1
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: A spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2025; 104:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Lynn J, Huang SJ, Trigler GK, Kingsley R, Coussa RG, Bennett LD. Expanding the Mutation Spectrum for Inherited Retinal Diseases. Genes (Basel) 2024; 16:32. [PMID: 39858579 PMCID: PMC11764958 DOI: 10.3390/genes16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders characterized by degeneration of the retina, leading to visual impairment and blindness. IRDs are heterogeneous, sharing common clinical features that can be difficult to diagnose without knowing the genetic basis of the disease. To improve diagnostic accuracy and advance understanding of disease mechanisms, genetic testing was performed for 103 unrelated patients with an IRD at a single clinical site between 30 August 2022 and 5 February 2024. METHODS Informed consent was obtained before buccal samples were collected for panel-based sequencing at BluePrint Genetics (BpG), sponsored by the Foundation Fighting Blindness MyRetina Tracker program. A retina specialist performed standard visit assessments, including visual acuity (Snellen chart), slit lamp examination, fundus photography (Optos®, Dunfermline, UK), and spectral-domain optical coherence tomography (SD-OCT; Zeiss). RESULTS From 103 patients, genetic findings were reported for 70 individuals. Among these included 20 novel variants. CONCLUSIONS These results clarify and confirm clinical diagnoses, aid in counseling patients on prognosis and family planning, and guide treatment options. This study not only holds promise for affected individuals but also expands the mutation spectrum to guide understanding of IRD.
Collapse
Affiliation(s)
- Jacob Lynn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA;
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA; (S.J.H.); (G.K.T.)
| | - Samuel J. Huang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA; (S.J.H.); (G.K.T.)
- Dean McGee Eye Institute, Oklahoma City, OK 73140, USA; (R.K.); (R.G.C.)
| | - Grace K. Trigler
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA; (S.J.H.); (G.K.T.)
| | - Ronald Kingsley
- Dean McGee Eye Institute, Oklahoma City, OK 73140, USA; (R.K.); (R.G.C.)
| | - Razek G. Coussa
- Dean McGee Eye Institute, Oklahoma City, OK 73140, USA; (R.K.); (R.G.C.)
| | - Lea D. Bennett
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA;
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73114, USA; (S.J.H.); (G.K.T.)
- Dean McGee Eye Institute, Oklahoma City, OK 73140, USA; (R.K.); (R.G.C.)
| |
Collapse
|
3
|
Zhuang J, Zhang R, Zhou B, Cao Z, Zhou J, Chen X, Zhang N, Zhu Y, Yang J. Mutation analysis of RHO in patients with non-syndromic retinitis pigmentosa. Ophthalmic Genet 2024; 45:147-152. [PMID: 38284172 DOI: 10.1080/13816810.2023.2294843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.
Collapse
Affiliation(s)
- Jianfu Zhuang
- Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Rongcai Zhang
- Fujian Baimeng Biotechnology Research Center, Fujian BioMed Technology Co. LTD, Fuzhou, Fujian, China
| | - Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Jie Zhou
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Li YP, Shen RJ, Cheng YM, Zhao Q, Jin K, Jin ZB, Zhang S. Exome sequencing in retinal dystrophy patients reveals a novel candidate gene ER membrane protein complex subunit 3. Heliyon 2023; 9:e20146. [PMID: 37809982 PMCID: PMC10559921 DOI: 10.1016/j.heliyon.2023.e20146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of visual disorders caused by different pathogenic mutations in genes and regulatory sequences. The endoplasmic reticulum (ER) membrane protein complex (EMC) subunit 3 (EMC3) is the core unit of the EMC insertase that integrates the transmembrane peptides into lipid bilayers, and the function of its cytoplasmic carboxyl terminus remains to be elucidated. In this study, an insertional mutation c.768insT in the C-terminal coding region of EMC3 was identified and associated with dominant IRDs in a five-generation family. This mutation caused a frameshift in the coding sequence and a gain of an additional 16 amino acid residues (p.L256F-fs-ext21) to form a helix structure in the C-terminus of the EMC3 protein. The mutation is heterozygous with an incomplete penetrance, and cosegregates in all patients examined. This finding indicates that the C-terminus of EMC3 is essential for EMC functions and that EMC3 may be a novel candidate gene for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - You-Min Cheng
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shaodan Zhang
- The Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
5
|
Sakai D, Hiraoka M, Matsuzaki M, Yokota S, Hirami Y, Onishi A, Nakamura M, Takahashi M, Kurimoto Y, Maeda A. Genotype and phenotype characteristics of RHO-associated retinitis pigmentosa in the Japanese population. Jpn J Ophthalmol 2023; 67:138-148. [PMID: 36648560 DOI: 10.1007/s10384-023-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuhiro Matsuzaki
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akishi Onishi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
6
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
8
|
Neitz M, Krekling ED, Hagen LA, Pedersen HR, Rowlan J, Barborek R, Neitz J, Crain A, Baraas RC. Tritan color vision deficiency may be associated with an OPN1SW splicing defect and haploinsufficiency. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:A26-A34. [PMID: 32400513 PMCID: PMC7254067 DOI: 10.1364/josaa.381919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Here we present evidence implicating disrupted RNA splicing as a potential cause of inherited tritan color vision. Initially we tested 51 subjects for color vision deficiencies. One made significant tritan errors; the others were classified as normal trichromats. The putative tritan subject was the only one of the 51 subjects found to be heterozygous for an OPN1SW gene mutation that disrupts RNA splicing in an in vitro assay. In order to gather further support for the role of the splicing mutation in tritan color vision, the putative tritan subject's mother and sister were examined. They also made tritan errors and had the same OPN1SW gene mutation.
