1
|
Huang DL, Wang SW, Gao Y, Hu YJ, Zeng XX, Liu SY, Li P, Lan T, Shen Q, Tong YH, Kong DX, Mao ZJ. Yi-qi-yang-yin decoction ameliorates diabetic retinopathy: New and comprehensive evidence from network pharmacology, machine learning, molecular docking and molecular biology experiment. J Pharm Biomed Anal 2025; 260:116794. [PMID: 40086050 DOI: 10.1016/j.jpba.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Yi-Qi-Yang-Yin Decoction (YQYY), a traditional Chinese medicine (TCM) formula, has been used to treat diabetic retinopathy (DR), yet its precise mechanisms of action remain poorly understood. In this study, two distinct diabetic models, namely spontaneous type 2 diabetic db/db mice and streptozotocin (STZ)-induced type 1 diabetic rats, were employed to assess the efficacy of YQYY in ameliorating DR. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was employed to identify the chemical composition of YQYY in mouse serum. Next, the possible targets and key pathways of YQYY for the management of DR were predicted by integrating network pharmacology and weighted gene co-expression network analysis (WGCNA). Network-based indicators were then employed to evaluate the efficacy of the formulae on DR, and molecular docking, along with compound similarity analysis, was used to identify candidate drugs of YQYY for DR. Finally, molecular biology techniques were utilized to experimentally validate the identified targets. Experimental results from animal models showed that YQYY effectively improved hemoglobin A1C (HbA1C), reduced vessel branch points, and mitigated retinal tissue injury in both DR models. 17 herbal components were identified in the YQYY-containing serum by UPLC-QTOF-MS. Network pharmacology predicted 44 common targets of YQYY involved in the regulation of DR. These targets were found to mainly participate in inflammation-related signaling pathways, including the NF-κB signaling pathway, toll-like receptor signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. By integrating the most relevant disease templates for DR with network pharmacology, we preliminarily identified two key functions of YQYY and their associated regulatory targets, which showed strong connections and correlations with the targets identified in the screened DR disease models. These results demonstrate the pivotal role of core targets, such as BAX, BCL2, MMP9, SIRT1, PPARγ, VCAM1, PTGS2, TNF-α, and RELA, in mediating the therapeutic effects of YQYY in managing DR. Network analysis of YQYY efficacy in DR revealed a significant correlation between the YQYY targets and DR-related genes. Furthermore, molecular docking and drug similarity comparisons suggested that kaempferol, formononetin, and caffeic acid show potential as therapeutic candidates for DR. Our investigation demonstrated the therapeutic efficacy of YQYY against DR, shedding light on novel perspectives regarding the active constituents and molecular pathways through which YQYY exerts its effects in managing DR.
Collapse
Affiliation(s)
- De-Lian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan-Jun Hu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Qing Shen
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yu-Hua Tong
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - De-Xing Kong
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Hiller JK, Sandås EM, Rootwelt H, Vassli AØ, Lumi X, Moe MC, Utheim TP, Elgstøen KBP, Petrovski G. Metabolomic biomarkers in vitreous humor: unveiling the molecular landscape of diabetic retinopathy progression. Int J Retina Vitreous 2025; 11:58. [PMID: 40405316 PMCID: PMC12096489 DOI: 10.1186/s40942-025-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a progressive retinal disease that leads to vision loss if not detected early. Metabolomic analysis of vitreous humor offers a promising approach to identifying biomarkers associated with disease onset and progression. This pilot study investigates the metabolomic profiles of vitreous humor from patients at different stages of DR, aiming to uncover potential biomarkers for early detection and monitoring of disease progression. METHODS Vitreous samples were collected during therapeutic pars plana vitrectomy of 23 patients without diabetes (CTRL), with diabetes and without retinopathy (DIA), non-proliferative DR (NPDR) and proliferative DR (PDR). Metabolomics was performed using high-performance liquid chromatography coupled with high-resolution mass spectrometry. RESULTS Principal component analysis revealed distinct metabolic signatures differentiating the patient groups. Lysine, proline, and arginine levels progressively increased from DIA to NPDR and PDR stages, highlighting their association with disease progression. Methionine and threonine showed notable increases in PDR compared to all other groups, while carnitine, a key metabolite in lipid metabolism, exhibited stage-specific increases, peaking in PDR. The detection of systemic and topical drugs, including metformin and tropicamide, in the vitreous further emphasizes altered ocular permeability in DR. CONCLUSION Our findings suggest that metabolomic profiling could provide valuable insights into the underlying pathogenesis of DR and serve as a foundation for personalized therapeutic strategies.
Collapse
Affiliation(s)
- John Kim Hiller
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Kirkeveien 166, Oslo, 0450, Norway.
| | - Elise Mørk Sandås
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Anja Østeby Vassli
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Morten Carstens Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Kirkeveien 166, Oslo, 0450, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital, Arendal, Norway
| | | | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Kirkeveien 166, Oslo, 0450, Norway
- Department of Ophthalmology, University Hospital Centre, University of Split School of Medicine, Split, Croatia
- UKLO Network, University St. Kliment Ohridski, Bitola, North, Macedonia
| |
Collapse
|
3
|
Zhang J, Qian Y, Shangguan Y, Gong Y, Shu Y, Wang Y. Bibliometric and visual analysis of retinal fibrosis research from 1993 to 2023. Photodiagnosis Photodyn Ther 2025:104636. [PMID: 40393567 DOI: 10.1016/j.pdpdt.2025.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Retinal fibrosis, a common pathological feature of various retinal diseases, significantly impairs vision. The mechanisms of retinal fibrosis are complex, with cytokine involvement playing a pivotal role. This article aims to elucidate the current research trends and key areas of focus in the study of retinal fibrosis. METHODS Publications from "Web of Science core collection", "PubMed" and "Scopus" were analyzed using R Studio ("Bibliometrix" and "ggplot2" packages) for publication counts, geographic distribution, and collaborations, while "CiteSpace" and "VOSviewer" visualized institutional partnerships and keyword co-occurrence. The methodology follows the PRISMA 2020 guidelines strictly. RESULTS In this analysis, a total of 1985 studies were analyzed. Key topics included "vitrectomy", "epiretinal membrane", "optical coherence tomography (OCT)", "macular membrane", and "macular hole". Keyword co-occurrence analysis emphased macular disease, fibrosis diagnosis, pharmacological treatment, and prognosis across various groups with cytokines as prominent research topics. Additionally, the findings suggested future research would focus on elucidating fibrosis mechanisms, advancing diagnostic techniques, and identifying potential drug targets. The journal "Retina" had the highest citation count for retinal fibrosis. The United States showed the greatest collaboration in retinal fibrosis research, particularly with China. CONCLUSIONS Current retinal fibrosis research focused on OCT diagnostics, cytokine mechanisms, and associated diseases such as diabetic retinopathy and macular degeneration. Future research will explore the integration of artificial intelligence in treatment strategies and the mechanisms underlying post-anti-VEGF injection fibrosis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanyu Shangguan
- Department of ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Gong
- Department of radiology, Nanjing First hospital, Nanjing medical university, Nanjing, China
| | - Yiyang Shu
- Department of ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Arroba AI, Beli E, Hombrebueno JR, Llorián-Salvador M. Editorial: Physiological and pathological changes of the retina associated with ageing. Front Cell Neurosci 2025; 19:1609473. [PMID: 40406568 PMCID: PMC12095190 DOI: 10.3389/fncel.2025.1609473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Affiliation(s)
- Ana I. Arroba
- Institute for Biomedical Research and Innovation of Cádiz, University of Cádiz, Cádiz, Spain
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Eleni Beli
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jose R. Hombrebueno
- Department of Inflammation and Ageing, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - María Llorián-Salvador
- Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
5
|
