1
|
Mahapatra S, Sharma Y, Kashyap S, Mohanty S. Bioinspired Silk and Human Amniotic Membrane-Based MSC-sEV-Functionalized Wound Dressing Enhances Skin Regeneration: A Cell-Free Therapeutic Modality for Wound Care. ACS Biomater Sci Eng 2025. [PMID: 40401413 DOI: 10.1021/acsbiomaterials.5c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Full-thickness wounds pose significant healing challenges due to their impaired regenerative capacity, persistent inflammation, and oxidative stress. Enhancing the bioactivity of silk fibroin (SF) and the mechanical strength of the human amniotic membrane (hAM) can improve wound healing outcomes. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) offer promising anti-inflammatory and antioxidant benefits, but their poor retention and painful application limits their clinical utility. To overcome these challenges, we developed a composite scaffold of SF and hAM (Sh), loaded with sEVs (ShE), designed to accelerate wound healing by modulating inflammation, oxidative stress, and tissue regeneration. ShE exhibited excellent physical stability, optimal swelling, degradation kinetics, hemocompatibility, and sustained sEV release. In vitro, it enhanced keratinocyte and fibroblast proliferation and migration, reduced oxidative stress, and provided immunomodulatory and pro-angiogenic effects. ShE significantly lowered ROS levels, suppressed PHA-activated PBMNC proliferation, facilitated macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, and promoted angiogenesis. In vivo, ShE accelerated wound closure within 21 days, outperforming DuoDERM, a commercial dressing. Histopathological analysis demonstrated improved epidermal maturation, dermal regeneration, and reduced scarring in ShE-treated wounds, confirming the superior tissue regeneration capacity. Additionally, its fabrication from medical waste and indigenous raw materials ensures cost-effectiveness and sustainability in healthcare applications. By synergistically regulating cell physiology for skin regeneration, ShE emerges as a promising, clinically viable, and affordable wound dressing for enhanced wound care management.
Collapse
Affiliation(s)
- Shruti Mahapatra
- Stem Cell Facility-DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yashvi Sharma
- Stem Cell Facility-DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cell Facility-DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
2
|
Cytokine profile of human limbal myofibroblasts: Key players in corneal antiviral response. Cytokine 2022; 160:156047. [DOI: 10.1016/j.cyto.2022.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
3
|
Yu Y, Shen Y, Zhang S, Wang N, Luo L, Zhu X, Xu X, Cong W, Jin L, Zhu Z. Suppression of Cutibacterium acnes-Mediated Inflammatory Reactions by Fibroblast Growth Factor 21 in Skin. Int J Mol Sci 2022; 23:ijms23073589. [PMID: 35408949 PMCID: PMC8998725 DOI: 10.3390/ijms23073589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cutibacterium acnes (C. acnes) is a common commensal bacterium that is closely associated with the pathogenesis of acne. Fibroblast growth factor 21 (FGF21), as a favorable regulator of glucose and lipid metabolism and insulin sensitivity, was recently shown to exert anti-inflammatory effects. The role and mechanism of FGF21 in the inflammatory reactions induced by C. acnes, however, have not been determined. The present study shows that FGF21 in the dermis inhibits epidermal C. acnes-induced inflammation in a paracrine manner while it functions on the epidermal layer through a receptor complex consisting of FGF receptor 1 (FGFR1) and β-Klotho (KLB). The effects of FGF21 in heat-killed C. acnes-induced HaCaT cells and living C. acnes-injected mouse ears were examined. In the presence of C. acnes, FGF21 largely counteracted the activation of Toll-like receptor 2 (TLR2), the downstream nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways induced by C. acnes. FGF21 also significantly reduced the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Taken together, these findings indicate that FGF21 suppresses C. acnes-induced inflammation and might be used clinically in the management and treatment of acne.
Collapse
|
4
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 2021; 12:126. [PMID: 33579346 PMCID: PMC7881457 DOI: 10.1186/s13287-021-02196-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries, and because of population growth and aging, it is a growing medical burden worldwide. With robust development in medicine, the use of stem cells has opened new treatment modalities in cancer therapy. In adult stem cells, mesenchymal stem cells (MSCs) are showing rising promise in cancer treatment due to their unique properties. Among different sources of MSCs, human amniotic fluid/membrane is an attractive and suitable reservoir. There are conflicting opinions about the role of human amniotic membrane/fluid mesenchymal stem cells (hAMSCS/hAFMSCs) in cancer, as some studies demonstrating the anticancer effects of these cells and others suggesting their progressive effects on cancer. This review focuses on recent findings about the role of hAMSCs/hAFMSCs in cancer treatment and summarizes the suppressing as well as promoting effects of these cells on cancer progression and underling mechanisms.
