1
|
Heidari-Japelaghi R, Valizadeh M, Haddad R. Interferon gamma-induced hub genes and key pathways: A study based on biological network analysis and experimental validation. J Biotechnol 2025; 405:72-87. [PMID: 40348089 DOI: 10.1016/j.jbiotec.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
By performing a biological network analysis, we identified some hub genes, which were up- or down-regulated in the breast cancer (BC) cell line after treatment with IFN-γ. Moreover, several pathways including cytokine-cytokine receptor interaction, TNF signaling pathway, NOD-like receptor signaling pathway, and NF-κB signaling pathway were detected that their activation leads to the antiproliferation, proapoptosis, and antiviral activities. To validate in silico results, the bioactivity of recombinant human IFN-γ (hIFN-γ) produced in different hosts was analyzed by antiviral and anticancer assays. The antiviral role of the hIFN-γ preparations was evaluated by inhibition of Vesicular Stomatitis Virus (VSV)-mediated cytopathic effects on Vero cells. A dose-dependent increase in cell viability was observed at different concentrations of recombinant proteins. The maximum amount of the cell viability detected for the hIFN-γ preparations was determined at a concentration of 32.00 pg/mL. To analyze the cytotoxic efficacy of the hIFN-γ preparations on the growth and development of tumor cells, a BC cell line (MCF-7) was treated with both recombinant protein forms in a time- and dose-dependent way. The highest level of inhibiting cell proliferation was detected at a concentration of 32.00 pg/mL hIFN-γ after 72 h incubation. Anticancer and antiviral functions of IFN-γ were confirmed via the expression analysis of hub genes cd74, cxcl10, il6, and stat1 using RT-PCR. Furthermore, the hIFN-γ preparations were significantly able to up-regulate the expression of proapoptotic Bax and p53 and to down-regulate Bcl-2 as an antiapoptotic gene, showing the cytotoxic effect of hIFN-γ toward MCF-7 cells via apoptosis induction.
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Biotechnology Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
2
|
Miljković R, Marinković E, Prodić I, Kovačević A, Protić-Rosić I, Vasić M, Lukić I, Gavrović-Jankulović M, Stojanović M. Ameliorative Effect of Banana Lectin in TNBS-Induced Colitis in C57BL/6 Mice Relies on the Promotion of Antioxidative Mechanisms in the Colon. Biomolecules 2025; 15:476. [PMID: 40305159 PMCID: PMC12024995 DOI: 10.3390/biom15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The global burden of inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, is constantly rising. As IBDs significantly reduce patients' quality of life, prevention and efficient treatment of IBDs are of paramount importance. Although the molecular mechanisms underlying IBD pathogenesis are still not completely understood, numerous studies indicate the essential role of oxidative stress in the progression of the diseases. Objective: The aim of this study was to investigate whether prophylactic administration of recombinant banana lectin (rBanLec) could positively affect antioxidative mechanisms in the colon and thus prevent or alleviate the severity of experimental colitis induced in C57BL/6 mice. Methods: The prophylactic potential of rBanLec, a mannose-binding lectin with immunomodulatory properties, was investigated in a model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Mice received rBanLec at various doses (0.1, 1 and 10 μg/mL) before the induction of colitis. The severity of the disease was assessed by weight loss and reduction in colon length, and correlated with histopathological findings, cytokine milieu, and oxidative stress markers in the colon. Results: The obtained results revealed that pretreatment with a low dose of rBanLec (0.1 μg/mL) significantly reduced the severity of TNBS-induced colitis, as indicated by reduced weight loss, less severe histopathological damage, and a favorable anti-inflammatory cytokine milieu (increased IL-10 and TGFβ). In addition, rBanLec pretreatment improved the activity of antioxidant enzymes (SOD, CAT, and GST) and reduced markers of oxidative stress such as nitric oxide levels at the peak of the disease. In contrast, higher doses of rBanLec exacerbated inflammatory responses. Conclusions: Our findings indicate that at low doses rBanLec can alleviate the severity of colitis by modulating oxidative stress and promoting anti-inflammatory cytokine responses, positioning rBanLec as a potential candidate for treating IBDs.