Blasiak J, Pawlowska E, Helotera H, Ionov M, Derwich M, Kaarniranta K. Potential of autophagy in subretinal fibrosis in neovascular age-related macular degeneration. Cell Mol Biol Lett 2025; 30:54. [PMID: 40307700 PMCID: PMC12044759 DOI: 10.1186/s11658-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can lead to legal blindness and vision loss. In its advanced stages, it is classified into dry and neovascular AMD. In neovascular AMD, the formation of new blood vessels disrupts the structure of the retina and induces an inflammatory response. Treatment for neovascular AMD involves antibodies and fusion proteins targeting vascular endothelial growth factor A (VEGFA) and its receptors to inhibit neovascularization and slow vision loss. However, a fraction of patients with neovascular AMD do not respond to therapy. Many of these patients exhibit a subretinal fibrotic scar. Thus, retinal fibrosis may contribute to resistance against anti-VEGFA therapy and the cause of irreversible vision loss in neovascular AMD patients. Retinal pigment epithelium cells, choroidal fibroblasts, and retinal glial cells are crucial in the development of the fibrotic scar as they can undergo a mesenchymal transition mediated by transforming growth factor beta and other molecules, leading to their transdifferentiation into myofibroblasts, which are key players in subretinal fibrosis. Autophagy, a process that removes cellular debris and contributes to the pathogenesis of AMD, regardless of its type, may be stimulated by epithelial-mesenchymal transition and later inhibited. The mesenchymal transition of retinal cells and the dysfunction of the extracellular matrix-the two main aspects of fibrotic scar formation-are associated with impaired autophagy. Nonetheless, the causal relationship between autophagy and subretinal fibrosis remains unknown. This narrative/perspective review presents information on neovascular AMD, subretinal fibrosis, and autophagy, arguing that impaired autophagy may be significant for fibrosis-related resistance to anti-VEGFA therapy in neovascular AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402, Plock, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Hanna Helotera
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
| | - Maksim Ionov
- Faculty of Health Sciences, Mazovian Academy in Plock, 09-402, Plock, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210, Kuopio, Finland
| |
Collapse
|
6
|
Chaudhary V, Mar F, Amador MJ, Chang A, Gibson K, Joussen AM, Kim JE, Lee J, Margaron P, Saffar I, Wong D, Wykoff C, Sadda S. Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06695-4. [PMID: 39708087 DOI: 10.1007/s00417-024-06695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024] Open
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability. Ang-2 can interfere with Ang-1/Tie2 signaling and is increased in several retinal diseases. Lack of Tie2 signaling due to elevated Ang-2 levels drives vascular instability through pericyte dropout, neovascularization, vascular leakage, inflammation, and fibrosis. Although Ang-2 and VEGF can synergistically promote vascular instability and neovascularization, Ang-2 may also mediate vascular instability independently of VEGF. Faricimab is a bispecific antibody designed for intraocular use that inhibits two distinct pathways via Ang-2 and VEGF-A blockade. Clinical biomarkers of vascular instability are important for evaluating disease control and subsequent treatment decisions. These biomarkers include measurement/evaluation with optical coherence tomography (OCT) of intraretinal fluid, subretinal fluid, central subfield thickness, and pigment epithelial detachments (PEDs), and fluorescein angiography imaging of macular leakage and PEDs. Hyperreflective foci (HRF), thought to be representative of activated microglia, indicating an inflammatory microenvironment, and epiretinal membranes (ERMs), a marker for retinal fibrotic proliferation in diabetic macular edema (DME), are both also identified using OCT. Here we summarize data (secondary endpoint and prespecified exploratory analyses as well as post hoc analyses) from six Phase III trials suggest that dual therapy Ang-2/VEGF-A inhibition with faricimab (6 mg) has a greater effect on reducing/resolving biomarkers of vascular instability than aflibercept (2 mg), by both controlling neovascularization and vascular leakage (with resultant resolution of exudation associated with DME, neovascular age-related macular degeneration, and retinal vein occlusion), as well as by targeting inflammation (reduction of HRF in DME) and retinal fibrotic proliferation (reducing the risk of ERMs in eyes with DME). Modulation of both the Ang-2 and VEGF-A pathways with faricimab may therefore provide greater disease control than anti-VEGF monotherapy, potentially leading to extended treatment durability and improved long-term outcomes.
Collapse
Affiliation(s)
- Varun Chaudhary
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Florie Mar
- Genentech, Inc, South San Francisco, CA, USA
| | | | - Andrew Chang
- Sydney Retina Clinic, Sydney Eye Hospital, University of Sydney, University of NSW, Sydney, Australia
| | | | - Antonia M Joussen
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judy E Kim
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junyeop Lee
- Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea
| | | | | | - David Wong
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Charles Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Methodist Hospital, Houston, TX, USA
| | - Srinivas Sadda
- Doheny Eye Institute, University of California, Los Angeles, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, USA.
| |
Collapse
|
7
|
Medina-Arellano AE, Albert-Garay JS, Medina-Sánchez T, Fonseca KH, Ruiz-Cruz M, Ochoa-de la Paz L. Müller cells and retinal angiogenesis: critical regulators in health and disease. Front Cell Neurosci 2024; 18:1513686. [PMID: 39720707 PMCID: PMC11666533 DOI: 10.3389/fncel.2024.1513686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Müller cells are the most abundant glial cells in the mammalian retina. Their morphology and metabolism enable them to be in close contact and interact biochemically and physically with almost all retinal cell types, including neurons, pericytes, endothelial cells, and other glial cells, influencing their physiology by releasing bioactive molecules. Studies indicate that Müller glial cells are the primary source of angiogenic growth factor secretion in the neuroretina. Because of this, over the past decade, it has been postulated that Müller glial cells play a significant role in maintaining retinal vascular homeostasis, with potential implications in vasoproliferative retinopathies. This review aims to summarize the current understanding of the mechanisms by which Müller glial cells influence retinal angiogenesis in health and disease, with a particular emphasis on three of the retinopathies with the most significant impact on visual health worldwide: diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration.
Collapse
Affiliation(s)
- Alan E. Medina-Arellano
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Jesús Silvestre Albert-Garay
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Tania Medina-Sánchez
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Karla Hernández Fonseca
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Matilde Ruiz-Cruz
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Lenin Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| |
Collapse
|
8
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Palanisamy K, Karpagavalli M, Nareshkumar RN, Ramasubramanyan S, Angayarkanni N, Raman R, Chidambaram S. Adiponectin-induced activation of ERK1/2 drives fibrosis in retinal pigment epithelial cells. Hum Cell 2024; 38:8. [PMID: 39460900 DOI: 10.1007/s13577-024-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Adiponectin (APN), a vasoactive cytokine produced by adipocytes, has emerged as a critical player in retinal diseases. Renowned for its antioxidant, anti-angiogenic, and anti-inflammatory properties, APN levels are closely linked to metabolic disorders, such as insulin resistance, obesity, and diabetic retinopathy (DR). Our previous work demonstrated that APN is similar in efficiency as Avastin in limiting neovascularization in retinal endothelial cells. In this study, we analyzed the effect of APN on retinal epithelial cells to understand its potential impact on eye-related pathologies. Overexpression of APN in ARPE-19 cells predominantly yielded the MMW-APN form, accompanied by increased expression of pro-fibrotic markers and decreased levels of tight junction (TJ) proteins, ZO-1, and Occludin. Further, confocal imaging revealed impaired TJ assembly and the integrity of TJ was also compromised as evidenced by the higher paracellular permeability and lower TEER. Besides, rAPN treatment in ARPE-19 cells as well triggered increased expression of pro-fibrotic markers, pro-MMP2, and enhanced cell migration and proliferation. Mechanistically, these pro-fibrotic effects were mediated by APN-induced phosphorylation of ERK1/2, causing RPE cell transdifferentiation. Furthermore, we identified that MMW-APN was the most prevalent form detected in the vitreous humor of proliferative diabetic retinopathy (PDR) patients, emphasizing the clinical relevance of our findings. Overall, our data suggest that APN, particularly its MMW form, induces epithelial-mesenchymal transition (EMT) and fibrosis in RPE cells, potentially driving the angio-fibrotic shift observed in PDR via ERK1/2 activation.