Collapse
Affiliation(s)
- Ameneh Jafari
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Buentello-Volante B, Molina-Medinilla M, Aguayo-Flores E, Magaña-Guerrero FS, Garfias Y. Comparison of amniotic membrane transplantation and carpal tunnel syndrome release surgery (CTRS) and CTRS alone: Clinical outcomes at 1-year follow-up. J Tissue Eng Regen Med 2020; 14:714-722. [PMID: 32174033 DOI: 10.1002/term.3033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Carpal tunnel syndrome (CTS) is the most common focal entrapment mononeuropathy, comprising medium nerve chronic inflammation and fibrosis. Although carpal tunnel release surgery (CTRS) has demonstrated to be effective, around 3% to 25% of CTRS show recurrence. Amniotic membrane transplantation (AMT) has been used in different pathologies inhibiting inflammation and fibrosis and promoting nerve repair. The aim of this study was to determine the efficacy of AMT in CTRS. The present study comprised a randomized, single-blind controlled trial to compare the 1-year follow-up outcomes of AMT in CTRS (AMT group) or CTRS alone (control group) in patients with CTS. Thirty-five patients with unilateral or bilateral CTS were enrolled, and 47 wrists were randomized into two groups: the AMT group and the control group. To compare the outcomes, three different questionnaires scores (Boston Carpal Tunnel Syndrome Questionnaire, Disabilities of the Arm, Shoulder, and Hand, and Historical-Objective scale) were used. Evaluations were assessed at baseline and at 15 days, 1, 3, 6, and 12 months after surgery. Compared with the control group, the AMT group showed significant (p < 0.05) reductions in all scores from 6 months after surgery until the end of the study. Both AMT and control groups showed significant intragroup differences in all scores, since the first month after surgery until the end of the study in comparison with the baseline scores. Taken together, these results indicate that CTRS in conjunction with AMT is more effective than CTRS alone in patients with CTS at 1-year follow-up. Clinical Trial: NCT04075357; Amniotic Membrane in Carpal Tunnel Syndrome.
Collapse
Affiliation(s)
- Beatriz Buentello-Volante
- Amniotic Membrane Tissue Bank, Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Mexico City, Mexico
| | | | - Eduardo Aguayo-Flores
- Amniotic Membrane Tissue Bank, Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Amniotic Membrane Tissue Bank, Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Mexico City, Mexico
| | - Yonathan Garfias
- Amniotic Membrane Tissue Bank, Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
6
|
Corneal neovascularization is inhibited with nucleolin-binding aptamer, AS1411. Exp Eye Res 2020; 193:107977. [PMID: 32081668 DOI: 10.1016/j.exer.2020.107977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Corneal neovascularization (CNV) is a common sight-threatening pathology that can be induced by a variety of inflammatory and angiogenic stimuli. Current CNV treatments include anti-inflammatory drugs and antibody-based inhibitors of vascular endothelial growth factor (VEGF). However, these are not always effective and novel therapeutic approaches are needed. Previous work has indicated a role for nucleolin (NCL) in VEGF-mediated neoangiogenesis in a suture-induced CNV model. The major goal for this current study is to test the effect of AS1411, a NCL-binding DNA aptamer that has reached human clinical trials, on neovascularization in a murine model of VEGF-mediated CNV. Our results show that topical administration of AS1411 can significantly inhibit corneal neovascularization in this model. Mechanistic studies indicate that AS1411 reduces the VEGF-stimulated proliferation, migration, and tube formation of primary cells obtained from human limbus stroma (HLSC). AS1411 treatment also significantly reduced VEGF-stimulated induction of miR-21 and miR-221 in HLSC, suggesting a role for these pro-angiogenic miRNAs in mediating the effects of AS1411 in this system. In sum, this new research further supports a role for NCL in the molecular etiology of CNV and identifies AS1411 as a potential anti-angiogenic CNV treatment that works by a novel mechanism of action.