Collapse
Grants
- 451-03-66/2024-03/200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200168 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200168 Ministry of Science, Technological Development and Innovation, Serbia
Collapse
Affiliation(s)
- Radmila Miljković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Emilija Marinković
- Institute for Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Ivana Prodić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ana Kovačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Isidora Protić-Rosić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marko Vasić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ivana Lukić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
| | - Marijana Stojanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| |
Collapse
|
3
|
Liu Z, Zheng X, Li N, Wang Z. Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling. Mol Med Rep 2025; 31:18. [PMID: 39513601 PMCID: PMC11564906 DOI: 10.3892/mmr.2024.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Baicalein, a flavonoid monomer compound isolated from the dried root of the traditional Chinese herb Scutellaria baicalensis, has several pharmacological activities, such as anti‑inflammatory, anti‑angiogenic, antitumor, antimicrobial and antiviral properties. Acute lung injury (ALI) is characterized by injury of the alveolar epithelium and capillary endothelium, which results in decreased lung volume, decreased lung compliance, ventilation/perfusion mismatch, intrapulmonary edema, alveolar edema and even acute hypoxemic respiratory failure. The present study aimed to investigate the effects of baicalein on lung injury and inflammation. Bioinformatics analysis using network pharmacology predicted that the hypoxia inducible factor‑1α (HIF‑1α) and glycolysis signaling pathways were involved in the mechanism underlying the therapeutic effects of baicalein. Further in vitro and in vivo experiments, such as immunohistochemistry, immunofluorescence and PCR, verified that baicalein could inhibit HIF‑1α signaling, thus suppressing glycolysis, and improving inflammatory responses and ALI. Taken together, the results of the present study suggested that the anti‑inflammatory effects of baicalein on treating ALI were associated with its ability to suppress glycolysis via the HIF‑1α signaling pathway.
Collapse
Affiliation(s)
- Zhongyou Liu
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Xiaona Zheng
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Ning Li
- Department of Scientific Research, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Zongyao Wang
- Department of Respiratory Diseases, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
4
|
Haag C, Alexis A, Aoki V, Bissonnette R, Blauvelt A, Chovatiya R, Cork MJ, Danby SG, Eichenfield LF, Eyerich K, Gooderham M, Guttman-Yassky E, Hijnen DJ, Irvine AD, Katoh N, Murrell DF, Leshem YA, Levin AA, Vittrup I, Olydam JI, Orfali RL, Paller AS, Renert-Yuval Y, Rosmarin D, Silverberg JI, Thyssen JP, Ständer S, Stefanovic N, Todd G, Yu J, Simpson EL. A practical guide to using oral Janus kinase inhibitors for atopic dermatitis from the International Eczema Council. Br J Dermatol 2024; 192:135-143. [PMID: 39250758 DOI: 10.1093/bjd/ljae342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Janus kinase inhibitors (JAKi) have the potential to alter the landscape of atopic dermatitis (AD) management dramatically, owing to promising efficacy results from phase III trials and their rapid onset of action. However, JAKi are not without risk, and their use is not appropriate for all patients with AD, making this a medication class that dermatologists should understand and consider when treating patients with moderate-to-severe AD. OBJECTIVES To provide a consensus expert opinion statement from the International Eczema Council (IEC) that provides a pragmatic approach to prescribing JAKi, including choosing appropriate patients and dosing, clinical and laboratory monitoring and advice about long-term use. METHODS An international cohort of authors from the IEC with expertise in JAKi selected topics of interest were placed into authorship groups covering 10 subsections. The groups performed topic-specific literature reviews, consulted up-to-date adverse event (AE) data, referred to product labels and provided analysis and expert opinion. The manuscript guidance and recommendations were reviewed by all authors, as well as the IEC Research Committee. RESULTS We recommend that JAKi be considered for patients with moderate-to-severe AD seeking the benefits of a rapid reduction in disease burden and itch, oral administration and the potential for flexible dosing. Baseline risk factors should be assessed prior to prescribing JAKi, including increasing age, venous thromboembolisms, malignancy, cardiovascular health, kidney/liver function, pregnancy and lactation, and immunocompetence. Patients being considered for JAKi treatment should be current on vaccinations and we provide a generalized framework for laboratory monitoring, although clinicians should consult individual product labels for recommendations as there are variations among the different JAKi. Patients who achieve disease control should be maintained on the lowest possible dose, as many of the observed AEs occurred in a dose-dependent manner. Future studies are needed in patients with AD to assess the durability and safety of continuous long-term JAKi use, combination medication regimens and the effects of flexible, episodic treatment over time. CONCLUSIONS The decision to initiate JAKi treatment should be shared between the patient and provider, accounting for AD severity and personal risk-benefit assessment, including consideration of baseline health risk factors, monitoring requirements and treatment costs.
