1
|
Zhang J, Qi Y, Li Y, Zhu F, Geng Y, Li Y, Xue B, Bi H, Jiao Y, Min H, Jiang D, Nie G, Qi Y. PROTAC based targeted degradation of LRG1 for mitigating corneal neovascularization. J Control Release 2025; 381:113567. [PMID: 39993640 DOI: 10.1016/j.jconrel.2025.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1), a secretory glycoprotein associated with angiogenesis, inflammation, fibrosis, and other pivotal pathophysiological processes, is significantly upregulated in corneal neovascularization (CNV), where it drives neovascularization via the TGF-β-Smad signaling pathway, making it a potential therapeutic target for CNV. This study employs proteolysis-targeting chimera (PROTAC) technology, utilizing our newly developed PROTAC agent, ETTAC-2, to selectively degrade LRG1 in a mouse model of alkali burn-induced CNV. The cellular study revealed that ETTAC-2 effectively degraded LRG1 in a time- and dose-dependent manner, with a half-maximal degradation concentration (DC50) of 13.52 μM. In vivo findings confirmed that ETTAC-2 significantly reduced LRG1 levels in corneal neovascular tissues and inhibited the release of angiogenic factors by suppressing the TGF-β-Smad1/5/9 pathway, thus attenuating CNV progression. To enhance corneal drug delivery, ETTAC-2 was encapsulated in liposomes to form Lipo@ETTAC-2, which enhanced drug retention on the corneal surface, resulting in superior therapeutic outcomes in CNV models. This study underscores the pivotal role of LRG1 in CNV and positions Lipo@ETTAC-2 as a promising candidate for CNV therapy.
Collapse
Affiliation(s)
- Jingjuan Zhang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yongjun Qi
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yongzheng Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Furong Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yizhuo Geng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bai Xue
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzheng Bi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Jiao
- Department of Emergency, The Second Hospital of Shandong University, Jinan 250033, China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China; Department of Emergency, The Second Hospital of Shandong University, Jinan 250033, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Song S, Cheng Y, Li W, Yu H, Li Z, Li J, Li M, Huang Q, Liu Y, Ling S. Irradiated umbilical cord mesenchymal stem cell-coated high oxygen-permeable hydrogel lenses inhibit corneal inflammation and neovascularization after corneal alkali burns. Sci Rep 2025; 15:10401. [PMID: 40140459 PMCID: PMC11947097 DOI: 10.1038/s41598-025-95007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Corneal alkali burns can cause persistent inflammation and corneal neovascularization. In this study, we divided corneal alkali burned rabbits into the untreated group, the blank lens group, the radiation-treated umbilical cord mesenchymal stem cells (UCMSC) lens group, and the UCMSC I.V. group, and then measured corneal inflammation, neovascularization and corneal injury repair via slit lamp microscopy, captured anterior segment optical coherence tomography (AS-OCT), and performed hematoxylin-eosin staining. Compared with those in the other experimental groups, radiation-treated UCMSC lenses significantly decreased inflammatory index (IF) scores, areas of corneal blood vessels and corneal epithelial injury. The expression of interleukin (IL)-17 in corneas treated with radiation-treated UCMSC lenses was lower than that in corneas treated with blank lenses, and radiation-treated UCMSC lenses exhibited greater expression of IL-4 and signal transducer and activator of transcription 1 (STAT1), while the expression of cluster of differentiation-3G (CD3G), a linker for the activation of T cells (LAT), IL-6, IL-1B, CC chemokine receptor 6 (CCR6) and IL-23 exhibited the opposite effects (all P < 0.05). Our findings demonstrated that irradiated UCMSC-coated high oxygen-permeable hydrogel lenses on the ocular surface inhibited corneal angiogenesis and inflammation after corneal alkaline burns. The downregulation of Th17 cell differentiation might be responsible for these effects.
Collapse
Affiliation(s)
- Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jianbing Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Meng Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunai Huang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yingjie Liu
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
3
|
Sprogyte L, Park M, Nureen L, Tedla N, Richardson A, Di Girolamo N. Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency. Ocul Surf 2024; 34:329-340. [PMID: 39214186 DOI: 10.1016/j.jtos.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea. METHODS LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (n = 151) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months. RESULTS Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8+, K13+, K15+ and MUC5AC+ conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12+ epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487). CONCLUSIONS We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lamia Nureen
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicodemus Tedla
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Richardson
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Xiang Y, Qiu Z, Ding Y, Du M, Gao N, Cao H, Zuo H, Cheng H, Gao X, Zheng S, Wan W, Huang X, Hu K. Dexamethasone-loaded ROS stimuli-responsive nanogels for topical ocular therapy of corneal neovascularization. J Control Release 2024; 372:874-884. [PMID: 38977133 DOI: 10.1016/j.jconrel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin β1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.