Collapse
Affiliation(s)
- Karthikka Palanisamy
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | | | | | - Sharada Ramasubramanyan
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | - Narayanasamy Angayarkanni
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | |
Collapse
|
10
|
Kishishita S, Usui-Ouchi A, Ouchi Y, Hata Y, Ebihara N, Nakao S. Proliferative Diabetic Retinopathy Microenvironment Drives Microglial Polarization and Promotes Angiogenesis and Fibrosis via Cyclooxygenase-2/Prostaglandin E2 Signaling. Int J Mol Sci 2024; 25:11307. [PMID: 39457089 PMCID: PMC11508523 DOI: 10.3390/ijms252011307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment, particularly in the proliferative form (proliferative DR [PDR]). The impact of the PDR microenvironment on microglia, which are the resident immune cells in the central nervous system, and the specific pathological changes it may induce remain unclear. This study aimed to investigate the role of microglia in the progression of PDR under hypoxic and inflammatory conditions. We performed a comprehensive gene expression analysis using human-induced pluripotent stem cell-derived microglia under different stimuli (dimethyloxalylglycine (DMOG), lipopolysaccharide (LPS), and DMOG + LPS) to mimic the hypoxic inflammatory environment characteristic of PDR. Principal component analysis revealed distinct gene expression profiles, with 76 genes synergistically upregulated under combined stimulation. Notably, prostaglandin-endoperoxide synthase 2 (encoding cyclooxygenase (COX)-2) exhibited the most pronounced increase, leading to elevated prostaglandin E2 (PGE2) levels and driving pathological angiogenesis and inflammation via the COX-2/PGE2/PGE receptor 2 signaling axis. Additionally, the upregulation of the fibrogenic genes snail family transcriptional repressor 1 and collagen type I alpha 1 chain suggested a role for microglia in fibrosis. These findings underscore the critical involvement of microglia in PDR and suggest that targeting both the angiogenic and fibrotic pathways may present new therapeutic strategies for managing this condition.
Collapse
Affiliation(s)
- Shuta Kishishita
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1 Urayasu, Chiba 279-0021, Japan
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1 Urayasu, Chiba 279-0021, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Yuiko Hata
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1 Urayasu, Chiba 279-0021, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1 Urayasu, Chiba 279-0021, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Juntendo University Graduate school of Medicine, 2-1-1 Bunkyo, Tokyo 113-8421, Japan
| |
Collapse
|
11
|
Ji Z, Lin S, Gui S, Gao J, Cao F, Guan Y, Ni Q, Chen K, Tao L, Zhengxuan J. Overexpressed Poldip2 Incurs Retinal Fibrosis via the TGF-β1/SMAD3 Signaling Pathway in Diabetic Retinopathy. Diabetes 2024; 73:1742-1755. [PMID: 38968428 DOI: 10.2337/db23-1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Retinal fibrosis is one of the major features of diabetic retinopathy (DR). Our recent research has shown that Poldip2 can affect early DR through oxidative stress, but whether Poldip2 would regulate retinal fibrosis during DR development is still enigmatic. Here, diabetic Sprague-Dawley (SD) rats were induced with streptozotocin (STZ) and treated with adeno-associated virus serotype 9-polymerase-δ interacting protein 2 (Poldip2) shRNA, while human adult retinal pigment epithelial (ARPE-19) cells were treated with high glucose or Poldip2 siRNA. We identified that in STZ-induced DR rats and ARPE-19 cells treated with high glucose, the expression of Poldip2, transforming growth factor-β1 (TGF-β1), phosphorylated-SMAD3/SMAD3, MMP9, COL-1, FN, and CTGF increased while the expression of cadherin decreased. However, deleting Poldip2 inhibited the TGF-β1/SMAD3 signaling pathway and attenuated the above protein expression in vivo and in vitro. Mechanistically, we found that Poldip2 promotes the activation of SMAD3, facilitates its nuclear translocation through interacting with it, and significantly enhances the expression of fibrosis makers. Collectively, Poldip2 was identified is a novel regulator of DR fibrosis and is expected to become a therapeutic target for PDR. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zhiyu Ji
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Siyu Lin
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yiming Guan
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Qinyu Ni
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jiang Zhengxuan
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Gao AY, Whaley MG, Saraf N, Bakri SJ, Haak AJ. Survey of Dopamine Receptor D2 Antagonists as Retinal Antifibrotics. J Ocul Pharmacol Ther 2024; 40:536-542. [PMID: 39206555 DOI: 10.1089/jop.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Purpose: To evaluate the potency and efficacy of a library of dopamine receptor D2 (D2R) antagonists in the mitigation of fibrotic activation in retinal pigment epithelial (RPE) cells. Methods: ARPE-19 cells were cultured and treated with methotrexate or 27 district D2R antagonists using a fibronectin deposition assay. The most potent compounds were then further assessed in assays measuring cellular proliferation, cellular migration, and profibrotic gene expression. Results: The previously established antifibrotic D2R antagonist loxapine exerted a robust and dose-dependent inhibition of fibronectin deposition, whereas methotrexate exerted minimal inhibition. The most potent D2R antagonist identified, fluphenazine, effectively blocked in vitro models of fibrosis at 300-1,000 nM concentrations. Conclusions: Here we found multiple FDA-approved D2R antagonists that potently block RPE cell fibrogenesis. These findings further support the potential of D2R antagonism as a potential therapeutic for retinal fibrotic disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Madison G Whaley
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Namita Saraf
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Mohan SP, Nagarajan H, Vetrivel U, Ramasubramanyan S. Human Antigen R -mediated modulation of Transforming Growth Factor Beta 1 expression in retinal pathological milieu. Biochem Biophys Rep 2024; 39:101807. [PMID: 39234594 PMCID: PMC11372609 DOI: 10.1016/j.bbrep.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The fate and stability of messenger RNA (mRNA), from transcription to degradation is regulated by a dynamic shuttle of epigenetic modifications and RNA binding proteins in maintaining healthy cellular homeostasis and disease development. While Transforming Growth Factor Beta 1 (TGFβ1) has been implicated as a key regulator for diabetic retinopathy, a microvascular complication of diabetes, the RNA binding proteins post-transcriptionally regulating its expression remain unreported in the ocular context. Further, dysfunction of TGFβ1 signalling is also strongly associated with angiogenesis, inflammatory responses and tissue fibrosis in many eye conditions leading to vision loss. In this study, computational and molecular simulations were initially carried out to identify Human Antigen R (HuR) binding sites in TGFβ1 mRNA and predict the structural stability of these RNA-protein interactions. These findings were further validated through in vitro experiments utilizing Cobalt Chloride (CoCl2) as a hypoxia mimetic agent in human retinal microvascular endothelial cells (HRMVEC). In silico analysis revealed that HuR preferentially binds to the 5'-UTR of TGFβ1 and displayed more stable interaction than the 3'UTR. Consistent with in silico analysis, RNA immunoprecipitation demonstrated a robust association between HuR and TGFβ1 mRNA specifically under hypoxic conditions. Further, silencing of HuR significantly reduced TGFβ1 protein expression upon CoCl2 treatment. Thus, for the first time in ocular pathological milieu, direct evidence of HuR- TGFβ1 mRNA interaction under conditions of hypoxia has been reported in this study providing valuable insights into RNA binding proteins as therapeutic targets for ocular diseases associated with TGFβ1 dysregulation.
Collapse
Affiliation(s)
- Sruthi Priya Mohan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hemavathy Nagarajan
- Centre for Bioinformatics, KBIRVO, Vision Research Foundation, Chennai, India
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Sharada Ramasubramanyan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India
| |
Collapse
|
14
|
Linder M, Bennink L, Foxton RH, Kirkness M, Westenskow PD. In vivo monitoring of active subretinal fibrosis in mice using collagen hybridizing peptides. Lab Anim (NY) 2024; 53:196-204. [PMID: 39060633 PMCID: PMC11291276 DOI: 10.1038/s41684-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Subretinal fibrosis is associated with worse visual outcomes in patients with neovascular age-related macular degeneration. As there is a lack of optimal biomarkers and no method that directly detects collagen in the back of the eye, novel tools that monitor fibrosis-related changes in neovascular age-related macular degeneration are needed. Here, using two mouse models (the laser-induced choroidal neovascularization model, and the JR5558 mouse presenting with spontaneous subretinal neovascularization with fibrosis), we imaged active fibrotic lesions using fluorescently labeled collagen hybridizing peptides (CHPs), short peptides that bind to single α-chain collagen structures during collagen remodeling. JR5558 retinal pigment epithelium/choroid flat mounts showed CHP co-staining with fibrosis and epithelial mesenchymal transition-related markers; additionally, CHP histopathology staining correlated with in vivo CHP imaging. After laser-induced choroidal neovascularization, in vivo CHP binding correlated with laser intensity, histopathology CHP and fibronectin staining. Laser-induced choroidal neovascularization showed decreased CHP intensity over time in healing/regressing versus active scars in vivo, whereas increased CHP binding correlated with elevated fibrosis in JR5558 mouse eyes with age. In bispecific angiopoietin 2/vascular endothelial growth factor antibody-treated JR5558 mice, CHPs detected significantly decreased collagen remodeling versus immunoglobulin G control. These results demonstrate the first use of CHPs to directly image remodeling collagen in the eye and as a potential clinical optical biomarker of active subretinal fibrosis associated with ocular neovascularization.
