1
|
Mao Y, Chen Q, Jiang Y, Zhang X, Si Q, Xu P, Zhang Z, Zheng C, Lin R. Integrating Transcriptomic and Proteomic Data: IL-27B as a Key Protein in the Development of Septic Cardiomyopathy-A Retrospective Study. Immun Inflamm Dis 2025; 13:e70207. [PMID: 40396598 DOI: 10.1002/iid3.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/16/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Septic cardiomyopathy (SCM) is a potentially fatal complication of sepsis. In this study, transcriptomic and proteomic analyzes of serum samples from sepsis patients were conducted to uncover the underlying pathological mechanisms and identify potential therapeutic targets for SCM. METHODS This retrospective, dual-center study investigated the progression of sepsis to SCM in patients admitted to intensive care units. A total of 50 patients were enrolled and divided into two groups: sepsis with cardiomyopathy (25 cases) and sepsis without cardiomyopathy (25 cases). Co-expression network analysis was employed to elucidate the biological significance of differentially expressed proteins. By integrating proteomic and transcriptomic data, molecular networks were constructed to visualize interactions among key molecules, aiming to enhance data interpretation and support the study's findings. RESULTS Proteomic analysis identified 216 differentially expressed proteins (Fold change > 1.5, p-value < 0.05) between the two groups. Transcriptomic analysis revealed two proteins, including Interleukin-27 subunit beta (IL-27B) and carbonic anhydrase, co-downregulated in patients with septic cardiomyopathy. IL-27B was associated with the immune response, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated its involvement in the cytokine-cytokine receptor interaction signaling pathway. CONCLUSION Comprehensive integrated transcriptomic and proteomic analyzes identified significant changes in protein expression associated with SCM, primarily associated with inflammation-related pathways and amino acid metabolism. These findings provide new insights into the pathological mechanisms of SCM and highlight potential therapeutic targets for its treatment. TRIAL REGISTRATION The Clinical Research Ethics Committee of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University approved this study, and written informed consent was given by all patients or their legal representatives. (NO.K20201110).
Collapse
Affiliation(s)
- Yifeng Mao
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Qingqing Chen
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
- Department of Neurorehabilitation Center, Taizhou Rehabilitation Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China
| | - Yongpo Jiang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Xijiang Zhang
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Qin Si
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Panpan Xu
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Ronghai Lin
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| |
Collapse
|
2
|
Zong Y, Tong X, Chong WP. Th17 Response in Uveitis: A Double-Edged Sword in Ocular Inflammation and Immune Regulation. Clin Rev Allergy Immunol 2025; 68:26. [PMID: 40072803 PMCID: PMC11903535 DOI: 10.1007/s12016-025-09038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Uveitis involves a complex interplay of immune cell infiltration and cytokine imbalances, with Th17 cells playing a central role in this process. Th17 cells contribute to disease pathogenesis by promoting inflammation, recruiting additional immune cells, and directly damaging retinal tissues. This review discusses the current knowledge on therapeutic strategies targeting Th17-related cytokines, including cytokine blockade, small molecule inhibitors, and immunomodulatory approaches. Traditionally, Th17-related cytokines have been viewed as pro-inflammatory agents in uveitis. However, emerging research has highlighted the capacity of the Th17 response to express immunoregulatory cytokines, notably IL-10, IL-24, and TGF-β. This suggest that the Th17 response may have a dualistic role that includes immune suppression. In this review, we will discuss this paradoxical nature of Th17 cells in immune regulation and inflammation that they can both promote and mitigate uveitis. We expected that a deeper understanding of these mechanisms is imperative for the innovation of novel therapeutics that could consider the dual role of Th17 response in the pathogenesis of uveitis. By finely tuning the Th17 response to preserve retinal integrity and function, these new treatments could bring significant benefits to patients with uveitis. This review aims to shed light on the complexities of the Th17 response in uveitis and its implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Xue Tong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
3
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
4
|
Fan NW, Li J, Mittal SK, Foulsham W, Elbasiony E, Huckfeldt RM, Chauhan SK, Chen Y. Characterization of Clinical and Immune Responses in an Experimental Chronic Autoimmune Uveitis Model. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:425-437. [PMID: 32966818 PMCID: PMC7931616 DOI: 10.1016/j.ajpath.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023]
Abstract