Collapse
Affiliation(s)
- Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Zhu Qiu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hong Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
5
|
Regu VR, Gohel V, Gaur M, Swain RP, Das J, Subudhi BB. Tamarind seed polysaccharide-metformin insert: Higher ocular retention, slow-release, and efficacy against corneal burn. Int J Pharm 2024; 659:124265. [PMID: 38795935 DOI: 10.1016/j.ijpharm.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.
Collapse
Affiliation(s)
- Varaprasad R Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Ranjit P Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India; GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Jayakrushna Das
- College of Veterinary Science and Animal Husbandry, Bhubaneswar 751003, Odisha, India
| | - Bharat B Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
6
|
Cheng Y, Liu G. Evaluation of the Treatment Effects of Conditioned Medium from Human Orbital Adipose-Derived Stem Cells in a Corneal Alkali Burn Rabbit Model. J Ocul Pharmacol Ther 2024; 40:222-231. [PMID: 38546750 DOI: 10.1089/jop.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Purpose: This study aimed to evaluate the effects of a new treatment-conditioned medium from human orbital adipose-derived stem cells (OASC-CM)-on corneal recovery after alkali burns in a rabbit model. Methods: The corneal alkali burn rabbit model was established and treated with OASC-CM, conditioned medium from human abdominal subcutaneous adipose-derived stem cells (ABASC-CM), and fresh control culture medium (con-CM) three times a day for 7 days, respectively. Subsequently, the treatment effects were evaluated and compared through clinical, histological, immunohistochemical, and cytokine evaluations. Results: Clinically, OASC-CM alleviated corneal opacity and edema and promoted recovery of corneal epithelium defect. Histologically and immunohistochemically, OASC-CM inhibited neovascularization, conjunctivalization, and immuno-inflammatory reaction, while promoting corneal regeneration and rearrangement. Increased secretion of interleukin-10 and inhibited protein levels of cluster of differentiation 45, interferon-γ, and tumor necrosis factor-α were observed in the alkali-burned cornea after OASC-CM treatment, which might be the relevant molecular mechanism. Conclusions: OASC-CM showed significant effects on the recovery of rabbit corneal alkali burns and eliminated immunological and ethical limitations, representing a new option for corneal wound treatment.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Atalay E, Altuğ B, Çalışkan ME, Ceylan S, Özler ZS, Figueiredo G, Lako M, Figueiredo F. Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review. Ophthalmol Ther 2024; 13:671-696. [PMID: 38280103 PMCID: PMC10853161 DOI: 10.1007/s40123-023-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | - Semih Ceylan
- Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | | | | | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
8
|
Yu Y, Andreev AY, Rogovaya OS, Subbot AM, Domogatsky SP, Avetisov SE, Vorotelyak EA, Osidak EO. Matrix-Assisted Cell Transplantation for the Treatment of Limbal Stem Cell Deficiency in a Rabbit Model. Biomedicines 2024; 12:101. [PMID: 38255207 PMCID: PMC10813050 DOI: 10.3390/biomedicines12010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of regenerative medicine in ophthalmology, the identification of cells with high proliferative potential in the limbal area has attracted the attention of ophthalmologists and offered a new option for treatment in clinical practice. Limbal stem cell deficiency (LSCD) is an identified eye disease with a difficult and negative outcome, for which the traditional treatment is keratoplasty. This study sought to evaluate the efficacy of matrix-assisted cell transplantation consisting of in vitro-cultured autologous limbal stem cells (LSCs) and type I collagen for the treatment of LSCD in rabbits. LSCD was induced in 10 rabbits by a combination of mechanical limbectomy and alkali burns. Cells were cultured on a plate for 14 days before being transferred to a collagen-based matrix for another 7 days. Rabbits were divided into two groups as follows: the experimental group (five rabbits) received matrix-assisted cell transplantation, while the control group (five rabbits) received only conservative therapy with anti-inflammatory eye drops. During the postoperative period, all rabbits were examined using slit-lamp biomicroscopy with photo-registration and fluorescent staining, impression cytology and anterior segment optical coherence tomography (AS-OCT). Rabbits were euthanized at 30 and 120 days, and their corneas were processed for histology and immunohistochemistry. As a consequence, rabbits in the experimental group demonstrated the restoration of the corneal epithelium and transparency without epithelial defects. Moreover, goblet cells were absent in the central zone of the corneal epithelium. In conclusion, our new method of treatment enhanced the corneal surface and is an effective method of treatment for LSCD in rabbits.