Collapse
Affiliation(s)
- Markus Linder
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard H Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
15
|
Li P, Fang RL, Wang W, Zeng XX, Lan T, Liu SY, Hu YJ, Shen Q, Wang SW, Tong YH, Mao ZJ. Apigenin suppresses epithelial-mesenchymal transition in high glucose-induced retinal pigment epithelial cell by inhibiting CBP/p300-mediated histone acetylation. Biochem Biophys Res Commun 2024; 717:150061. [PMID: 38718570 DOI: 10.1016/j.bbrc.2024.150061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.
Collapse
Affiliation(s)
- Ping Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ruo-Lin Fang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wen Wang
- Preventive Treatment Center, Zhejiang Chinese Medical University Affiliated Four-provinces Marginal Hospital of Traditional Chinese Medicine, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, 324000, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan-Jun Hu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| | - Yu-Hua Tong
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| | - Zhu-Jun Mao
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Ying J, Wang P, Jin X, Luo L, Lai K, Li J. TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells. Semin Ophthalmol 2024; 39:312-319. [PMID: 38192082 DOI: 10.1080/08820538.2023.2300806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
The purpose of our study was to investigate the role of TGF-β1 in the endothelial-to-mesenchymal transition (EndoMT) and fibrosis in high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs). HRMECs were cultured not only under normal glucose (NG) conditions with or without TGF-β1, but also under HG conditions with or without the TGF-β1 inhibitor SB431542. The expression of TGF-β1 was detected by real time-PCR and enzyme-linked immunosorbent assay. Morphological changes and migration of the HRMECs were observed using electron microscopy and scratch-wound assay. Endothelial markers, such as CD31 and vascular endothelial (VE)-cadherin, and the acquisition of fibrotic markers, such as alpha smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1), were determined by immunofluorescent staining and western blot. The level of TGF-β1 was significantly upregulated in HG-treated HRMECs. And HG stimulation promoted obvious morphological changes and the migration ability in HRMECs. Our results also demonstrated increased expression of α-SMA and FSP-1, and decreased expression of CD31 and VE-cadherin, in HG-treated HRMECs. These EndoMT-related changes were promoted by TGF-β1 and abrogated by SB431542. The results of this study demonstrated the important role of TGF-β1 in HG-induced vitreoretinal fibrosis. EndoMT is likely to be involved in the associated effects.
Collapse
Affiliation(s)
- Jia Ying
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Peipei Wang
- Department of Stomatology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Xiao Jin
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Li Luo
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Keshuang Lai
- Department of Ophthalmology, Yunhe County Hospital of traditional Chinese medicine, Lishui, PR China
| | - Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| |
Collapse
|
17
|
Gurelik IG, Ozdemir HB, Acar B. The effect of adjuvant Mitomycin C during vitrectomy on functional and anatomical outcomes in patients with severe diabetic tractional retinal detachment. Int Ophthalmol 2024; 44:210. [PMID: 38691217 DOI: 10.1007/s10792-024-03152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE To evaluate the effect of adjuvant Mitomycin C (MMC) use on the anatomical and functional success of vitreoretinal surgery (VRS) in severe diabetic tractional retinal detachment (dTRD) patients. METHODS A retrospective analysis of consecutive patients undergoing VRS due to severe dTRD was conducted. Patients were categorized into those who received 20 µg/0.1 mL MMC via MMC sandwich method (Group 1) and those who did not (Group 2). Demographics, surgical characteristics, visual outcomes, and complications that may related to MMC were analyzed. RESULTS A total of 25 eyes were included, 13 in Group 1 and 12 in Group 2. No statistical difference was observed in baseline characteristics between the groups. The mean best-corrected visual acuity was 1.90 ± 0.43 logMAR and 1.93 ± 0.41 logMAR preoperatively and 1.60 ± 0.78 logMAR and 1.56 ± 0.78 logMAR postoperatively in Groups 1 and 2, respectively (p = 0.154). The postoperative mean intraocular pressure was 16.23 ± 2.55 mmHg and 13.08 ± 4.94 mmHg in Groups 1 and 2, respectively (p = 0.225). The rate of re-surgery was significantly lower in Group 1 (0% vs. 41.7% in Group 2, p = 0.015). Retina was attached in all patients at the last visit. No MMC-related complication was recorded. CONCLUSION Intraoperative adjuvant MMC application for severe dTRD significantly reduces re-surgery rates with good anatomical and functional outcomes safely.
Collapse
Affiliation(s)
- Ihsan Gokhan Gurelik
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey
| | - Huseyin Baran Ozdemir
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey.
| | - Burak Acar
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey
| |
Collapse
|
18
|
Santana-Garrido Á, Reyes-Goya C, André H, Vázquez CM, Mate A. Exploring the Potential of Wild Olive (Acebuche) Oil as a Pharm-Food to Prevent Ocular Hypertension and Fibrotic Events in the Retina of Hypertensive Mice. Mol Nutr Food Res 2024; 68:e2200623. [PMID: 38044285 DOI: 10.1002/mnfr.202200623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/25/2023] [Indexed: 12/05/2023]
Abstract
SCOPE Our laboratory has previously described the antioxidant and anti-inflammatory potential of a wild olive (acebuche, ACE) oil against hypertension-associated vascular retinopathies. The current study aims to analyze the antifibrotic effect of ACE oil on the retina of hypertensive mice. METHODS AND RESULTS Mice are rendered hypertensive by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) and simultaneously subjected to dietary supplementation with ACE oil or a reference extra virgin olive oil (EVOO). Intraocular pressure (IOP) is measured by rebound tonometry, and retinal vasculature/layers are analyzed by fundus fluorescein angiography and optical coherence tomography. Different fibrosis-related parameters are analyzed in the retina and choroid of normotensive and hypertensive mice with or without oil supplementation. Besides preventing the alterations found in hypertensive animals, including increased IOP, reduced fluorescein signal, and altered retinal layer thickness, the ACE oil-enriched diet improves collagen metabolism by regulating the expression of major fibrotic process modulators (matrix metalloproteinases, tissue inhibitors of metalloproteinases, connective tissue growth factor, and transforming growth factor beta family). CONCLUSION Regular consumption of EVOO and ACE oil (with better outcomes in the latter) might help reduce abnormally high IOP values in the context of hypertension-related retinal damage, with significant reduction in the surrounding fibrotic process.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
| |
Collapse
|
19
|
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG. Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 2024; 81:47. [PMID: 38236305 PMCID: PMC10796438 DOI: 10.1007/s00018-023-05024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/19/2024]
Abstract
Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Jose A Gomez-Sanchez
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
20
|
Choi YJ, Kwon JW, Jee D. The relationship between blood vitamin A levels and diabetic retinopathy: a population-based study. Sci Rep 2024; 14:491. [PMID: 38177180 PMCID: PMC10766637 DOI: 10.1038/s41598-023-49937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
We assessed the relationship between blood vitamin A levels and the risk of diabetic retinopathy. The study was population-based epidemiological study for 11,727 participants aged 40 or older who participated in the Korean National Health and Nutrition Examination Survey. Vitamin A in the blood was classified into quartiles. Diabetic retinopathy was diagnosed by the Early Treatment for Diabetic Retinopathy Study. After adjusting confounding variables such as age, sex, smoking, cholesterol, diabetes prevalence period, glycated hemoglobin levels, and high blood pressure, the odd ratio (OR) of vitamin A at quartile level 4 for diabetic retinopathy was 0.32 (95% confidence interval [CI], 0.14-0.72, P for trend < 0.001). In male, the OR of quartile 3 level vitamin A for diabetic retinopathy was 0.11 (95% CI, 0.01-0.69, P for trend = 0.010). In adults under the age of 60, the OR of vitamin A at quartile level 3 for diabetic retinopathy was 0.10. (95% CI, 0.03-0.29, P for trend < 0.001). Serum vitamin A high levels are associated with low risk of diabetic retinopathy. Particularly, there is a more effective relationship in male and adults under the age of 60.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea
| | - Jin-Woo Kwon
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea
| | - Donghyun Jee
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea.
