1
|
Arya S, Helal RS, Pereira MA, Serhan HA. Bilateral spontaneous retinal dialysis in multiple sclerosis related intermediate uveitis: Unusual case report. Am J Ophthalmol Case Rep 2025; 38:102277. [PMID: 40035000 PMCID: PMC11875825 DOI: 10.1016/j.ajoc.2025.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose To report a case of rhegmatogenous retinal detachment (RRD) caused by spontaneous retinal dialysis in intermediate uveitis due to multiple sclerosis (MS). Observations A 29-year-old Middle Eastern female, was diagnosed with MS following an episode of bilateral intermediate uveitis. Later, she presented with sequential RRD in both eyes. The patient underwent a 25-gauge pars plana vitrectomy. Intraoperatively, retinal dialysis was noted due to traction at the vitreous base. Peripheral retinal thinning due to ischemia was also noted. Postoperatively, she recovered her visual acuity in both eyes to 6/6. Conclusions and importance We describe a case of bilateral RRD caused by spontaneous retinal dialysis in intermediate uveitis secondary to MS. Retinal detachment was managed by conventional vitrectomy and tamponading agent. We suggest looking for traction at the vitreous base in cases of intermediate uveitis secondary to MS.
Collapse
Affiliation(s)
- Saket Arya
- Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar
| | | | | | | |
Collapse
|
2
|
Zong Y, Miyagaki M, Yang M, Zhang J, Zou Y, Ohno-Matsui K, Kamoi K. Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies. Antibodies (Basel) 2024; 13:86. [PMID: 39449328 PMCID: PMC11503300 DOI: 10.3390/antib13040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) have demonstrated substantial potential in the treatment of intraocular diseases. This review aimed to comprehensively evaluate the applications, efficacy, and safety of mAbs in the management of intraocular conditions. METHODS A comprehensive literature search was conducted in major medical databases through July 2024. Relevant studies on monoclonal antibodies for intraocular diseases were included. Two independent researchers screened the literature, extracted data, and assessed study quality. Cost-effectiveness analyses were also reviewed. RESULTS Anti-vascular endothelial growth factor (VEGF) antibodies, such as bevacizumab, ranibizumab, and aflibercept, showed significant therapeutic effects in neovascular age-related macular degeneration (NVAMD), diabetic macular edema (DME), and retinal vein occlusion (RVO). Tumor necrosis factor-alpha (TNF-α) inhibitors demonstrated promising results in treating noninfectious uveitis. Complement system-targeted therapies like pegcetacoplan offered new options for geographic atrophy. Anti-VEGF antibodies showed potential in managing retinopathy of prematurity (ROP). However, challenges persist, including high costs, potential drug resistance, and limited long-term safety data in certain scenarios. CONCLUSIONS Monoclonal antibodies are vital for treating intraocular diseases, but continuous innovation and rigorous clinical evaluation are essential. Future research should focus on developing novel delivery systems, exploring combination therapies, conducting long-term follow-up studies, and investigating personalized treatment strategies to provide safer, more effective, and cost-effective therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Koju Kamoi
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.Z.); (M.M.); (M.Y.); (J.Z.); (Y.Z.); (K.O.-M.)
| |
Collapse
|
3
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Zhu L, Li H, Peng X, Li Z, Zhao S, Wu D, Chen J, Li S, Jia R, Li Z, Su W. Beneficial mechanisms of dimethyl fumarate in autoimmune uveitis: insights from single-cell RNA sequencing. J Neuroinflammation 2024; 21:112. [PMID: 38684986 PMCID: PMC11059727 DOI: 10.1186/s12974-024-03096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jialing Chen
- Sun Yat-sen University, Guangzhou, 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Degroote RL, Schmalen A, Hauck SM, Deeg CA. Unveiling Differential Responses of Granulocytes to Distinct Immunostimulants with Implications in Autoimmune Uveitis. Biomedicines 2023; 12:19. [PMID: 38275380 PMCID: PMC10812922 DOI: 10.3390/biomedicines12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The perception of circulating granulocytes as cells with a predetermined immune response mainly triggered by pathogens is evolving, recognizing their functional heterogeneity and adaptability, particularly within the neutrophil subset. The involvement of these cells in the pathophysiology of autoimmune uveitis has become increasingly clear, yet their exact role remains elusive. We used an equine model for autoimmune-mediated recurrent pan-uveitis to investigate early responses of granulocytes in different inflammatory environments. For this purpose, we performed differential proteomics on granulocytes from healthy and diseased horses stimulated with IL8, LPS, or PMA. Compared to healthy horses, granulocytes from the recurrent uveitis model significantly changed the cellular abundance of 384 proteins, with a considerable number of specific changes for each stimulant. To gain more insight into the functional impact of these stimulant-specific proteome changes in ERU pathogenesis, we used Ingenuity Pathway Analysis for pathway enrichment. This resulted in specific reaction patterns for each stimulant, with IL8 predominantly promoting Class I MHC-mediated antigen processing and presentation, LPS enhancing processes in phospholipid biosynthesis, and PMA, clearly inducing neutrophil degranulation. These findings shed light on the remarkably differentiated responses of neutrophils, offering valuable insights into their functional heterogeneity in a T-cell-driven disease. Raw data are available via ProteomeXchange with identifier PXD013648.