Collapse
Affiliation(s)
- Carter Haag
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Guo R, Yu Y, Xu C, Ma M, Hou C, Dong X, Wu J, Ouyang C, Ling J, Huang T. Protective effects of curcumin on corneal endothelial cell PANoptosis and monocyte adhesion induced by tumor necrosis factor-alpha and interferon-gamma in rats. Exp Eye Res 2024; 245:109952. [PMID: 38838973 DOI: 10.1016/j.exer.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Decrease of human corneal endothelial cell (CEC) density leads to corneal edema, progressive corneal opacity, and reduced visual acuity. A reduction in CEC density may be related to elevated levels of inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interferon (INF)-γ. PANoptosis, characterized by the activation of apoptosis, necroptosis, and pyroptosis, could be a factor in the loss of CECs driven by TNF-α and INF-γ. Cytokines also stimulate monocytes adhesion to endothelium. It has been shown in previous research that curcumin plays protective roles against numerous corneal inflammatory diseases. However, it is not determined whether curcumin acts as an anti-PANoptotic agent or if it mitigates monocyte adhesion to CECs. Therefore, this research aimed to explor the potential therapeutic effects of curcumin and its underlying mechanisms in the loss of CECs. CEC injury models were established, and curcumin was injected subconjunctivally. Clinical evaluation of the corneas was conducted using a scoring system and anterior segment photography. Corneal observation was performed with hematoxylin and eosin staining and immunostaining of zona occludens-1(ZO-1). Apoptotic cells within the corneal endothelium were observed using TUNEL staining. The detection of primary proteins expression was accomplished through Western blot analysis. Interleukin (IL)-1β and macrophage chemotactic protein 1 (MCP-1) levels were determined via ELISA, while the expression of cleaved caspase-3, gasdermin-D (GSDMD), phosphor-mixed lineage kinase domain-like protein (p-MLKL) and intercellular cell adhesion molecule-1 were confirmed by immunofluorescence. Myeloperoxidase (MPO) activity was measured in aqueous humors. Curcumin treatment attenuated the loss of CECs and corneal edema caused by TNF-α and IFN-γ. Besides, it decreased the count of TUNEL-positive cells, and inhibited the upregulation of cleaved caspase-3, cleaved caspase-6, cleaved caspase-7, and cleaved poly (ADP-ribose) polymerase. Moreover, both the expression and phosphorylation of MLKL and receptor-interacting protein 3 were decreased in curcumin-treated rats. Furthermore, curcumin also lowered the expression of cleaved caspase-1, diminished the levels of IL1β and MCP-1, and inhibited the activity of MPO. Besides, the expression of intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, as well as the number of CD11b-positive cells adhered to the CECs decreased for the administration of curcumin.
Collapse
Affiliation(s)
- Ruilin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenjia Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaojuan Dong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
6
|
Recchia Luciani G, Barilli A, Visigalli R, Dall’Asta V, Rotoli BM. Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells. Biomolecules 2024; 14:927. [PMID: 39199315 PMCID: PMC11353037 DOI: 10.3390/biom14080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.R.L.); (A.B.); (R.V.); (B.M.R.)