Autoimmune uveitis is a sight-threatening intraocular inflammatory disease. For >30 years, the mouse model of experimental autoimmune uveitis has been employed to investigate disease mechanisms and test immunotherapeutic approaches. However, inflammation in this model is self-limited, and does not replicate the chronic, insidious nature prevalent in the human disease. Herein, a robust and reliable model of chronic autoimmune uveitis was developed and characterized in two strains of wild-type mice by modifying interphotoreceptor retinoid-binding protein dose and peptide fragments from conventional experimental autoimmune uveitis models. In both of these murine strains, immunization with our modified protocols resulted in a slowly progressive uveitis, with retinal scars and atrophy observed in the chronic stage by fundoscopy. Optical coherence tomography demonstrated decreased retinal thickness in chronic autoimmune uveitis mice, and electroretinography showed significantly reduced amplitudes of dark-adapted a- and b-waves and light-adapted b-waves. Histologic examination revealed prominent choroiditis with extensive retinal damage. Flow cytometry analysis showed substantially increased numbers of CD44hiIL-17+IFN-γ- memory T-helper 17 (Th17) cells in the retina, cervical lymph nodes, inguinal lymph nodes, and spleen. These data establish new modified protocols for inducing chronic uveitis in wild-type mice, and demonstrate a predominant memory Th17 cell response, suggesting an important role for memory Th17 cells in driving chronic inflammation in autoimmune uveitis.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Joy Li
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - William Foulsham
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Yihe Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Collapse
|
6
|
Xu C, Zhu H, Shen R, Feng Q, Zhou H, Zhao Z. IL-35 is a Protective Immunomodulator in Brain Ischemic Injury in Mice. Neurochem Res 2018; 43:1454-1463. [PMID: 29916094 DOI: 10.1007/s11064-018-2560-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
IL-35 has been identified as a novel anti-inflammatory cytokine that belongs to the IL-12 cytokine family and has been verified to play a protective role in autoimmune diseases. In this study, we investigated the protective effects of IL-35 on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion mouse model. We determined that the expression of IL-35 was initially decreased and subsequently increased in I/R injury. Moreover, IL-35 (i.c.v.) pre- and posttreatment significantly reduced the infarct volume and improved neurological deficits after 45 min of ischemia and 24 h of reperfusion. Importantly, IL-35 treatment improved neurological function recovery, particularly in balance ability, at 14 days after treatment. Finally, our results showed that IL-35 treatment reduced the expression of IL-6 and IL-1β, which are confirmed proinflammatory cytokines, thus indicating that these cytokines have both been linked to the anti-inflammatory mechanisms of IL-35. Therefore, IL-35 may be a key immune mediator in brain ischemic injury and appears to have promising potential for clinical trials.
Collapse
Affiliation(s)
- Chen Xu
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Hao Zhu
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Rong Shen
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China.
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
7
|
Takeda A, Yamada H, Hasegawa E, Arima M, Notomi S, Myojin S, Yoshimura T, Hisatomi T, Enaida H, Yanai R, Kimura K, Ishibashi T, Sonoda KH. Crucial role of P2X 7 receptor for effector T cell activation in experimental autoimmune uveitis. Jpn J Ophthalmol 2018; 62:398-406. [PMID: 29572578 DOI: 10.1007/s10384-018-0587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/05/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the roles of P2X7 receptors (P2RX7) in the pathogenesis of experimental autoimmune uveoretinitis (EAU). STUDY DESIGN Experimental. METHODS Either wild-type (P2rx7 +/+ ) or P2rx7-deficient (P2rx7 -∕- ) mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 1-20. Severity of EAU was evaluated clinically and histopathologically. The induction of IRBP-specific proliferation and cytokines in draining lymph nodes was assessed by enzyme-linked immunosorbent assays (ELISA). The frequency of activation markers was examined by flow cytometry. Furthermore, inhibitory roles of systemic administration of Brilliant Blue G (BBG), an antagonist for P2RX7, in EAU were also assessed in the wild-type mice. RESULTS The severity of EAU in P2rx7 -∕- mice was reduced as compared with that in P2rx7 +/+ mice, both clinically and histopathologically. IRBP-specific proliferation in P2rx7 -∕- on day 16 was slightly decreased compared to that in P2rx7 +/+ mice. The induction of IRBP-specific interferon (IFN)-γ and interleukin (IL)-17 in P2rx7 -∕- mice on day 16 was lower than that in P2rx7 +/+ mice. The up-regulation of surface expression of activation markers such as CD25, CD44, and CD69 in response to TCR stimulation in P2rx7 -∕- mice was decreased as compared with that in P2rx7 +/+ mice. Furthermore, neutralization of P2RX7 in vivo by BBG suppressed EAU clinically and histopathologically. IRBP-specific IFN-γ and IL-17 induction in BBG-treated mice was significantly lower than that in vehicle-treated mice. CONCLUSION The results suggest that P2RX7 is a novel preventative therapeutic target for uveitis as it suppresses the effector functions of both Th1 and Th17 cell responses.