Collapse
Affiliation(s)
- Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (R.L.D.); (A.S.)
| | - Adrian Schmalen
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (R.L.D.); (A.S.)
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (R.L.D.); (A.S.)
| |
Collapse
|
6
|
Hill DG, Ward A, Nicholson LB, Jones GW. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine 2021; 146:155650. [PMID: 34343865 DOI: 10.1016/j.cyto.2021.155650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
IL-6 family cytokines display broad effects in haematopoietic and non-haematopoietic cells that regulate immune homeostasis, host defence, haematopoiesis, development, reproduction and wound healing. Dysregulation of these activities places this cytokine family as important mediators of autoimmunity, chronic inflammation and cancer. In this regard, ectopic lymphoid structures (ELS) are a pathological hallmark of many tissues affected by chronic disease. These inducible lymphoid aggregates form compartmentalised T cell and B cell zones, germinal centres, follicular dendritic cell networks and high endothelial venules, which are defining qualities of peripheral lymphoid organs. Accordingly, ELS can support local antigen-specific responses to self-antigens, alloantigens, pathogens and tumours. ELS often correlate with severe disease progression in autoimmune conditions, while tumour-associated ELS are associated with enhanced anti-tumour immunity and a favourable prognosis in cancer. Here, we discuss emerging roles for IL-6 family cytokines as regulators of ELS development, maintenance and activity and consider how modulation of these activities has the potential to aid the successful treatment of autoimmune conditions and cancers where ELS feature.
Collapse
Affiliation(s)
- David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Bradley LJ, Ward A, Hsue MCY, Liu J, Copland DA, Dick AD, Nicholson LB. Quantitative Assessment of Experimental Ocular Inflammatory Disease. Front Immunol 2021; 12:630022. [PMID: 34220797 PMCID: PMC8250853 DOI: 10.3389/fimmu.2021.630022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Ocular inflammation imposes a high medical burden on patients and substantial costs on the health-care systems that mange these often chronic and debilitating diseases. Many clinical phenotypes are recognized and classifying the severity of inflammation in an eye with uveitis is an ongoing challenge. With the widespread application of optical coherence tomography in the clinic has come the impetus for more robust methods to compare disease between different patients and different treatment centers. Models can recapitulate many of the features seen in the clinic, but until recently the quality of imaging available has lagged that applied in humans. In the model experimental autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal vulnerability to inflammation, all different from healthy tissue, but distinct from each other. Deploying longitudinal, multimodal imaging approaches can be coupled to analysis in the tissue of changes in architecture, cell content and function. This can enrich our understanding of pathology, increase the sensitivity with which the impacts of therapeutic interventions are assessed and address questions of tissue regeneration and repair. Modern image processing, including the application of artificial intelligence, in the context of such models of disease can lay a foundation for new approaches to monitoring tissue health.