| |
Collapse
|
21
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
22
|
Li Y, Hu Q, Wang B. Effects of Apelin on the fibrosis of retinal tissues and Müller cells in diabetes retinopathy through the JAK2/STAT3 signalling pathway. Autoimmunity 2023; 56:2259129. [PMID: 37771168 DOI: 10.1080/08916934.2023.2259129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
Retinal fibrosis was a key characteristic of diabetes retinopathy (DR). Apelin was found to be a candidate for tissue fibrosis. Nevertheless, the role of Apelin in the Müller cells in DR remains unclear. This study identified the function and mechanism of Apelin in Müller cells and the fibrosis of retinal tissue. Western blot was carried out to detect the Apelin, GFAP, Collagen I, α-SMA, JAK2 and STAT3 protein levels. Masson staining was performed to display the histopathological changes in retinal tissue of diabetic mellitus (DM) rats. The immunofluorescence staining was conducted to evaluate the Apelin levels in the retinal tissue. The levels of GFAP, Collagen I and α-SMA in the retinal tissue of DM rats was visualised by the immunohistochemistry staining. The results showed that Apelin, GFAP, Collagen I andα-SMA expression was prominently elevated in the retinal tissue of DM rats and high glucose (HG)-exposed Müller cells. The results of Masson staining showed that the epiretinal fibrotic membrane was observed in DM rats. Apelin knockdown declined the GFAP, Collagen I andα-SMA levels. Besides, the protein levels of p-JAK2 and p-STAT3 were elevated in the HG-treated Müller cells, while Apelin knockdown declined them. FLLL32 treatment neutralised the role of Apelin. In conclusion, Apelin facilitated the fibrogenic activity of Müller cells through activating the JAK2/STAT3 signalling pathway, and thus inducing the retinal fibrosis in DR.
Collapse
Affiliation(s)
- Yang Li
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Qinrui Hu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Cha Z, Yin Z, A L, Ge L, Yang J, Huang X, Gao H, Chen X, Feng Z, Mo L, He J, Zhu S, Zhao M, Tao Z, Gu Z, Xu H. Fullerol rescues the light-induced retinal damage by modulating Müller glia cell fate. Redox Biol 2023; 67:102911. [PMID: 37816275 PMCID: PMC10570010 DOI: 10.1016/j.redox.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Excessive light exposure can damage photoreceptors and lead to blindness. Oxidative stress serves a key role in photo-induced retinal damage. Free radical scavengers have been proven to protect against photo-damaged retinal degeneration. Fullerol, a potent antioxidant, has the potential to protect against ultraviolet-B (UVB)-induced cornea injury by activating the endogenous stem cells. However, its effects on cell fate determination of Müller glia (MG) between gliosis and de-differentiation remain unclear. Therefore, we established a MG lineage-tracing mouse model of light-induced retinal damage to examine the therapeutic effects of fullerol. Fullerol exhibited superior protection against light-induced retinal injury compared to glutathione (GSH) and reduced oxidative stress levels, inhibited gliosis by suppressing the TGF-β pathway, and enhanced the de-differentiation of MG cells. RNA sequencing revealed that transcription candidate pathways, including Nrf2 and Wnt10a pathways, were involved in fullerol-induced neuroprotection. Fullerol-mediated transcriptional changes were validated by qPCR, Western blotting, and immunostaining using mouse retinas and human-derived Müller cell lines MIO-M1 cells, confirming that fullerol possibly modulated the Nrf2, Wnt10a, and TGF-β pathways in MG, which suppressed gliosis and promoted the de-differentiation of MG in light-induced retinal degeneration, indicating its potential in treating retinal diseases.
Collapse
Affiliation(s)
- Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingyue Mo
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China; Joint Logistics Support Force of Chinese PLA, No. 927 Hospital, Puer 665000, Yunnan, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| |
Collapse
|
24
|
Zhang Y, Li X, Xing J, Zhou J, Li H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023; 11:2913. [PMID: 38001913 PMCID: PMC10669320 DOI: 10.3390/biomedicines11112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical transdifferentiation is a technique that utilizes small molecules to directly convert one cell type into another without passing through an intermediate stem cell state. This technique offers several advantages over other methods of cell reprogramming, such as simplicity, standardization, versatility, no ethical and safety concern and patient-specific therapies. Chemical transdifferentiation has been successfully applied to various cell types across different tissues and organs, and its potential applications are rapidly expanding as scientists continue to explore new combinations of small molecules and refine the mechanisms driving cell fate conversion. These applications have opened up new possibilities for regenerative medicine, disease modeling, drug discovery and tissue engineering. However, there are still challenges and limitations that need to be overcome before chemical transdifferentiation can be translated into clinical practice. These include low efficiency and reproducibility, incomplete understanding of the molecular mechanisms, long-term stability and functionality of the transdifferentiated cells, cell-type specificity and scalability. In this review, we compared the commonly used methods for cell transdifferentiation in recent years and discussed the current progress and future perspective of the chemical transdifferentiation of somatic cells and its potential impact on biomedicine. We believe that with ongoing research and technological advancements, the future holds tremendous promise for harnessing the power of small molecules to shape the cellular landscape and revolutionize the field of biomedicine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jianyu Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150006, China;
| | - Jinsong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
25
|
Ren HW, Yu W, Wang YN, Zhang XY, Song SQ, Gong SY, Meng LY, Gan C, Liu BJ, Gong Q. Effects of autophagy inhibitor 3-methyladenine on a diabetic mice model. Int J Ophthalmol 2023; 16:1456-1464. [PMID: 37724274 PMCID: PMC10475630 DOI: 10.18240/ijo.2023.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/21/2023] [Indexed: 09/20/2023] Open
Abstract
AIM To investigate the role of autophagy inhibitor 3-methyladenine (3-MA) on a diabetic mice model (DM) and the potential mechanism. METHODS Male C57BL/6J mice were randomly divided into a normal control group (NC group) and an DM group. DM were induced by multiple low-dose intraperitoneal injection of streptozotocin (STZ) 60 mg/kg·d for 5 consecutive days. DM mice were randomly subdivided into untreated group (DM group), 3-MA (10 mg/kg·d by gavage) treated group (DM+3-MA group) and chloroquine (CQ; 50 mg/kg by intraperitoneal injection) treated group (DM+CQ group). The fasting blood glucose (FBG) levels were recorded every week. At the end of experiment, retinal samples were collected. The expression levels of pro-apoptotic proteins cleaved caspase-3, cleaved poly ADP-ribose polymerase 1 (PARP1) and Bax, anti-apoptotic protein Bcl-2, fibrosis-associated proteins Fibronectin and type 1 collagen α1 chain (COL1A1), vascular endothelial growth factor (VEGF), inflammatory factors interleukin (IL)-1β and tumor necrosis factor (TNF)-α, as well as autophagy related proteins LC3, Beclin-1 and P62 were determined by Western blotting. The oxidative stress indicators 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) were detected by commercial kits. RESULTS Both 3-MA and CQ had short-term hypoglycemic effect on FBG and reduced the expression of VEGF and inflammatory factors IL-1β and TNF-α in DM mice. 3-MA also significantly alleviated oxidative stress indicators 8-OHdG and MDA, decreased the expression of fibrosis-related proteins Fibronectin and COL1A1, pro-apoptotic proteins cleaved caspase-3, cleaved PARP1, as well as the ratio of Bax/Bcl-2. CQ had no significant impact on the oxidative stress indicators, fibrosis, and apoptosis related proteins. The results of Western blotting for autophagy related proteins showed that the ratio of LC3 II/LC3 I and the expression of Beclin-1 in the retina of DM mice were decreased by 3-MA treatment, and the expression of P62 was further increased by CQ treatment. CONCLUSION 3-MA has anti-apoptotic and anti-fibrotic effects on the retina of DM mice, and can attenuate retinal oxidative stress, VEGF expression and the production of inflammatory factors in the retina of DM mice. The underlying mechanism of the above effects of 3-MA may be related to its inhibition of early autophagy and hypoglycemic effect.