| | | |
Collapse
|
7
|
Zhang S, Chen Y, Chen Q, Chen H, Wei L, Wang S. Assessment of cerebrovascular alterations induced by inflammatory response and oxidative-nitrative stress after traumatic intracranial hypertension and a potential mitigation strategy. Sci Rep 2024; 14:14535. [PMID: 38914585 PMCID: PMC11196732 DOI: 10.1038/s41598-024-64940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
The rapid perfusion of cerebral arteries leads to a significant increase in intracranial blood volume, exposing patients with traumatic brain injury to the risk of diffuse brain swelling or malignant brain herniation during decompressive craniectomy. The microcirculation and venous system are also involved in this process, but the precise mechanisms remain unclear. A physiological model of extremely high intracranial pressure was created in rats. This development triggered the TNF-α/NF-κB/iNOS axis in microglia, and released many inflammatory factors and reactive oxygen species/reactive nitrogen species, generating an excessive amount of peroxynitrite. Subsequently, the capillary wall cells especially pericytes exhibited severe degeneration and injury, the blood-brain barrier was disrupted, and a large number of blood cells were deposited within the microcirculation, resulting in a significant delay in the recovery of the microcirculation and venous blood flow compared to arterial flow, and this still persisted after decompressive craniectomy. Infliximab is a monoclonal antibody bound to TNF-α that effectively reduces the activity of TNF-α/NF-κB/iNOS axis. Treatment with Infliximab resulted in downregulation of inflammatory and oxidative-nitrative stress related factors, attenuation of capillary wall cells injury, and relative reduction of capillary hemostasis. These improved the delay in recovery of microcirculation and venous blood flow.
Collapse
Affiliation(s)
- Shangming Zhang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Yehuang Chen
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Qizuan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Hongjie Chen
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China
| | - Liangfeng Wei
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Neurosurgery, 900th Hospital, Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, 350025, China.
| |
Collapse
|
8
|
Zheng M, Li R, Wang J, Huang Y, Han M, Li Z. Application of metal–organic frameworks in stomatology. AIP ADVANCES 2024; 14. [DOI: 10.1063/5.0206476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metal–organic frameworks (MOFs), a new class of porous organic–organic hybrid materials controlled by self-assembly of metal atoms and organic pillars, are attracting considerable interest because of their specific properties. More recently, the advantages of different types of nanoscale metal–organic frameworks for the use of MOF nanoparticles in stomatology have been reported in the literature. This article covers the treatment of oral cancer, surface modification of implants, antibacterial dressings, and treatment of periodontitis and periodontal regeneration. It presents recent applications, future challenges, and prospects for MOFs in stomatology in four areas. It provides an overview of recent advances in the design and application of MOFs in stomatology from their intrinsic properties to different syntheses and their use as smart drug delivery systems or a combination of these.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| |
Collapse
|
9
|
Wei X, Yi J, Zhang C, Wang M, Wang R, Xu W, Zhao M, Zhao M, Yang T, Wei W, Jin S, Gao H. Enhancement of the Tumor Suppression Effect of High-dose Radiation by Low-dose Pre-radiation Through Inhibition of DNA Damage Repair and Increased Pyroptosis. Dose Response 2024; 22:15593258241245804. [PMID: 38617388 PMCID: PMC11010768 DOI: 10.1177/15593258241245804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.
Collapse
Affiliation(s)
- Xinfeng Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Citong Zhang
- Department of Oral Comprehensive Therapy, School of Stomatology, Jilin University, Changchun, China
| | - Mingwei Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Teng Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Hui Gao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang J, Dai Y, Li Y, Xu J. Integrative analysis of gene expression datasets in corneal endothelium samples of Fuchs endothelial corneal dystrophy. Exp Eye Res 2023; 237:109712. [PMID: 37918501 DOI: 10.1016/j.exer.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
FECD is an age-related progressive ocular disorder characterized by the gradual loss of corneal endothelial cells. Although the exact pathogenesis of FECD remains incompletely understood, differentially expressed genes in the corneal endothelium of FECD patients compared to controls have been reported in several studies. However, a consensus regarding consistently affected genes in FECD has not been established. To address this issue, we conducted a comprehensive meta-analysis incorporating five studies with data that met our predefined inclusion criteria. The combined dataset included 41 FECD patients and 26 controls. We conducted study-level analyses, followed by a meta-analysis, and subsequent functional enrichment analysis targeting the topmost DEGs. Our findings revealed a total of 1537 consistently dysregulated genes in the corneal endothelium of FECD patients. Notably, only 14.6% (224/1537) of these DEGs had been previously identified as statistically significant in individual datasets. Functional enrichment analysis revealed that the upregulated DEGs were significantly enriched in immune-related signaling pathways, with a particularly high enrichment in "The NLRP3 inflammasome" and "Inflammasomes" pathways. In conclusion, we successfully identify a set of consistently dysregulated genes in FECD, which are associated with both established and novel biological pathways. This study highlights the importance of further investigating the role of inflammasomes in FECD pathogenesis and exploring strategies to modulate inflammasome activation for the management of this debilitating condition.