Collapse
Affiliation(s)
- Yang Yu
- Department of Eye Diseases, I.M. Sechenov First Moscow State Medical University, 8-2, Trubetskaya Street, 119991 Moscow, Russia
| | - Andrey Yurevich Andreev
- Department of Eye Diseases, I.M. Sechenov First Moscow State Medical University, 8-2, Trubetskaya Street, 119991 Moscow, Russia
- Department of Pathologies of Optical Medium of the Eye, Krasnov Research Institute of Eye Diseases, 11A Rossolimo St., 119021 Moscow, Russia
- R&D Department, Imtek Ltd., 3rd Cherepkovskaya 15A, 121552 Moscow, Russia;
| | - Olga Sergeevna Rogovaya
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology Russian Academy of Science, 26, Vavilova St., 119334 Moscow, Russia
| | - Anastasia Mikhailovna Subbot
- Laboratory of Basic Research in Ophthalmology, Krasnov Research Institute of Eye Diseases, 11A Rossolimo St., 119021 Moscow, Russia
| | - Sergey Petrovich Domogatsky
- R&D Department, Imtek Ltd., 3rd Cherepkovskaya 15A, 121552 Moscow, Russia;
- Laboratory of Immunochemistry, FSBI National Medical Research Centre of Cardiology Name after Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Academika Chazova St., 15A, 121552 Moscow, Russia
| | - Sergey Eduardovich Avetisov
- Department of Eye Diseases, I.M. Sechenov First Moscow State Medical University, 8-2, Trubetskaya Street, 119991 Moscow, Russia
- Department of Pathologies of Optical Medium of the Eye, Krasnov Research Institute of Eye Diseases, 11A Rossolimo St., 119021 Moscow, Russia
| | - Ekaterina Andreevna Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology Russian Academy of Science, 26, Vavilova St., 119334 Moscow, Russia
| | - Egor Olegovich Osidak
- R&D Department, Imtek Ltd., 3rd Cherepkovskaya 15A, 121552 Moscow, Russia;
- Laboratory of Cellular Hemostasis and Thrombosis, Dmitry Rogachev National Medical Research Center of Paediatric Haematology, Oncology and Immunology, Samora Machel St., 1, 117997 Moscow, Russia
| |
Collapse
|
9
|
Singh VK, Kethiri AR, Pingali T, Sahoo A, Salman M, Koduri MA, Prasad D, Bokara KK, Basu S, Singh V. Development and validation of a reliable rabbit model of limbal stem cell deficiency by mechanical debridement using an ophthalmic burr. Exp Eye Res 2023; 236:109667. [PMID: 37758156 DOI: 10.1016/j.exer.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Tejaswini Pingali
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Abhishek Sahoo
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mohd Salman
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Moshirfar M, Masud M, Harvey DH, Payne C, Bruce E, Ronquillo YC, Hoopes PC. The Multifold Etiologies of Limbal Stem Cell Deficiency: A Comprehensive Review on the Etiologies and Additional Treatment Options for Limbal Stem Cell Deficiency. J Clin Med 2023; 12:4418. [PMID: 37445454 DOI: 10.3390/jcm12134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Given the various ocular manifestations of limbal stem cell insufficiency, an awareness of the genetic, acquired, and immunological causes and associated additional treatments of limbal stem cell deficiency (LSCD) is essential for providers. We performed a comprehensive review of the literature on the various etiologies and specific therapies for LSCD. The resources utilized in this review included Medline (PubMed), Embase, and Google Scholar. All English-language articles and case reports published from November 1986 through to October 2022 were reviewed in this study. There were collectively 99 articles on these topics. No other exclusion criteria were applied. Depending on the etiology, ocular manifestations of limbal stem cell deficiency range from dry eye syndrome and redness to more severe outcomes, including corneal ulceration, ocular surface failure, and vision loss. Identifying the source of damage for LSCD is critical in the treatment process, given that therapy may extend beyond the scope of the standard protocol, including artificial tears, refractive surgery, and allogeneic stem cell transplants. This comprehensive review of the literature demonstrates the various genetic, acquired, and immunological causes of LSCD and the spectrum of supplemental therapies available.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
- John A. Moran Eye Center, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Utah Lions Eye Bank, Murray, UT 84107, USA
| | - Maliha Masud
- School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Devon Hori Harvey
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Carter Payne
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| | - Elayna Bruce
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Philip C Hoopes
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| |
Collapse
|
11
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Xiong X, Jiang H, Liao Y, Du Y, Zhang Y, Wang Z, Zheng M, Du Z. Liposome-trimethyl chitosan nanoparticles codeliver insulin and siVEGF to treat corneal alkali burns by inhibiting ferroptosis. Bioeng Transl Med 2023; 8:e10499. [PMID: 36925675 PMCID: PMC10013822 DOI: 10.1002/btm2.10499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Alkali burns are potentially blinding corneal injuries. Due to the lack of available effective therapies, the prognosis is poor. Thus, effective treatment methods for corneal alkali burns are urgently needed. Codelivery nanoparticles (NPs) with characteristics such as high bioavailability and few side effects have been considered effective therapeutic agents for ocular diseases. In this study, we designed a new combination therapy using liposomes and trimethyl chitosan (TMC) for the codelivery of insulin (INS) and vascular endothelial growth factor small interfering RNA (siVEGF) to treat alkali-burned corneas. We describe the preparation and characterization of siVEGF-TMC-INS-liposome (siVEGF-TIL), drug release characteristics, intraocular tracing, pharmacodynamics, and biosafety. We found that siVEGF-TIL could inhibit oxidative stress, inflammation, and the expression of VEGF in vitro and effectively maintained corneal transparency, accelerated epithelialization, and inhibited corneal neovascularization (CNV) in vivo. Morever, we found that the therapeutic mechanism of siVEGF-TIL is possibly relevant to the inhibition of the ferroptosis signaling pathway by metabolomic analysis. In general, siVEGF-TIL NPs could be a safe and effective therapy for corneal alkali burn.
