1
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
2
|
Tomar S, Sethi R, Sundar G, Quah TC, Quah BL, Lai PS. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PLoS One 2017; 12:e0178776. [PMID: 28575107 PMCID: PMC5456385 DOI: 10.1371/journal.pone.0178776] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.
Collapse
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gangadhara Sundar
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Thuan Chong Quah
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Francis JH, Levin AM, Abramson DH. Update on Ophthalmic Oncology 2014: Retinoblastoma and Uveal Melanoma. Asia Pac J Ophthalmol (Phila) 2016; 5:368-82. [PMID: 27632029 DOI: 10.1097/apo.0000000000000213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study was to review peer-reviewed articles on ophthalmic oncology (specifically retinoblastoma and uveal melanoma) published from January to December 2014. DESIGN This study is a literature review. METHODS The terms retinoblastoma and uveal melanoma were used in a MEDLINE literature search. Abstracts were studied, and the most relevant articles were selected for inclusion and further in-depth review. RESULTS In retinoblastoma, more eyes are being salvaged due to intravitreal melphalan. The year 2014 marks a deepening in our understanding of the biological basis of the disease and the cell of origin. Knowledge on the genetic underpinnings of uveal melanoma has broadened to include other pathways, interactions, and potential therapeutic targets. CONCLUSIONS In 2014, there were valuable advancements in our knowledge of retinoblastoma and uveal melanoma. Some of these resulted in improved patient management.
Collapse
Affiliation(s)
- Jasmine H Francis
- From the *Memorial Sloan Kettering Cancer Center; and †Weill Cornell Medical Center, New York, NY
| | | | | |
Collapse
|
4
|
Thirumalairaj K, Abraham A, Devarajan B, Gaikwad N, Kim U, Muthukkaruppan V, Vanniarajan A. A stepwise strategy for rapid and cost-effective RB1 screening in Indian retinoblastoma patients. J Hum Genet 2015; 60:547-52. [PMID: 26084579 DOI: 10.1038/jhg.2015.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/02/2023]
Abstract
India has the highest number of retinoblastoma (RB) patients among the developing countries owing to its increasing population. Of the patients with RB, about 40% have the heritable form of the disease, making genetic analysis of the RB1 gene an integral part of disease management. However, given the large size of the RB1 gene with its widely dispersed exons and no reported hotspots, genetic testing can be cumbersome. To overcome this problem, we have developed a rapid screening strategy by prioritizing the order of exons to be analyzed, based on the frequency of nonsense mutations, deletions and duplications reported in the RB1-Leiden Open Variation Database and published literature on Indian patients. Using this strategy for genetic analysis, mutations were identified in 76% of patients in half the actual time and one third of the cost. This reduction in time and cost will allow for better risk prediction for siblings and offspring, thereby facilitating genetic counseling for families, especially in developing countries.
Collapse
Affiliation(s)
- Kannan Thirumalairaj
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India
| | - Aloysius Abraham
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India
| | | | - Namrata Gaikwad
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, India
| | | | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India
| |
Collapse
|
5
|
Devarajan B, Prakash L, Kannan TR, Abraham AA, Kim U, Muthukkaruppan V, Vanniarajan A. Targeted next generation sequencing of RB1 gene for the molecular diagnosis of Retinoblastoma. BMC Cancer 2015; 15:320. [PMID: 25928201 PMCID: PMC4415345 DOI: 10.1186/s12885-015-1340-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/22/2015] [Indexed: 12/02/2022] Open
Abstract
Background The spectrum of RB1gene mutations in Retinoblastoma (RB) patients and the necessity of multiple traditional methods for complete variant analysis make the molecular diagnosis a cumbersome, labor-intensive and time-consuming process. Here, we have used targeted next generation sequencing (NGS) approach with in-house analysis pipeline to explore its potential for the molecular diagnosis of RB. Methods Thirty-three patients with RB and their family members were selected randomly. DNA from patient blood and/or tumor was used for RB1 gene targeted sequencing. The raw reads were obtained from Illumina Miseq. An in-house bioinformatics pipeline was developed to detect both single nucleotide variants (SNVs) and small insertions/deletions (InDels) and to distinguish between somatic and germline mutations. In addition, ExomeCNV and Cn. MOPS were used to detect copy number variations (CNVs). The pathogenic variants were identified with stringent criteria, and were further confirmed by conventional methods and cosegregation in families. Results Using our approach, an array of pathogenic variants including SNVs, InDels and CNVs were detected in 85% of patients. Among the variants detected, 63% were germline and 37% were somatic. Interestingly, nine novel pathogenic variants (33%) were also detected in our study. Conclusions We demonstrated for the first time that targeted NGS is an efficient approach for the identification of wide spectrum of pathogenic variants in RB patients. This study is helpful for the molecular diagnosis of RB in a comprehensive and time-efficient manner.
Collapse
Affiliation(s)
| | - Logambiga Prakash
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, India.
| | - Thirumalai Raj Kannan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India.
| | - Aloysius A Abraham
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India.
| | - Usha Kim
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, India.
| | | | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India.
| |
Collapse
|
6
|
Ayari-Jeridi H, Moran K, Chebbi A, Bouguila H, Abbes I, Charradi K, Benammar-Elgaaïed A, Ganguly A. Mutation spectrum of RB1 gene in unilateral retinoblastoma cases from Tunisia and correlations with clinical features. PLoS One 2015; 10:e0116615. [PMID: 25602518 PMCID: PMC4300092 DOI: 10.1371/journal.pone.0116615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/01/2014] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma, an embryonic neoplasm of retinal origin, is the most common primary intraocular malignancy in children. Somatic inactivation of both alleles of the RB1 tumor suppressor gene in a retinal progenitor cell through diverse mechanisms including genetic and epigenetic modifications, is the crucial event in initiation of tumorigenesis in most cases of isolated unilateral retinoblastoma. We analyzed DNA from tumor tissue and from peripheral blood to determine the RB1 mutation status and seek correlations with clinical features of 37 unrelated cases of Tunisian origin with sporadic retinoblastoma. All cases were unilateral except one who presented with bilateral disease, in whom no germline coding sequence alteration was identified. A multi-step mutation scanning protocol identified bi-allelic inactivation of RB1 gene in 30 (81%) of the samples tested. A total of 7 novel mutations were identified. There were three tumors without any detectable mutation while a subset contained multiple mutations in RB1 gene. The latter group included tumors collected after treatment with chemotherapy. There were seven individuals with germline mutations and all presented with advanced stage of tumor. There was no difference in age of onset of RB based on the germline mutation status. Thus 20% of the individuals with sporadic unilateral RB in this series carried germline mutations and indicate the importance of genetic testing all children with sporadic retinoblastoma. These findings help to characterize the spectrum of mutations present in the Tunisian population and can improve genetic diagnosis of retinoblastoma.
Collapse
Affiliation(s)
- Hajer Ayari-Jeridi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Kimberly Moran
- Genetic Diagnostic Laboratory, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amel Chebbi
- Institut Hédi Rais d’Ophtalmologie de Tunis, Tunis, Tunisia
| | - Hédi Bouguila
- Institut Hédi Rais d’Ophtalmologie de Tunis, Tunis, Tunisia
| | - Imen Abbes
- Laboratoire d’Anatomie Pathologique, Institut Salah Azaiez de Cancérologie, Tunis, Tunisia
| | - Khaoula Charradi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Amel Benammar-Elgaaïed
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Arupa Ganguly
- Genetic Diagnostic Laboratory, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|