Collapse
Affiliation(s)
- Hai-Wen Ren
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Clinical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Wen Yu
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ya-Nan Wang
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xin-Yi Zhang
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shun-Qiong Song
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Yu Gong
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ling-Yao Meng
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Chen Gan
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ben-Ju Liu
- Department of Human Anatomy, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Quan Gong
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Immunology, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
26
|
Fitriana I, Wu CH, Hsu TJ, Chan YJ, Li CH, Lee CC, Hsiao G, Cheng YW. Activation of aryl hydrocarbon receptor by azatyrosine-phenylbutyric hydroxamide inhibits progression of diabetic retinopathy mice. Biochem Pharmacol 2023; 215:115700. [PMID: 37482199 DOI: 10.1016/j.bcp.2023.115700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.
Collapse
Affiliation(s)
- Ida Fitriana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chia-Hua Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Ju Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ju Chan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
27
|
Daley R, Maddipatla V, Ghosh S, Chowdhury O, Hose S, Zigler JS, Sinha D, Liu H. Aberrant Akt2 signaling in the RPE may contribute to retinal fibrosis process in diabetic retinopathy. Cell Death Discov 2023; 9:243. [PMID: 37443129 DOI: 10.1038/s41420-023-01545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic Retinopathy (DR) is a complication of diabetes that causes blindness in adults. Retinal fibrosis is closely associated with developing proliferative diabetic retinopathy (PDR). Clinical studies have shown that fibrotic membranes exhibit uncontrolled growth in PDR and contribute to retinal detachment from RPE cells, ultimately leading to vision loss. While anti-VEGF agents and invasive laser treatments are the primary treatments for PDR, retinal fibrosis has received minimal attention as a potential target for therapeutic intervention. Therefore, to investigate the potential role of Akt2 in the diabetes-induced retinal fibrosis process, we generated RPE-specific Akt2 conditional knockout (cKO) mice and induced diabetes in these mice and Akt2fl/fl control mice by intraperitoneal injection of streptozotocin. After an 8-month duration of diabetes (10 months of age), the mice were euthanized and expression of tight junction proteins, epithelial-mesenchymal transition (EMT), and fibrosis markers were examined in the RPE. Diabetes induction in the floxed control mice decreased levels of the RPE tight junction protein ZO-1 and adherens junction proteins occludin and E-cadherin; these decreases were rescued in Akt2 cKO diabetic mice. Loss of Akt2 also inhibited diabetes-induced elevation of RNA and protein levels of the EMT markers Snail/Slug and Twist1 in the RPE as compared to Akt2fl/fl diabetic mice. We also found that in Akt2 cKO mice diabetes-induced increase of fibrosis markers, including collagen IV, Connective tissue growth factor (CTGF), fibronectin, and alpha-SMA was attenuated. Furthermore, we observed that high glucose-induced alterations in EMT and fibrosis markers in wild-type (WT) RPE explants were rescued in the presence of PI3K and ERK inhibitors, indicating diabetes-induced retinal fibrosis may be mediated via the PI3K/Akt2/ERK signaling, which could provide a novel target for DR therapy.
Collapse
Affiliation(s)
- Rachel Daley
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishnu Maddipatla
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Bao B, Liu J, Li T, Yang Z, Wang G, Xin J, Bi H, Guo D. Elevated retinal fibrosis in experimental myopia is involved in the activation of the PI3K/AKT/ERK signaling pathway. Arch Biochem Biophys 2023; 743:109663. [PMID: 37290701 DOI: 10.1016/j.abb.2023.109663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the regulatory role of the PI3K/AKT/ERK signaling pathway in retinal fibrosis in -6.0 diopter (D) lens-induced myopic (LIM) guinea pigs. METHODS Biological measurements of eye tissues were performed on guinea pigs to obtain their refraction, axial length, retinal thickness, physiological function, and fundus retinal status. In addition, Masson staining and immunohistochemical (IHC) assay were further done to explore the changes in retinal morphology after myopic induction. Meanwhile, hydroxyproline (HYP) content was measured to evaluate the degree of retinal fibrosis. Moreover, the levels of the PI3K/AKT/ERK signaling pathway and fibrosis-related molecules in retinal tissues including matrix metalloproteinase 2(MMP2), collagen type I (Collagen I), and α-smooth muscle actin (α-SMA) were detected by real-time quantitative PCR (qPCR) and Western blot. RESULTS The LIM guinea pigs showed a significant myopic shift in refractive error and an increase in axial length compared with those of the normal control (NC) group. Masson staining, hydroxyproline content determination, and IHC showed an increase in retinal fibrosis. After myopic induction, qPCR and western blot analyses showed that phosphatidylinositol-3-kinase catalytic subunit α (PIK3CA), protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), MMP2, Collagen I, and α-SMA were consistently elevated in the LIM group than those in the NC group. CONCLUSION The PI3K/AKT/ERK signaling pathway was activated in the retinal tissues of myopic guinea pigs, which exaggerated fibrotic lesions and reduced retinal thickness, ultimately leading to retinal physiological dysfunctions in myopic guinea pigs.
Collapse
Affiliation(s)
- Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Tuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Guimin Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, 250002, China.
| |
Collapse
|
29
|
Sadiq SA, Mishra S, Mirza RG. Hyperreflective Vasculature: A Negative Prognostic Sign for Retinal Vein Occlusion on Near-Infrared Reflectance Imaging. Ophthalmic Surg Lasers Imaging Retina 2023; 54:266-270. [PMID: 37184991 DOI: 10.3928/23258160-20230404-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND OBJECTIVE To investigate the clinical significance of hyperreflective vasculature visualized on near-infrared reflectance (NIR) in patients with retinal vein occlusion (RVO). METHODS In this retrospective study, RVO patients with NIR imaging and at least 1-year follow-up, and without confounding disease, were included. Two blinded independent graders identified vascular hyperreflectivity (HR) by detection of whiter signals in vessels. Visual acuity (VA), macular thickness (MT), and number of administered anti-vascular endothelial growth factor (anti-VEGF) injections were assessed. RESULTS RVO patients with HR (n = 20) and without HR (n = 31) demonstrated similarity in age, sex, and class of RVO. At presentation, the HR group had higher MT (P = 0.002) but no difference in VA (P = 0.1018). At 1 year, patients with HR had worse VA (P = 0.001), decreased MT (P = 0.011), and received more anti-VEGF injections (P < 0.001). CONCLUSION RVO patients with HR on NIR had significantly worse visual outcomes. Vascular HR on NIR imaging may be a biomarker, portending worse visual prognoses in RVO. [Ophthalmic Surg Lasers Imaging Retina 2023;54:266-270.].