Collapse
|
7
|
Yang G, Wang J, Lu S, Chen Z, Fan S, Chen D, Xue H, Shi W, He J. Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with a dual antibacterial and anti-inflammatory action. Br J Pharmacol 2019; 176:2321-2335. [PMID: 30927447 DOI: 10.1111/bph.14680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Propionibacterium acnes is a Gram-positive bacterium associated with the skin disorder acne. In this study, as fatty acids are considered to be important in the life habitat of P. acnes, we tested our lipopeptide library in an attempt to create potent P. acnes-specific antimicrobial agents. EXPERIMENTAL APPROACH The antimicrobial activity of various lipopeptides was determined by measuring their minimal inhibitory concentration (MIC). Lipids from P. acnes were used to explore their mode of action. RAW264.7 cells stimulated with LPS and P. acnes respectively were used to measure their anti-inflammatory activity. Mice ears injected with P. acnes were used to assess the antimicrobial and anti-inflammatory effects of the peptides tested in vivo. KEY RESULTS The most potent candidate, C16-KWKW, was observed to be more active against P. acnes than against other non-targeted bacterial strains, such as Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. The mode of action of C16-KWKW was observed to be through interference with the integrity of the bacterial membrane, thereby impairing membrane permeability and causing leakage of inner contents of bacterial cells. Furthermore, C16-KWKW inhibited the expression of pro-inflammatory cytokines, such as IL-1β, TNF-α, and inducible NOS stimulated by both LPS and P. acnes, thus showing potential anti-inflammatory activity, which was further verified in the in vivo animal studies. CONCLUSIONS AND IMPLICATIONS C16-KWKW is a lipopeptide displaying both anti-P. acnes and anti-inflammatory effects in vitro and in vivo and shows potential as a treatment for acne vulgaris induced by P. acnes.
Collapse
Affiliation(s)
- Guang Yang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jingyu Wang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhao Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Sheng Fan
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Daiwei Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Huanxin Xue
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wenyuan Shi
- The Forsyth Institute, Harvard School of Dental Medicine, Cambridge, MA, USA
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Yang G, Wang J, Lu S, Chen Z, Fan S, Chen D, Xue H, Shi W, He J. Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with dual antibacterial and anti-inflammatory action. Br J Pharmacol 2019; 176:1603-1618. [PMID: 30644534 DOI: 10.1111/bph.14571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/30/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Propionibacterium acnes (P. acnes) is a Gram-positive bacterium associated with the skin disorder acne. In this study, we determined the importance of fatty acids in the life habitat of P. acnes; we tested our lipopeptide library in an attempt to create potent P. acnes-specific antimicrobial agents. EXPERIMENTAL APPROACH Antimicrobial activity was determined by the minimal inhibitory concentration (MIC). Lipids from P. acnes were used to explore the mode of action. RAW264.7 cells respectively stimulated with LPS and P. acnes were used to measure the anti-inflammatory activity. Mice ears injected with P. acnes were used to assess the antimicrobial and anti-inflammatory effects of the peptides tested in vivo. KEY RESULTS The most potent candidate, C16-KWKW, was observed to be more active against P. acnes, with an MIC of 2 μg·ml-1 , than against other non-targeted bacterial strains, such as Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. The mode of action of C16-KWKW was observed to be through interference with the integrity of bacterial membrane, thereby impairing membrane permeability and causing leakage of the inner contents of bacterial cells. In addition, C16-KWKW inhibited the expression of pro-inflammatory cytokines, such as IL-1β, TNF-α, and inducible NOS, stimulated by both LPS and P. acnes, thus showing potential anti-inflammatory activity, which was further assessed in animal studies in vivo. CONCLUSIONS AND IMPLICATIONS C16-KWKW is a lipopeptide displaying both anti-P. acnes and anti-inflammatory effects in vitro and in vivo, and exhibits potential as a treatment for acne vulgaris induced by P. acnes.