Collapse
Affiliation(s)
- Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan. .,Clinical Research Center, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
| | - Hisakata Yamada
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Clinical Research Center, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Sayaka Myojin
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Takeru Yoshimura
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Faculty of Medicine, Saga University, Saga, Saga, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Hu J, Qin Y, Yi S, Wang C, Yang J, Yang L, Wang L, Kijlstra A, Yang P, Li H. Decreased interleukin(IL)-35 Expression is Associated with Active Intraocular Inflammation in Vogt-Koyanagi-Harada (VKH) Disease. Ocul Immunol Inflamm 2018; 27:595-601. [PMID: 29498905 DOI: 10.1080/09273948.2018.1433306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose: Recent studies have reported that IL-35 has a protective effect in autoimmune disease. In this study, we explored the role of IL-35 in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. Methods: The IL-35/EBI3 and IL-35/P35 mRNA level was assayed by Real-Time PCR. The level of IL-35 in serum was detected by ELISA. PBMCs and monocyte-derived DCs were cultured with or without IL-35 and the concentration of IL-17, IL-10, IFN-γ, IL-6, TNF-α, and IL-1β in supernatants was tested by ELISA. Results: The serum level of IL-35 is reduced in active VKH patients. The mRNA expression of the two subunits IL-35/EBI3 and IL-35/P35 in PBMCs from patients with active VKH was also decreased. IL-35 significantly inhibited IFN-γ and IL-17 expression and induced IL-10 production by PBMCs and inhibited IL-6 production by monocyte-derived DCs. Conclusion: The current study suggests that a decreased IL-35 expression may be involved in the pathogenesis of VKH disease.
Collapse
Affiliation(s)
- Jianping Hu
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Yirong Qin
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Shenglan Yi
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Chaokui Wang
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Jinglu Yang
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Lu Yang
- b The Second Hospital of Lanzhou University , Lanzhou , P. R. China
| | - Luoziyi Wang
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Aize Kijlstra
- c University Eye Clinic Maastricht , Maastricht , The Netherlands
| | - Peizeng Yang
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| | - Hong Li
- a The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , Chongqing , P. R. China
| |
Collapse
|
9
|
Meka RR, Venkatesha SH, Dudics S, Acharya B, Moudgil KD. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev 2015; 14:1131-1141. [PMID: 26253381 PMCID: PMC4628569 DOI: 10.1016/j.autrev.2015.08.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
Abstract
Interleukin-27 (IL-27) is a new member of the IL-12 family. It is produced by activated antigen-presenting cells and plays an important role in the regulation of CD4+ T cell differentiation and immune response. IL-27 activates multiple signaling cascades, including the JAK-STAT and p38 MAPK pathways. Several studies have revealed that IL-27 promotes the differentiation of Th1 and Tr1, but inhibits Th2, Th17, and Treg cells. However, a few studies have shown an opposite effect on certain T cell subsets, such as Treg. IL-27 displays both pro- and anti- inflammatory activities in different autoimmune diseases. Here, we have discussed the role of IL-27 in rheumatoid arthritis, multiple sclerosis, colitis, lupus, psoriasis, type 1 diabetes, and uveitis. Most of this information is derived from experimental models of these autoimmune diseases. The mechanistic basis of the dual role of IL-27 in inflammation and autoimmunity is still not fully defined. In general, the pro-/anti-inflammatory activity of IL-27 is influenced by the underlying immune effector pathways, the phase of the disease, the presence or absence of counter-regulatory cytokines/T cell subsets, and the tissue/cell type under study. Despite a spectrum of outcomes in various autoimmune diseases, mostly anti-inflammatory and immunomodulatory effects of IL-27 have been observed in this category of diseases. Accordingly, IL-27 represents a novel, promising target/agent for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rakeshchandra R. Meka
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Steven Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Bodhraj Acharya
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|