Collapse
|
30
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
31
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
32
|
Saha B, Roy A, Beltramo E, Sahoo OS. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 2023; 50:4517-4526. [PMID: 36842153 DOI: 10.1007/s11033-023-08337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
Collapse
Affiliation(s)
- Bihan Saha
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Akshita Roy
- Autonomous State Medical College, Fatehpur, 212601, Uttar Pradesh, India
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, 10124, Turin, Italy
| | - Om Saswat Sahoo
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
33
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
34
|
Mihoubi E, Amroun H, Bouldjennet F, Azzouz M, Touil-Boukoffa C, Raache R, Attal N. Polymorphismes 869C> T et 915 G>C du TGF-β dans la rétinopathie du diabète de type 1 chez la population algérienne. J Fr Ophtalmol 2022; 45:908-914. [DOI: 10.1016/j.jfo.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
35
|
Alshaikh RA, Ryan KB, Waeber C. Sphingosine 1-phosphate, a potential target in neovascular retinal disease. Br J Ophthalmol 2022; 106:1187-1195. [PMID: 33962970 DOI: 10.1136/bjophthalmol-2021-319115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Neovascular ocular diseases (such as age-related macular degeneration, diabetic retinopathy and retinal vein occlusion) are characterised by common pathological processes that contribute to disease progression. These include angiogenesis, oedema, inflammation, cell death and fibrosis. Currently available therapies target the effects of vascular endothelial growth factor (VEGF), the main mediator of pathological angiogenesis. Unfortunately, VEGF blockers are expensive biological therapeutics that necessitate frequent intravitreal administration and are associated with multiple adverse effects. Thus, alternative treatment options associated with fewer side effects are required for disease management. This review introduces sphingosine 1-phosphate (S1P) as a potential pharmacological target for the treatment of neovascular ocular pathologies. S1P is a sphingolipid mediator that controls cellular growth, differentiation, survival and death. S1P actions are mediated by five G protein-coupled receptors (S1P1-5 receptors) which are abundantly expressed in all retinal and subretinal structures. The action of S1P on S1P1 receptors can reduce angiogenesis, increase endothelium integrity, reduce photoreceptor apoptosis and protect the retina against neurodegeneration. Conversely, S1P2 receptor signalling can increase neovascularisation, disrupt endothelial junctions, stimulate VEGF release, and induce retinal cell apoptosis and degeneration of neural retina. The aim of this review is to thoroughly discuss the role of S1P and its different receptor subtypes in angiogenesis, inflammation, apoptosis and fibrosis in order to determine which of these S1P-mediated processes may be targeted therapeutically.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmaceutical Technology, Tanta University, Tanta, Egypt
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork, Ireland
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Liu Y, Yamagishi R, Honjo M, Kurano M, Yatomi Y, Igarashi K, Aihara M. Role of Autotaxin in High Glucose-Induced Human ARPE-19 Cells. Int J Mol Sci 2022; 23:ijms23169181. [PMID: 36012446 PMCID: PMC9409272 DOI: 10.3390/ijms23169181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) is an enzymatic with lysophospholipase D (lysoPLD) activity. We investigated the role of ATX in high glucose (HG)-induced human retinal pigment epithelial (ARPE-19) cells to explore the pathogenesis of diabetic retinopathy (DR). We performed a quantitative real-time polymerase chain reaction, Western blotting, immunocytochemistry, enzyme-linked immunosorbent assay, cell permeability assay, and transepithelial electrical resistance measurement in HG-induced ARPE-19 cells and compared their results with those of normal glucose and osmotic pressure controls. ATX expression and its lysoPLD activity, barrier function, and expression of vascular endothelial growth factor receptors VEGFR-1 and VEGFR-2 were downregulated, while fibrotic responses, cytoskeletal reorganization, and transforming growth factor-β expression were upregulated, in the HG group. Our results suggest that HG induces intracellular ATX downregulation, barrier dysfunction, and fibrosis, which are involved in early DR and can be targeted for DR treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Correspondence:
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Ayase 252-1123, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
37
|
Trotta MC, Petrillo F, Gesualdo C, Rossi S, Corte AD, Váradi J, Fenyvesi F, D’Amico M, Hermenean A. Effects of the Calix[4]arene Derivative Compound OTX008 on High Glucose-Stimulated ARPE-19 Cells: Focus on Galectin-1/TGF-β/EMT Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154785. [PMID: 35897964 PMCID: PMC9332238 DOI: 10.3390/molecules27154785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Diabetic retinopathy (DR) is a neurovascular disease characterized by the reduction of retina integrity and functionality, as a consequence of retinal pigment epithelial cell fibrosis. Although galectin-1 (a glycan-binding protein) has been associated with dysregulated retinal angiogenesis, no evidence has been reported about galectin-1 roles in DR-induced fibrosis. ARPE-19 cells were cultured in normal (5 mM) or high glucose (35 mM) for 3 days, then exposed to the selective galectin-1 inhibitor OTX008 (2.5–5–10 μM) for 6 days. The determination of cell viability and ROS content along with the analysis of specific proteins (by immunocytochemistry, Western blotting, and ELISA) or mRNAs (by real time-PCR) were performed. OTX008 5 μM and 10 μM improved cell viability and markedly reduced galectin-1 protein expression in cells exposed to high glucose. This was paralleled by a down-regulation of the TGF-β/, NF-kB p65 levels, and ROS content. Moreover, epithelial–mesenchymal transition markers were reduced by OTX008 5 μM and 10 μM. The inhibition of galectin-1 by OTX008 in DR may preserve retinal pigment epithelial cell integrity and functionality by reducing their pro-fibrotic phenotype and epithelial–mesenchymal transition phenomenon induced by diabetes.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (M.D.)
| | - Francesco Petrillo
- PhD Course in Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (J.V.); (F.F.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (J.V.); (F.F.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (M.D.)
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
- Correspondence:
| |
Collapse
|
38
|
mTOR inhibition as a novel gene therapeutic strategy for diabetic retinopathy. PLoS One 2022; 17:e0269951. [PMID: 35709240 PMCID: PMC9202865 DOI: 10.1371/journal.pone.0269951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition’s complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model. Delivered via intravitreal injection, the therapeutic efficacy of the virus vector upon early DR processes was examined. rAAV2-shmTOR-SD effectively transduced mouse retinas and therein downregulated mTOR expression, which was elevated in sham-treated and control shRNA-injected (rAAV2-shCon-SD) control groups. mTOR inhibition additionally led to marked reductions in pericyte loss, acellular capillary formation, vascular permeability, and retinal cell layer thinning, processes that contribute to DR progression. Immunohistochemistry showed that rAAV2-shmTOR-SD decreased ganglion cell loss and pathogenic Müller cell activation and proliferation, while also having anti-apoptotic activity, with these effects suggesting the therapeutic virus vector may be neuroprotective. Taken together, these results build upon our previous work to demonstrate the broad ability of rAAV2-shmTOR-SD to address aspects of DR pathophysiology further evidencing its potential as a human gene therapeutic strategy for DR.
Collapse
|
39
|
Szczepan M, Llorián-Salvador M, Chen M, Xu H. Immune Cells in Subretinal Wound Healing and Fibrosis. Front Cell Neurosci 2022; 16:916719. [PMID: 35755781 PMCID: PMC9226489 DOI: 10.3389/fncel.2022.916719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The subretinal space is devoid of any immune cells under normal conditions and is an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells suffer from an injury, a wound healing process will be initiated. Retinal microglia and the complement system, as the first line of retinal defense, are activated to participate in the wound healing process. If the injury is severe or persists for a prolonged period, they may fail to heal the damage and circulating immune cells will be summoned leading to chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis, a sight-threatening condition frequently observed in rhematogenous retinal detachment, age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the principles of subretinal wound healing with a strong focus on the conditions whereby the damage is beyond the healing capacity of the retinal defense system and highlighted the roles of circulating immune cells in subretinal wound healing and fibrosis.
Collapse
Affiliation(s)
- Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom,Aier Institute of Optometry and Vision Science, Changsha, China,*Correspondence: Heping Xu,
| |
Collapse
|
40
|
Indumathi A, Senthilkumar GP, Jayashree K, Ramesh Babu K. Assessment of circulating fibrotic proteins (periostin and tenascin -C) In Type 2 diabetes mellitus patients with and without retinopathy. Endocrine 2022; 76:570-577. [PMID: 35274283 DOI: 10.1007/s12020-022-03027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Diabetic retinopathy is a leading cause of vision impairment. Surging diabetic population and poor visual care raises the need for better diagnostic tools. Hence, it is worthwhile to look for biomarkers associated with the disease pathogenesis. Periostin and tenascin-C are matricellular proteins mediating fibrillogenesis in retinopathy. Their serum levels and association with the presence and severity of retinopathy in diabetics is of importance to be explored. METHODS The study involved two groups of type 2 diabetes patients, 38 controls without retinopathy and 38 cases with retinopathy. We obtained serum sample and performed biochemical autoanalysis for routine parameters. Special parameters periostin, tenascin-C, and C-peptide were estimated by ELISA. RESULTS Periostin and tenascin-C were significantly elevated in the retinopathy group. Periostin progressively increased among subgroups. C-peptide decreased significantly in retinopathy group and had a negative correlation with duration of DM, duration of retinopathy, HbA1c and tenascin-C. We observed a positive correlation for periostin and tenascin-C with duration of diabetes. The AUC for C-peptide was the highest (0.750) amongst our parameters. HOMA 2 (%B) index was significantly lower in retinopathy group. CONCLUSIONS Serum Levels of PO and TnC increased in retinopathy. As the disease advances, periostin level increases, indicating continuing fibrosis and fibrovascular membrane formation. Periostin and tenascin-C increase with duration of retinopathy whereas levels of C-peptide decrease. C-peptide has a better differentiating potential for DR from DM. Reduced insulin production as indicated by declined HOMA 2-%BETA in retinopathy favors hyperglycemia and chronic inflammatory state for the disease progression.