Collapse
Affiliation(s)
- Guang Yang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Fan
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Daiwei Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huanxin Xue
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyuan Shi
- The Forsyth Institute, Harvard School of Dental Medicine, Cambridge, Massachusetts, USA
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Navas A, Magaña-Guerrero FS, Domínguez-López A, Chávez-García C, Partido G, Graue-Hernández EO, Sánchez-García FJ, Garfias Y. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. Stem Cells Transl Med 2018; 7:906-917. [PMID: 30260581 PMCID: PMC6265633 DOI: 10.1002/sctm.18-0042] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/28/2018] [Indexed: 12/13/2022] Open
Abstract
Acute ocular chemical burns are ophthalmic emergencies requiring immediate diagnosis and treatment as they may lead to permanent impairment of vision. The clinical manifestations of such burns are produced by exacerbated innate immune response via the infiltration of inflammatory cells and activation of stromal fibroblasts. New therapies are emerging that are dedicated to repair mechanisms that improve the ocular surface after damage; for example, transplantation of stem cells (SC) has been successfully reported for this purpose. The pursuit of easily accessible, noninvasive procedures to obtain SC has led researchers to focus on human tissues such as amniotic membrane. Human amniotic mesenchymal SC (hAM-MSC) inhibits proinflammatory and fibrotic processes in different diseases. hAM-MSC expresses low levels of classical MHC-I and they do not express MHC-II, making them suitable for regenerative medicine. The aim of this study was to evaluate the effect of intracameral injection of hAM-MSC on the clinical manifestations, the infiltration of inflammatory cells, and the activation of stromal fibroblasts in a corneal alkali-burn model. We also determined the in vitro effect of hAM-MSC conditioned medium (CM) on α-SMA+ human limbal myofibroblast (HLM) frequency and on release of neutrophil extracellular traps (NETs). Our results show that intracameral hAM-MSC injection reduces neovascularization, opacity, stromal inflammatory cell infiltrate, and stromal α-SMA+ cells in our model. Moreover, in in vitro assays, CM from hAM-MSC decreased the quantity of α-SMA+ HLM and the release of NETs. These results suggest that intracameral hAM-MSC injection induces an anti-inflammatory and anti-fibrotic environment that promotes corneal wound healing. Stem Cells Translational Medicine 2018;7:906-917.
Collapse
Affiliation(s)
- Alejandro Navas
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Department of Cornea and Refractive Surgery, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Domínguez-López
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César Chávez-García
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Graciela Partido
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Enrique O Graue-Hernández
- Department of Cornea and Refractive Surgery, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Col Santo Tomás, Mexico
| | - Yonathan Garfias
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Human Amniotic Membrane Mesenchymal Stem Cells inhibit Neutrophil Extracellular Traps through TSG-6. Sci Rep 2017; 7:12426. [PMID: 28963485 PMCID: PMC5622031 DOI: 10.1038/s41598-017-10962-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal stem cells obtained from human amniotic membrane (hAMSC) possess immunosuppressive functions through soluble factors such as prostanoids and proteins; thus, they have been proposed to ameliorate inflammatory processes. On the other hand, activated neutrophils are cells of the first line of immune defense that are able to release extracellular traps (NETs). NETs are formed of DNA and granular components; however, the excessive release of NETs is associated with the development of autoimmune and chronic inflammatory diseases. In this study, we identified that conditioned medium (CM) from hAMSC was able to diminish NETs release, as well as the production of reactive oxygen species (ROS) and the mitochondrial membrane potential from LPS-stimulated mouse bone marrow-derived neutrophils (BMN). Interestingly, NETs inhibition, ROS levels decrease and mitochondrial membrane potential loss were reverted when LPS-stimulated murine derived BMN were exposed to the CM from hAMSC transfected with TSG-6-siRNA. Finally, rhTSG6 was able to significantly diminish NETs release in BMN. These data suggest an inhibition mechanism of NETs ROS-dependent in which TSG-6 participates. Consequently, we propose the hAMSC use as a therapeutic candidate in the treatment of inflammatory diseases in which NETs are involved.
Collapse
|
11
|
Bautista-Hernández LA, Gómez-Olivares JL, Buentello-Volante B, Bautista-de Lucio VM. Fibroblasts: The Unknown Sentinels Eliciting Immune Responses Against Microorganisms. Eur J Microbiol Immunol (Bp) 2017; 7:151-157. [PMID: 29034104 PMCID: PMC5632742 DOI: 10.1556/1886.2017.00009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
Fibroblasts are present in all tissues but predominantly in connective tissues. Some of their functions include contractility, locomotion, collagen and elastin fiber production, and the regulation and degradation of the extracellular matrix. Also, fibroblasts act as sentinels to produce inflammatory mediators in response to several microorganisms. There is evidence that fibroblasts can synthesize toll-like receptors (TLRs), antimicrobial peptides, proinflammatory cytokines, chemokines, and growth factors, which are important molecules involved in innate immune response against microorganisms. Fibroblasts can express TLRs (TLR-1 to TLR-10) to sense microbial components or microorganisms. They can synthesize antimicrobial peptides, such as LL-37, defensins hBD-1, and hBD-2, molecules that perform antimicrobial activity. Also, they can produce proinflammatory cytokines, such as TNFα, INFγ, IL-6, IL-12p70, and IL-10; other chemokines, such as CCL1, CCL2, CCL5, CXCL1, CXCL8, CXCL10, and CX3CL1; and the growth factors granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) to induce and recruit inflammatory cells. According to their immunological attributes, we can conclude that fibroblasts are sentinel cells that recognize pathogens, induce the recruitment of inflammatory cells via cytokines and growth factors, and release antimicrobial peptides, complying with the characteristics of real sentinels.