Collapse
Affiliation(s)
- Lydia J Bradley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Madeleine C Y Hsue
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jian Liu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D Dick
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,University College London, Institute of Ophthalmology, London, United Kingdom
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Zhu L, Chen B, Su W. A Review of the Various Roles and Participation Levels of B-Cells in Non-Infectious Uveitis. Front Immunol 2021; 12:676046. [PMID: 34054864 PMCID: PMC8160461 DOI: 10.3389/fimmu.2021.676046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Non-infectious uveitis is an inflammatory disorder of the eye that accounts for severe visual loss without evident infectious agents. While T cells are supposed to dominate the induction of inflammation in non-infectious uveitis, the role of B cells in the pathogenesis of this disease is obscure. Therefore, this review aimed to discuss diverse B-cell participation in different non-infectious uveitides and their roles in the pathogenesis of this disease as well as the mechanism of action of rituximab. Increasing evidence from experimental models and human non-infectious uveitis has suggested the participation of B cells in non-infectious uveitis. The participation levels vary in different uveitides. Furthermore, B cells play multiple roles in the pathogenic mechanisms. B cells produce autoantibodies, regulate T cell responses via antibody-independent functions, and constitute ectopic lymphoid structures. Regulatory B cells perform pivotal anti-inflammatory functions in non-infectious uveitis. Rituximab may work by depleting pro-inflammatory B cells and restoring the quantity and function of regulatory B cells in this disease. Identifying the levels of B-cell participation and the associated roles is beneficial for optimizing therapy. Diversified experimental model choices and emerging tools and/or methods are conducive for future studies on this topic.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Hassman LM, Paley MA, Esaulova E, Paley GL, Ruzycki PA, Linskey N, Laurent J, Feigl-Lenzen L, Springer L, Montana CL, Hong K, Enright J, James H, Artyomov MN, Yokoyama WM. Clinicomolecular Identification of Conserved and Individualized Features of Granulomatous Uveitis. OPHTHALMOLOGY SCIENCE 2021; 1:100010. [PMID: 35937550 PMCID: PMC9352144 DOI: 10.1016/j.xops.2021.100010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Objective To identify molecular features that distinguish individuals with shared clinical features of granulomatous uveitis. Design Cross-sectional, observational study. Participants Four eyes from patients with active granulomatous uveitis. Methods We performed single-cell RNA-sequencing with antigen-receptor sequence analysis to obtain an unbiased gene expression survey of ocular immune cells and identify clonally expanded lymphocytes. Main Outcomes Measures For each inflamed eye, we measured the proportion of distinct immune cell types, the amount of B or T cell clonal expansion, and the transcriptional profile of T and B cells. Results Each individual had robust clonal expansion arising from a single T or B cell lineage, suggesting distinct, antigen-driven pathogenic processes in each patient. This variability in clonal expansion was mirrored by individual variability in CD4 T cell populations, whereas ocular CD8 T cells and B cells were more transcriptionally similar between patients. Finally, ocular B cells displayed evidence of class-switching and plasmablast differentiation within the ocular microenvironment, providing additional support for antigen-driven immune responses in granulomatous uveitis. Conclusions Collectively, our study identified both conserved and individualized features of granulomatous uveitis, illuminating parallel pathophysiologic mechanisms, and suggesting that future personalized therapeutic approaches may be warranted.
Collapse
Affiliation(s)
- Lynn M. Hassman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Grace L. Paley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole Linskey
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lacey Feigl-Lenzen
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Luke Springer
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Cynthia L. Montana
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Karen Hong
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Enright
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Hayley James
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Abraham A, Nicholson L, Dick A, Rice C, Atan D. Intermediate uveitis associated with MS: Diagnosis, clinical features, pathogenic mechanisms, and recommendations for management. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e909. [PMID: 33127747 PMCID: PMC7641065 DOI: 10.1212/nxi.0000000000000909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023]
Abstract
Uveitis is a major cause of visual impairment and blindness among working-age adults, accounting for 10% of legal blindness in the United States. Among people with MS, the prevalence of uveitis is 10 times higher than among the general population, and because MS and uveitis share similar genetic risk factors and immunologic effector pathways, it is not clear whether uveitis is one of the manifestations of MS or a coincident disorder. This uncertainty raises several diagnostic and management issues for clinicians who look after these patients, particularly with regard to recognizing visual symptoms resulting from demyelination, intraocular inflammation, or the visual complications of disease modifying drugs for MS, e.g., fingolimod. Likewise, management decisions regarding patients with uveitis are influenced by the risk of precipitating or exacerbating episodes of demyelination, e.g., following anti-tumor necrosis factor biologic therapy, and other neurologic complications of immunosuppressive treatments for uveitis. In this review, we explore the similarities in the pathophysiology, clinical features, and treatment of patients with uveitis and MS. Based on the latest evidence, we make a set of recommendations to help guide neurologists and ophthalmologists to best manage patients affected by both conditions.
