of Morioka cataract mice. Congenit Anom (Kyoto) 2014; 54:104-9. [PMID: 24279395 DOI: 10.1111/cga.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023]
Abstract
In the Morioka cataract (MCT) mice, lens opacity appears at 6 to 8 weeks of age, and swollen lens fiber is electron-microscopically observed at 3 weeks after birth. The present study was designed to characterize the expression of transforming growth factor β (TGFβ) and fibroblast growth factor 2 (FGF2) in the lens epithelium of the MCT mice. Immunohistochemical analysis showed that the expression of TGFβ in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 2 and 4 weeks after birth. The expression of TGFβ receptors (TGFβRI and TGFβRII) and FGF2 in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 4 weeks and weaker than that of the wild-type ddY mice at 15 weeks after birth. Using real time polymerase chain reaction (PCR), quantitative RT-PCR analysis showed that expression of TGFβ1 and TGFβ2 mRNA in the lens of 2-week-old MCT mice was significantly higher compared to age-matched wild-type ddY mice. These findings indicate that the lens epithelium of MCT mice has increased expression of TGFβ before cataract affection and that changes in the expression of FGF2 as well as TGFβ may contribute to the progression of the cataract in the mice.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumi-Sano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang P, Zhang Z, Kador PF. Polyol effects on growth factors and MAPK signaling in rat retinal capillary cells. J Ocul Pharmacol Ther 2014; 30:4-11. [PMID: 24256145 PMCID: PMC4094127 DOI: 10.1089/jop.2013.0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Recent studies report that growth factor and signaling changes in rat lenses do not directly result from the presence of diabetes or sorbitol/galactitol (polyol) formation/accumulation, but from secondary osmotic changes associated with the aldose reductase (AR) catalyzed polyol formation. AR is also present in rat retinal pericyte and endothelial cells; however, significant polyol formation only occurs in pericytes and this does not appear to be linked to osmotic changes. The purpose of this study was to determine whether polyol formation and AR activity are similarly linked to growth factor and signaling changes in the rat capillary cells despite the apparent absence of osmotic stress. METHODS Conditionally immortalized rat retinal pericyte (TR-rPCT) and endothelial (TR-iBRB) cell lines were cultured on collagen type 1-coated dishes in the DMEM containing 5.5 mM glucose. After 24 h of initial culture, the medium was replaced with a serum-free medium containing 5.5, 25, or 50 mM glucose or galactose with/without the aldose reductase inhibitors (ARIs) AL1576 or tolrestat for periods of up to 48 h. Growth factors and transduction pathways were measured by Western blots using the antibodies against basic FGF, IGF-1, TGF-β, P-ERK1/2, P-SAPK/JNK, and P-Akt. RESULTS Sorbitol accumulation was only observed in pericytes, while galactitol was present in both pericytes and endothelial cells. Pericytes cultured in high glucose showed increased expression of the growth factors basic FGF, IGF-1, TGF-β, and signaling in P-Akt, P-ERK1/2, and P-SAPK/JNK compared with those cultured in 5.5 mM glucose and these expressions were normalized by the presence of ARIs. Similar results were observed with galactose media. In contrast, endothelial cells cultured in high glucose media showed neither growth factor or signaling changes. In galactose media, endothelial cells showed increased expression of basic FGF, IGF-1, TGF-β, P-ERK1/2, and P-SAPK/JNK, which were only partially reduced by ARIs. CONCLUSION Growth factor and MAPK signaling expression in pericytes are linked to the presence of polyols. Pericytes, which readily accumulate sorbitol/galactitol that is inhibited by ARIs, show expression changes similar to those observed in rat lenses. In contrast, endothelial cells only show partial expression changes that are linked to galactitol accumulation.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Zifeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Ophthalmology, School of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
31
|
Guo C, Zhang Z, Zhang P, Makita J, Kawada H, Blessing K, Kador PF. Novel transgenic mouse models develop retinal changes associated with early diabetic retinopathy similar to those observed in rats with diabetes mellitus. Exp Eye Res 2013; 119:77-87. [PMID: 24370601 DOI: 10.1016/j.exer.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
Retinal capillary pericyte degeneration has been linked to aldose reductase (AR) activity in diabetic retinopathy (DR). Since the development of DR in mice and rats has been reported to differ and that this may be linked to differences in retinal sorbitol levels, we have established new murine models of early onset diabetes mellitus as tools for investigating the role of AR in DR. Transgenic diabetic mouse models were developed by crossbreeding diabetic C57BL/6-Ins2(Akita)/J (AK) with transgenic C57BL mice expressing green fluorescent protein (GFP), human aldose reductase (hAR) or both in vascular tissues containing smooth muscle actin-α (SMAA). Changes in retinal sorbitol levels were determined by HPLC while changes of growth factors and signaling were investigated by Western Blots. Retinal vascular changes were quantitatively analyzed on elastase-digestion flat mounts. Results show that sorbitol levels were higher in neural retinas of diabetic AK-SMAA-GFP-hAR compared to AK-SMAA-GFP mice. AK-SMAA-GFP-hAR mice showed induction of the retinal growth factors VEGF, IGF-1, bFGF and TGFβ, as well as signaling changes in P-Akt, P-SAPK/JNK, and P-44/42 MAPK. Increased loss of nuclei per capillary length and a significant increase in the percentage of acellular capillaries presented in 18 week old AK-SMAA-GFP-hAR mice. These changes are similar to those observed in streptozotocin-induced diabetic rats. Retinal changes in both mice and rats were prevented by inhibition of AR. These studies confirm that the increased expression of AR in mice results in the development of retinal changes associated with the early stages of DR that are similar to those observed in rats.
Collapse
Affiliation(s)
- Changmei Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zifeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jun Makita
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiroyoshi Kawada
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karen Blessing
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter F Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Department of Ophthalmology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Hashida N, Ping X, Nishida K. MAPK activation in mature cataract associated with Noonan syndrome. BMC Ophthalmol 2013; 13:70. [PMID: 24219368 PMCID: PMC3829809 DOI: 10.1186/1471-2415-13-70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/07/2013] [Indexed: 12/30/2022] Open
Abstract
Background Noonan syndrome is an autosomal, dominantly inherited disease; it is physically characterized by short stature, short neck, webbed neck, abnormal auricles, high arched palate, and cardiovascular malformation. Its pathological condition is thought to be due to a gain-of-function mutation in the Ras-mitogen-activated protein kinase (MAPK) signal transduction pathway. Eyelid abnormalities such as ocular hypertelorism and blepharoptosis are the most commonly observed eye complications. Case presentation We report a case of Noonan syndrome associated with mature cataract that required operation. A 42-year-old man was diagnosed with Noonan syndrome at the age of 1 year. He underwent an eye examination after complaining of decreased visual acuity in the right eye and was diagnosed with mature cataract, which was treated by cataract surgery. There were no intraoperative complications, and the postoperative course was uneventful. Protein analysis of lens capsule and epithelium at capsulorhexis showed MAPK cascade proteins such as ERK and p38MAPK were upregulated. An abnormality in the PTPN11 gene was also observed; a potential mechanism of cataract onset may be that opacity of the lens rapidly progressed due to abnormal activation of the Ras-MAPK signal transduction pathway. Conclusion This case highlights the possible association of cataract formation with MAPK cascade protein upregulation in Noonan syndrome.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Medical School, room E7, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|