Collapse
Affiliation(s)
- Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
11
|
He X, You R, Shi Y, Zeng Z, Tang B, Yu J, Xiao Y, Xiao R. Pyroptosis: the potential eye of the storm in adult-onset Still's disease. Inflammopharmacology 2023; 31:2269-2282. [PMID: 37429997 DOI: 10.1007/s10787-023-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Pyroptosis, a form of programmed cell death with a high pro-inflammatory effect, causes cell lysis and leads to the secretion of countless interleukin-1β (IL-1β) and IL-18 cytokines, resulting in a subsequent extreme inflammatory response through the caspase-1-dependent pathway or caspase-1-independent pathway. Adult-onset Still's disease (AOSD) is a systemic inflammatory disease with extensive disease manifestations and severe complications such as macrophage activation syndrome, which is characterized by high-grade inflammation and cytokine storms regulated by IL-1β and IL-18. To date, the pathogenesis of AOSD is unclear, and the available therapy is unsatisfactory. As such, AOSD is still a challenging disease. In addition, the high inflammatory states and the increased expression of multiple pyroptosis markers in AOSD indicate that pyroptosis plays an important role in the pathogenesis of AOSD. Accordingly, this review summarizes the molecular mechanisms of pyroptosis and describes the potential role of pyroptosis in AOSD, the therapeutic practicalities of pyroptosis target drugs in AOSD, and the therapeutic blueprint of other pyroptosis target drugs.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Wang S, Wu ZZ, Zhu SW, Wan SC, Zhang MJ, Zhang BX, Yang QC, Xiao Y, Li H, Mao L, Wang ZY, Gutkind JS, Sun ZJ. CTLA-4 blockade induces tumor pyroptosis via CD8 + T cells in head and neck squamous cell carcinoma. Mol Ther 2023; 31:2154-2168. [PMID: 36869589 PMCID: PMC10362385 DOI: 10.1016/j.ymthe.2023.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) treatment has demonstrated excellent medical effects in oncology, and it is one of the most sought after immunotherapies for tumors. However, there are several issues with ICB therapy, including low response rates and a lack of effective efficacy predictors. Gasdermin-mediated pyroptosis is a typical inflammatory death mode. We discovered that increased expression of gasdermin protein was linked to a favorable tumor immune microenvironment and prognosis in head and neck squamous cell carcinoma (HNSCC). We used the mouse HNSCC cell lines 4MOSC1 (responsive to CTLA-4 blockade) and 4MOSC2 (resistant to CTLA-4 blockade) orthotopic models and demonstrated that CTLA-4 blockade treatment induced gasdermin-mediated pyroptosis of tumor cells, and gasdermin expression positively correlated to the effectiveness of CTLA-4 blockade treatment. We found that CTLA-4 blockade activated CD8+ T cells and increased the levels of interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) cytokines in the tumor microenvironment. These cytokines synergistically activated the STAT1/IRF1 axis to trigger tumor cell pyroptosis and the release of large amounts of inflammatory substances and chemokines. Collectively, our findings revealed that CTLA-4 blockade triggered tumor cells pyroptosis via the release of IFN-γ and TNF-α from activated CD8+ T cells, providing a new perspective of ICB.