Collapse
Affiliation(s)
- A Indumathi
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Kuppuswamy Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - K Ramesh Babu
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
41
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
42
|
Gao AY, Link PA, Bakri SJ, Haak AJ. Dopamine Receptor Signaling Regulates Fibrotic Activation of Retinal Pigmented Epithelial Cells. Am J Physiol Cell Physiol 2022; 323:C116-C124. [PMID: 35544697 DOI: 10.1152/ajpcell.00468.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal pigmented epithelial (RPE) cells play an important role in retinal fibrotic diseases such as proliferative vitreoretinopathy (PVR). The purpose of this study was to elucidate the involvement of dopamine receptor signaling in regulating the fibrotic activation of RPE cells. Dopamine receptor expression, the effect of dopamine on fibrotic activity, and dopamine production were measured in the human RPE cell line ARPE-19. The fibrotic activation of RPE cells was evaluated in response to treatments with selective dopamine receptor agonists and antagonists by measuring gene expression, migration, proliferation, and fibronectin deposition. DRD2 and DRD5 are the dominant dopaminergic receptors expressed in ARPE-19 cells and TGFβ stimulates enhances autocrine release of dopamine which we show further exasperates fibrotic activation. Finally, treatment with D2 dopamine receptor antagonists or D5 dopamine receptor agonists inhibits profibrotic gene expression, migration, proliferation, and fibronectin deposition and thus may serve as effective mechanisms for treating retinal fibrosis including PVR.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, United States
| | - Patrick A Link
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, MN, United States
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, United States
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, MN, United States
| |
Collapse
|
43
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
44
|
Trotta MC, Gesualdo C, Petrillo F, Lepre CC, Della Corte A, Cavasso G, Maggiore G, Hermenean A, Simonelli F, D’Amico M, Rossi S. Resolution of Inflammation in Retinal Disorders: Briefly the State. Int J Mol Sci 2022; 23:4501. [PMID: 35562891 PMCID: PMC9100636 DOI: 10.3390/ijms23094501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
The most frequent retinal diseases, such as diabetic retinopathy, age-related macular degeneration and posterior uveitis, are underlined by oxidative stress or aging-induced retinal inflammation, which contributes to vision impairing or loss. Resolution of inflammation is emerging as a critical phase able to counteract the inflammatory process leading to the progression of retinal damage. Particularly, pro-resolving mediators (PMs) play a key role in the modulation of inflammatory exudates and could be considered a new target to be investigated in different inflammatory-autoimmune pathologies. Here, we highlight the most recent studies concerning the role of the main PMs (lipoxins, resolvins, prtectins, maresins and annexins) in retinal inflammation, in order to collect the best evidence in the field of inflammatory retinal damage resolution and to propose novel pharmacological approaches in the management of the most common retinal diseases.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Alberto Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giancuomo Cavasso
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giulia Maggiore
- Department of Ophthalmology, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania;
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| |
Collapse
|
45
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
46
|
Decorin Concentrations in Aqueous Humor of Patients with Diabetic Retinopathy. Life (Basel) 2021; 11:life11121421. [PMID: 34947953 PMCID: PMC8707400 DOI: 10.3390/life11121421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes in the retina. Chronic hyperglycemia damages retinal microvasculature embedded into the extracellular matrix (ECM), causing fluid leakage and ischemic retinal neovascularization. Current treatment strategies include intravitreal anti-vascular endothelial growth factor (VEGF) or steroidal injections, laser photocoagulation, or vitrectomy in severe cases. However, treatment may require multiple modalities or repeat treatments due to variable response. Though DR management has achieved great success, improved, long-lasting, and predictable treatments are needed, including new biomarkers and therapeutic approaches. Small-leucine rich proteoglycans, such as decorin, constitute an integral component of retinal endothelial ECM. Therefore, any damage to microvasculature can trigger its antifibrotic and antiangiogenic response against retinal vascular pathologies, including DR. We conducted a cross-sectional study to examine the association between aqueous humor (AH) decorin levels, if any, and severity of DR. A total of 82 subjects (26 control, 56 DR) were recruited. AH was collected and decorin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). Decorin was significantly increased in the AH of DR subjects compared to controls (p = 0.0034). AH decorin levels were increased in severe DR groups in ETDRS and Gloucestershire classifications. Decorin concentrations also displayed a significant association with visual acuity (LogMAR) measurements. In conclusion, aqueous humor decorin concentrations were found elevated in DR subjects, possibly due to a compensatory response to the retinal microvascular changes during hyperglycemia.
Collapse
|
47
|
Sano H, Namekata K, Niki M, Semba K, Murao F, Harada T, Mitamura Y. Ocular expression of cyclin-dependent kinase 5 in patients with proliferative diabetic retinopathy. J Diabetes Investig 2021; 13:628-637. [PMID: 34693664 PMCID: PMC9017639 DOI: 10.1111/jdi.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Inhibition of peroxisome proliferator‐activated receptor gamma (PPARγ) phosphorylation mediated by cyclin‐dependent kinase 5 (Cdk5) is one of the main mechanisms of action of antidiabetic drugs. In this study, we analyzed the ocular expression and activation of Cdk5 in patients with proliferative diabetic retinopathy (PDR). Materials and Methods The concentrations of PPARγ, Cdk5 and its activating subunit (p35) were determined in the vitreous body of 24 PDR and 63 control eyes by enzyme‐linked immunosorbent assay. In addition, the messenger ribonucleic acid and protein expression levels of PPARγ, Cdk5 and p35 were measured in proliferative neovascular membranes from seven PDR eyes and non‐neovascular epiretinal membranes from five control eyes by quantitative real‐time polymerase chain reaction and immunohistochemical analysis. Results PPARγ, Cdk5 and p35 concentrations in the vitreous body were significantly higher in the PDR group compared with the control group. There was also a positive significant correlation of Cdk5 with PPARγ and p35 in the PDR group. Furthermore, the messenger ribonucleic acid expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes were significantly higher in the PDR group compared with the control group. Immunostaining showed increased protein expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes in the PDR group compared with the control group. Conclusions Cdk5 activation is involved in PDR pathogenesis through PPARγ expression, and inhibition of Cdk5‐mediated PPARγ phosphorylation might be a new therapeutic target for treatment of PDR.
Collapse
Affiliation(s)
- Hiroki Sano
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masanori Niki
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kentaro Semba
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumiko Murao
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. J Clin Med 2021; 10:jcm10204666. [PMID: 34682788 PMCID: PMC8537579 DOI: 10.3390/jcm10204666] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes and one of the leading causes of vision loss worldwide. Despite extensive efforts to reduce visual impairment, the prevalence of DR is still increasing. The initial pathophysiology of DR includes damage to vascular endothelial cells and loss of pericytes. Ensuing hypoxic responses trigger the expression of vascular endothelial growth factor (VEGF) and other pro-angiogenic factors. At present, the most effective treatment for DR and diabetic macular edema (DME) is the control of blood glucose levels. More advanced cases require laser, anti-VEGF therapy, steroid, and vitrectomy. Pan-retinal photocoagulation for non-proliferative diabetic retinopathy (NPDR) is well established and has demonstrated promising outcomes for preventing the progressive stage of DR. Furthermore, the efficacy of laser therapies such as grid and subthreshold diode laser micropulse photocoagulation (SDM) for DME has been reported. Vitrectomy has been performed for vitreous hemorrhage and tractional retinal detachment for patients with PDR. In addition, anti-VEGF treatment has been widely used for DME, and recently its potential to prevent the progression of PDR has been remarked. Even with these treatments, many patients with DR lose their vision and suffer from potential side effects. Thus, we need alternative treatments to address these limitations. In recent years, the relationship between DR, lipid metabolism, and inflammation has been featured. Research in diabetic animal models points to peroxisome proliferator-activated receptor alpha (PPARα) activation in cellular metabolism and inflammation by oral fenofibrate and/or pemafibrate as a promising target for DR. In this paper, we review the status of existing therapies, summarize PPARα activation therapies for DR, and discuss their potentials as promising DR treatments.
Collapse
|
49
|
Zhang W, Li J. Yes-associated protein is essential for proliferative vitreoretinopathy development via the epithelial-mesenchymal transition in retinal pigment epithelial fibrosis. J Cell Mol Med 2021; 25:10213-10223. [PMID: 34598306 PMCID: PMC8572794 DOI: 10.1111/jcmm.16958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes‐associated protein (YAP) and the subsequent epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE‐19 cells in vitro was studied. After treated with transforming growth factor‐β2(TGF‐β2), the expressions of fibrogenic molecules, YAP activation and the TGF‐β2‐Smad signalling pathway in ARPE‐19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF‐β2–induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF‐β2–induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF‐β2–induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA‐α) and fibronectin. YAP was essential for the TGF‐β2–induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|