Collapse
Affiliation(s)
- Alan Abraham
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom.
| | - Lindsay Nicholson
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Andrew Dick
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Claire Rice
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Denize Atan
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| |
Collapse
|
12
|
Schuh JCL. Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals. Toxicol Pathol 2020; 49:472-482. [PMID: 33252012 DOI: 10.1177/0192623320970448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) of special senses is poorly described and can be confused with nonspecific mononuclear cell infiltrates and tertiary lymphoid structures (TLS). In the eye, MALT consists mostly of conjunctiva-associated lymphoid tissue (CALT) and lacrimal drainage-associated lymphoid tissue (LDALT). In humans, CALT and LDALT are important components of the normal eye-associated lymphoid tissue (EALT), but EALT is less frequently described in ocular tissues of animals. The EALT are acquired postnatally in preferential mucosal sites, expand with antigenic exposure, form well-developed lymphoid follicles, and are reported to senesce. Lymphoid follicles that are induced concurrently with chronic inflammation are more appropriately considered TLS but must be differentiated from inflammation in MALT. Less understood is the etiology for formation of lymphoid tissue aggregates in the ciliary body, limbus, or choroid of healthy eyes in animals and humans. In the healthy eustachian tube and middle ear of animals and humans, MALT may be present but is infrequently described. Concurrent with otitis media, lymphoid follicles in the eustachian tube are probably expanded MALT, but lymphoid follicles in the middle ear may be TLS. The purpose of this comparative review is to familiarize toxicologic pathologists with MALT in the special senses and to provide considerations for differentiating and reporting eye and ear MALT from immune or inflammatory cell infiltrates or inflammation in nonclinical studies, and the circumstances for reporting TLS in compartments of the eye and ear.
Collapse
|
13
|
Leukotriene B 4 and Its Receptor in Experimental Autoimmune Uveitis and in Human Retinal Tissues: Clinical Severity and LTB 4 Dependence of Retinal Th17 Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:320-334. [PMID: 33159884 DOI: 10.1016/j.ajpath.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Nomacopan, a drug originally derived from tick saliva, has dual functions of sequestering leukotriene B4 (LTB4) and inhibiting complement component 5 (C5) activation. Nomacopan has been shown to provide therapeutic benefit in experimental autoimmune uveitis (EAU). Longer acting forms of nomacopan were more efficacious in mouse EAU models, and the long-acting variant that inhibited only LTB4 was at least as effective as the long-acting variant that inhibited both C5 and LTB4, preventing structural damage to the retina and a significantly reducing effector T helper 17 cells and inflammatory macrophages. Increased levels of LTB4 and C5a (produced upon C5 activation) were detected during disease progression. Activated retinal lymphocytes were shown to express LTB4 receptors (R) in vitro and in inflamed draining lymph nodes. Levels of LTB4R-expressing active/inflammatory retinal macrophages were also increased. Within the draining lymph node CD4+ T-cell population, 30% expressed LTB4R+ following activation in vitro, whereas retinal infiltrating cells expressed LTB4R and C5aR. Validation of expression of those receptors in human uveitis and healthy tissues suggests that infiltrating cells could be targeted by inhibitors of the LTB4-LTB4 receptor 1 (BLT1) pathway as a novel therapeutic approach. This study provides novel data on intraocular LTB4 and C5a in EAU, their associated receptor expression by retinal infiltrating cells in mouse and human tissues, and in attenuating EAU via the dual inhibitor nomacopan.
Collapse
|
14
|
John S, Rolnick K, Wilson L, Wong S, Van Gelder RN, Pepple KL. Bioluminescence for in vivo detection of cell-type-specific inflammation in a mouse model of uveitis. Sci Rep 2020; 10:11377. [PMID: 32647297 PMCID: PMC7347586 DOI: 10.1038/s41598-020-68227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
This study reports the use of cell-type-specific in vivo bioluminescence to measure intraocular immune cell population dynamics during the course of inflammation in a mouse model of uveitis. Transgenic lines expressing luciferase in inflammatory cell subsets (myeloid cells, T cells, and B cells) were generated and ocular bioluminescence was measured serially for 35 days following uveitis induction. Ocular leukocyte populations were identified using flow cytometry and compared to the ocular bioluminescence profile. Acute inflammation is neutrophilic (75% of ocular CD45 + cells) which is reflected by a significant increase in ocular bioluminescence in one myeloid reporter line on day 2. By day 7, the ocular T cell population increases to 50% of CD45 + cells, leading to a significant increase in ocular bioluminescence in the T cell reporter line. While initially negligible (< 1% of CD45 + cells), the ocular B cell population increases to > 4% by day 35. This change is reflected by a significant increase in the ocular bioluminescence of the B cell reporter line starting on day 28. Our data demonstrates that cell-type-specific in vivo bioluminescence accurately detects changes in multiple intraocular immune cell populations over time in experimental uveitis. This assay could also be useful in other inflammatory disease models.
Collapse
Affiliation(s)
- Sarah John
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Kevin Rolnick
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Silishia Wong
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA.,Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.,Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|