Collapse
Affiliation(s)
- Maureen Neitz
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Elise D. Krekling
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A. Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R. Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Jessica Rowlan
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Rachel Barborek
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Jay Neitz
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Adam Crain
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Rigmor C. Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
9
|
Wang J, Xu D, Zhu T, Zhou Y, Chen X, Wang F, Zhang J, Tian H, Gao F, Zhang J, Jin C, Xu J, Lu L, Liu Q, Xu GT. Identification of two novel RHO mutations in Chinese retinitis pigmentosa patients. Exp Eye Res 2019; 188:107726. [DOI: 10.1016/j.exer.2019.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
|
10
|
Wan A, Place E, Pierce EA, Comander J. Characterizing variants of unknown significance in rhodopsin: A functional genomics approach. Hum Mutat 2019; 40:1127-1144. [PMID: 30977563 PMCID: PMC7027811 DOI: 10.1002/humu.23762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a major bottleneck in human genetics, and is increasingly important in determining which patients with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin (RHO) variants from literature and in‐house genetic diagnostic testing were created to efficiently detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A relatively simple next‐generation sequencing‐based readout was developed so that a flow cytometry‐based assay could be performed simultaneously on all variants in a pooled format, without the need for barcodes or viral transduction. The resulting dataset characterized the surface expression of every RHO library variant with a high degree of reproducibility (r2 = 0.92–0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved by identifying VUS which showed low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across multiple assays and correlated with clinical disease severity. This study presents a parallelized, higher‐throughput cell‐based assay for the functional characterization of VUS in RHO, and can be applied more broadly to other inherited retinal disease genes and other disorders.
Collapse
Affiliation(s)
- Aliete Wan
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Emily Place
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jason Comander
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 2018; 27:761-779. [PMID: 29281027 DOI: 10.1093/hmg/ddx438] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2024] Open
Abstract
P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.
Collapse
Affiliation(s)
- Serena G Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| |
Collapse
|
12
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
13
|
Wiechers L, Samanta A, Nagel-Wolfrum K. Das Überlesen von Nonsense-Mutationen. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zusammenfassung
Nonsense-Mutationen weisen eine Inzidenz von etwa 12 % bezogen auf alle krankheitsverursachenden Mutationen auf. Eine ähnliche Rate gilt für Netzhauterkrankungen. Ein speziell auf diesen Mutationstyp ausgerichteter Therapieansatz könnte somit praktikabel und ökonomisch im Sinne einer Therapie „eine für viele“ sein. Nonsense-Mutationen führen zu vorzeitigen Terminationscodons (PTCs), wodurch die Degradation der mRNA über den „nonsense-mediated decay“ (NMD) induziert werden kann oder die Translation am PTC endet und ein verkürztes, zumeist nicht mehr funktionelles Protein synthetisiert wird. Ein pharmakogenetischer Ansatz induziert das Überlesen („read-through“) von PTCs und erlaubt somit die Synthese von vollständigen Proteinen. Die hierbei eingesetzten Wirkstoffe werden als TRIDs („translational read-through inducing drugs“) bezeichnet. Die ersten identifizierten TRIDs gehören zur Klasse der Aminoglykosidantibiotika. Modernere TRIDs sind Amlexanox, Ataluren und Derivate von Aminoglykosidantibiotika. Während Aminoglykoside eine hohe Oto‑, Nephro- und Retinotoxizität aufweisen, zeichnen sich die modernen TRIDs durch eine verbesserte Verträglichkeit aus. Eine Vielzahl von präklinischen Studien belegt die Überlese-Effizienz von TRIDs bei Nonsense-Mutationen und zeigt die Funktionalität der wiederhergestellten Proteine in Zellkultur, Tiermodellen und patientenspezifischen Zellen. Für die Therapie von Netzhauterkrankungen werden systemische und lokale Applikationen evaluiert. Patientenspezifische Zellen stellen ein personalisiertes Screeningmodell für die Identifizierung eines wirksamen TRID dar. Der pharmakogenetische Überlese-Ansatz könnte in Zukunft für jeden Patienten, dessen Netzhauterkrankung durch eine Nonsense-Mutation verursacht wird, eine personalisierte Therapie erlauben.
Collapse
Affiliation(s)
- Lisa Wiechers
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| | - Ananya Samanta
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| | - Kerstin Nagel-Wolfrum
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| |
Collapse
|
14
|
Harel T, Yesil G, Bayram Y, Coban-Akdemir Z, Charng WL, Karaca E, Al Asmari A, Eldomery MK, Hunter JV, Jhangiani SN, Rosenfeld JA, Pehlivan D, El-Hattab AW, Saleh MA, LeDuc CA, Muzny D, Boerwinkle E, Gibbs RA, Chung WK, Yang Y, Belmont JW, Lupski JR. Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy. Am J Hum Genet 2016; 98:562-570. [PMID: 26942288 DOI: 10.1016/j.ajhg.2016.01.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem University, Istanbul 34093, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Al Asmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain 15258, United Arab Emirates
| | - Mohammed A Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston TX 77030, USA
| |
Collapse
|