Collapse
Affiliation(s)
- Luis Antonio Bautista-Hernández
- Microbiology and Ocular Proteomics, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico.,Department of Health Sciences, Autonomous Metropolitan University, Mexico City, Mexico.,Doctorate Biological Science and Health, Autonomous Metropolitan University, Mexico City, Mexico
| | | | - Beatriz Buentello-Volante
- Cellular and Tissue Biology, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | - Victor Manuel Bautista-de Lucio
- Microbiology and Ocular Proteomics, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| |
Collapse
|
12
|
Quiroz-Mercado J, Ramírez-Velázquez N, Partido G, Zenteno E, Chávez R, Agundis-Mata C, Jiménez-Martínez MC, Garfias Y. Tissue and cellular characterisation of nucleolin in a murine model of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 254:1753-63. [PMID: 27313162 DOI: 10.1007/s00417-016-3409-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/08/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Corneal neovascularisation (CNV), with consequent loss of transparency, is due to an imbalance of proangiogenic factors. Cell-surface nucleolin (NCL) has been associated with neo-angiogenesis. There are studies identifying NCL translocation from nucleus to the cell surface, which is essential for endothelial cell proliferation. To find the possible role of NCL in the generation of corneal neovessels, the aim of this study is to characterise the NCL presence and cell-localisation in non-injured corneas, as well as to describe the changes in NCL cell and tissue localisation in CNV, and to analyse the effect of bevacizumab on NCL cellular and tissular distribution. METHODS Suture-induced CNV was performed in mice. The corneal tissues were obtained and the histological and co-immunofluorescence assays were performed using different proteins, such as CD31, cadherin and isolectin B4. To determine the possible role of VEGF in NCL presence and localisation in our CNV model, bevacizumab was concomitantly used. RESULTS Nucleolin was principally observed in the nucleus of the basal epithelial cells of normal corneas. Interestingly, angiogenesis-induced changes were observed in the localisation of NCL, not only in tissue but also at the cellular level where NCL was extranuclear in epithelial cells, stromal cells and neovessels. In contrast, these changes were reverted when bevacizumab was used. Besides, NCL was able to stain only aberrant corneal neovessels in comparison with retinal vessels. CONCLUSIONS NCL mobilisation outside the nucleus during angiogenesis could have a possible role as a proangiogenic molecule in the corneal tissue.
Collapse
Affiliation(s)
- Joaquín Quiroz-Mercado
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
- Faculty of Veterinary Medicine and Animal Husbandry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Norma Ramírez-Velázquez
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
| | - Graciela Partido
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Raúl Chávez
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Concepción Agundis-Mata
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Maria Carmen Jiménez-Martínez
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico.
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|
13
|
Ophthalmic indications of amniotic membrane transplantation in Mexico: an eight years Amniotic Membrane Bank experience. Cell Tissue Bank 2015; 17:261-8. [PMID: 26675894 DOI: 10.1007/s10561-015-9540-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
Amniotic membrane, the inner layer of the placenta, has biological properties (e.g. promotes epithelization, reduces fibrosis, secretes antimicrobial products and inhibits immune responses) which make it a useful option for several ophthalmologic procedures, especially those involving the ocular surface. Its use in eye surgery has been reported by other authors. To our knowledge, there is a lack of descriptive studies on surgical indications using amniotic membrane in Mexican population. Here we describe the eight years Amniotic Membrane Bank experience in Mexico, including a detailed protocol of the donors selection, tissue harvesting, preparation, storage and distribution of amniotic membrane since its establishment in 2007. Moreover, we describe the Ophthalmological indications of amniotic membrane transplantation of the total of 1686 amniotic membranes fragments used during eight years. The five most common indications for amniotic membrane transplantation were pterygium (46 %), corneal ulcers (12.6 %), conjunctival surface repair (11.1 %), neoplasms (7.4 %), and persistent epithelial defects (7.3 %). In addition, we compared the indications of amniotic membrane use in two different types of Institutions: general hospitals and ophthalmologic reference hospitals. We found interesting differences between the indications and use rates between these institutions, although pterygium was the most frequent pathology that amniotic membrane fragments were used in both institutions, there was up to a five-fold increase in the use of amniotic membrane for correction of persistent epithelial defects in reference hospitals which could be explained due to the more complex and severe ophthalmological pathologies admitted in reference hospitals. In conclusion, Amniotic Membrane is used in a numerous ocular pathologies and especially on pterygium in our Mexican population.
Collapse
|