Collapse
Affiliation(s)
- Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Su-Wen Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Bo-Xin Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Zhi-Yong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
13
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
14
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
15
|
Peng P, Yu Y, Ma W, Lyu S, Ma L, Liu T, Dong Y, Wei C. Proteomic characterization of aqueous humor in corneal endothelial decompensation after penetrating keratoplasty. Exp Eye Res 2023; 230:109457. [PMID: 36948439 DOI: 10.1016/j.exer.2023.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Corneal endothelial decompensation (CED) is the major cause of the long-term graft failure, but the underlying mechanisms remain unclear. The purpose of this study was to characterize the proteomic profile in CED aqueous humor (AH) after penetrating keratoplasty (PKP). We collected AH samples (n = 6/group) from CED patients underwent PKP and cataract patients, respectively. The label-free quantitative proteomic analysis was performed to identify the differentially-expressed proteins (DEPs). The biological functions of DEPs were evaluated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The protein-protein interaction (PPI) network construction was employed to distinguish the hub proteins of DEPs, and the selected proteins were validated by parallel reaction monitoring (PRM). The human peripheral blood mononuclear cells (PBMCs) were adopted to investigate the effect of biglycan (BGN) on inflammatory response, and the subsequent outcomes of inflammation on human corneal endothelial cells (HCECs). A total of 174 DEPs were identified in CED AH of patients underwent PKP, including 102 up-regulated proteins and 72 down-regulated proteins. Bioinformatics analysis revealed the significant enrichment of cytokine-mediated signaling pathway and extracellular matrix (ECM) organization in the up-regulated proteins, as well as the alterations of cellular components, including the increase of collagen and complement component C1 complex, and reduction in extracellular exosomes. A hub protein cluster of 15 proteins was determined by Molecular Complex Detection (MCODE), including FN1, BGN, COMP, COL11A1, COLA3A1, and COL1A1. Moreover, BGN promoted pro-inflammatory cytokine (such as TNF-α, IL-1β and IL-6) production in PBMCs through NF-κB signaling pathway, which subsequently resulted in HCECs death. These findings provided a systemic protein profile of AH in CED patients after corneal transplantation, with the alterations implicated in cytokine-mediated signaling, ECM, complement system, and exsomes. The identified proteins and signaling pathways probably paved the novel insight into understanding the pathogenesis of the disease.
Collapse
Affiliation(s)
- Peng Peng
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Wenhui Ma
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shanmei Lyu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
16
|
Serrano A, Gomez-Bedoya A, Tovar AA, Huertas-Bello M, Amescua G, Koo EH, Cabot F, Hadad R, Dubovy SR, de Rivero Vaccari JP, Sabater AL. Intraocular inflammasome signalling in failed corneal transplants. Eye (Lond) 2023; 37:787-789. [PMID: 36097064 PMCID: PMC9998609 DOI: 10.1038/s41433-022-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Andres Serrano
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Angela Gomez-Bedoya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Arianna A Tovar
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcela Huertas-Bello
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guillermo Amescua
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ellen H Koo
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Florence Cabot
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roey Hadad
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sander R Dubovy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alfonso L Sabater
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Mandell JT, de Rivero Vaccari JP, Sabater AL, Galor A. The inflammasome pathway: A key player in ocular surface and anterior segment diseases. Surv Ophthalmol 2023; 68:280-289. [PMID: 35798189 DOI: 10.1016/j.survophthal.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Inflammasomes are multicomplex molecular regulators with an emerging importance in regulating ocular surface and anterior segment health and disease. Key components found in the eye include NF-κB, NLRP3, NLRC4, NLRP6, ASC, IL-1β, IL-18, and caspase-1. The role of NLRP1, NLRC4, AIM2, and NLRP3 inflammasomes in the pathogenesis of infectious ulcers, DED, uveitis, glaucoma, corneal edema, and other diseases is being studied with many developments. Attenuation of these diseases has been explored by blocking various molecules along the inflammasome pathway with agents like NAC, polydatin, calcitriol, glyburide, YVAD, and disulfiram. We provide a background on the inflammasome pathway as it relates to the ocular surface and anterior segment of the eye, discuss the role of inflammasomes in the above diseases in animals and humans, investigate new therapeutic targets, and explore the efficacy of new anti-inflammasome therapies.
Collapse
Affiliation(s)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA
| | | | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Ophthalmology, Miami Veterans Affairs (VA) Medical Center, Miami, FL, USA.