Collapse
Affiliation(s)
- Xiaojing Xiong
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ultrasound Molecular ImagingSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Ultrasound in Medicine and EngineeringSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huiting Jiang
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ultrasound Molecular ImagingSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yukun Liao
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ultrasound Molecular ImagingSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yangrui Du
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Zhang
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular ImagingSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Minming Zheng
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhiyu Du
- Department of OphthalmologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
13
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
14
|
Mekonnen T, Lin X, Zevallos-Delgado C, Singh M, Aglyamov SR, Coulson-Thomas V, Larin KV. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200022. [PMID: 35460537 PMCID: PMC11057918 DOI: 10.1002/jbio.202200022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Eye injury due to alkali burn is a severe ocular trauma that can profoundly affect corneal structure and function, including its biomechanical properties. Here, we assess the changes in the mechanical behavior of mouse corneas in response to alkali-induced injury by conducting longitudinal measurements using optical coherence elastography (OCE). A non-contact air-coupled ultrasound transducer was used to induce elastic waves in control and alkali-injured mouse corneas in vivo, which were imaged with phase-sensitive optical coherence tomography. Corneal mechanical properties were estimated using a modified Rayleigh-Lamb wave model, and results show that Young's modulus of alkali-burned corneas were significantly greater than that of their healthy counterparts on days 7 (p = 0.029) and 14 (p = 0.026) after injury. These findings, together with the changes in the shear viscosity coefficient postburn, indicate that the mechanical properties of the alkali-burned cornea are significantly modulated during the wound healing process.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Christian Zevallos-Delgado
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| |
Collapse
|
15
|
Gerasimov MY, Ostrovskiy DS, Shatskikh AV, Borzenok SA, Malyugin BE. Labial mucosal epithelium grafting in an ex vivo human donor cornea model. Exp Eye Res 2022; 216:108931. [DOI: 10.1016/j.exer.2022.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
|
16
|
Chaurasia S, Jaffet J, Singh V, Jakati S, Hazari A, Sangwan V. Clinical, histological and immunohistochemistry characteristics of cornea in the sequelae stage of chronic vernal keratoconjunctivitis. Indian J Ophthalmol 2022; 70:59-64. [PMID: 34937208 PMCID: PMC8917557 DOI: 10.4103/ijo.ijo_1179_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: To report the clinical outcomes and histopathological and immunohistochemistry (IHC) features in eyes with the sequelae stage of vernal keratoconjunctivitis (VKC). Methods: Investigative study of corneal samples obtained following surgical intervention for vision restoration in four eyes of three patients with VKC. Patient 1 (an 11-year-old boy) had deep anterior lamellar keratoplasty in both eyes, Patient 2 (a 24-year-old male) underwent superficial keratectomy followed by penetrating keratoplasty, and Patient 3 (a 22-year-old male) underwent penetrating keratoplasty. The corneal samples retrieved after surgical intervention were assessed for histology features and immunohistochemistry (IHC) studies. Results: The grafts were clear till the follow-up of 2–18 months. Histopathology of all four corneal samples showed epithelial hyperplasia, absent Bowman layer, thick hyalinized stromal lamellae, vascularization, and chronic inflammatory cells such as lymphocytes and plasma cells. IHC showed strong expression of CK 3 in both eyes of Patient 1 and no expression in Patients 2 and 3. The marker for limbal stem cells, ABCG2, was absent in all four samples; however, p63α was expressed strongly in Patients 2 and 3, moderately in the right eye of Patient 1, and marginally expressed in the left eye of Patient 1. Conclusion: The eyes in the sequelae stage of VKC (having corneal scarring and 360° hypertrophied limbus) can be managed favorably with keratoplasty and amniotic membrane transplantation without allogenic/cadaveric stem cell transplantation. The expression of transient progenitor cells in the scarred corneas of VKC patients in the sequelae stage suggests that the limbal stem cell dysfunction is more likely partial and self-renewal of limbal stem cells is a plausibility in these eyes.
Collapse
|