| |
Collapse
|
18
|
Badshah Y, Shabbir M, Khan K, Akhtar H. Expression Profiles of Hepatic Immune Response Genes in HEV Infection. Pathogens 2023; 12:pathogens12030392. [PMID: 36986315 PMCID: PMC10057882 DOI: 10.3390/pathogens12030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Hepatitis E is a liver inflammation caused by infection with the hepatitis E virus (HEV). Every year, there are an estimated 20 million HEV infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV viral load has been studied about the disease progression; however, hepatic the host gene expression against HEV infection remains unknown. Methods: We identified the expression profiles of hepatic immune response genes in HEV infections. Fresh blood samples were collected from all the study subjects (130 patients and 124 controls) in 3ml EDTA vacutainers. HEV viral load was determined by a real-time PCR. The total RNA was isolated from the blood using the TRIZOL method. The expression of theCCL2, CCL5, CXCL10, CXCL16, TNF, IFNGR1, and SAMSN1 genes was studied in the blood of 130 HEV patients and 124 controls using a real-time PCR. Results: Gene expression profiles indicate high levels of CCL2, CCL5, CXCL10, CXCL16, TNF, IFNGR1, and SAMSN1 genes that might lead to the recruitment of leukocytes and infected cell apoptosis. Conclusion: Our study demonstrated distinct differences in the expression profiles of host immune response-related genes of HEV infections and provided valuable insight into the potential impact of these genes on disease progression.
Collapse
Affiliation(s)
- Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Correspondence: (Y.B.); (H.A.); Tel.: +92-321-5272489 (Y.B. & H.A.)
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Hashaam Akhtar
- Global Health Security Agenda (GHSA), National Institutes of Health (NIH), Islamabad 44000, Pakistan
- Correspondence: (Y.B.); (H.A.); Tel.: +92-321-5272489 (Y.B. & H.A.)
| |
Collapse
|
19
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1093985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
|
20
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023; 13:1093985. [PMID: 36776394 PMCID: PMC9910335 DOI: 10.3389/fimmu.2022.1093985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
Affiliation(s)
- Jin Ju
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Haihai Liang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Baofeng Yang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China,*Correspondence: Baofeng Yang,
| |
Collapse
|
21
|
Anupama C, Shettar A, Ranganath SH, Srinivas SP. Experimental Oxidative Stress Breaks Down the Barrier Function of the Corneal Endothelium. J Ocul Pharmacol Ther 2023; 39:70-79. [PMID: 36346320 DOI: 10.1089/jop.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: The fluid pump and barrier functions of the corneal endothelium maintain stromal deturgescence required for corneal transparency. The effect of oxidative stress, a hallmark of Fuchs endothelial corneal dystrophy (FECD), on the endothelial barrier function has been investigated. Methods: The endothelium of porcine corneas ex vivo was exposed to (1) membrane permeable oxidants (H2O2, 100 μM, 1 h; tert-butyl-hydroperoxide, 100 μM, 1 h), or (2) ultraviolet A (UVA) with photosensitizers for 15 min, riboflavin (50 μM) or tryptophan (Trp) (100 μM). The effects on the apical junction complex were analyzed by (1) immunostaining the perijunctional actomyosin ring (PAMR) and ZO-1 and (2) assessment of paracellular flux of fluorescein isothiocyanate (FITC)-avidin across cultured endothelial cells grown on biotinylated-gelatin film. The extent of oxidative stress was quantified by changes in intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in addition to lipid peroxidation and release of lactate dehydrogenase (LDH). Results: Both methods of oxidative stress led to the disruption of PAMR and ZO-1 concurrent with changes in ROS levels, depolarization of MMP, increased lipid peroxidation, elevated LDH release, and increased permeability of FITC-avidin. The effects of direct oxidants were opposed by SB-203580 [p38 mitogen-activating protein (MAP) kinase inhibitor; 10 μM]. The damage by UVA+photosensitizers was blocked by extracellular catalase (10,000 U/mL). Conclusions: (1) Acute oxidative stress breaks down the barrier function through destruction of PAMR in a p38 MAP kinase-dependent manner. (2) UVA+photosensitizers elicit the breakdown of PAMR via type I reactions, involving H2O2 release. (3) Blocking the oxidative stress prevents loss of barrier function, which could be helpful in the therapeutics of FECD.
Collapse
Affiliation(s)
- C Anupama
- Department of Biotechnology, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India.,Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Abhijith Shettar
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
22
|
Cheng X, Huang R, Huang S, Fan W, Yuan R, Wang X, Zhang X. Recent advances in ocular graft-versus-host disease. Front Immunol 2023; 14:1092108. [PMID: 36761771 PMCID: PMC9905686 DOI: 10.3389/fimmu.2023.1092108] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Ocular graft-versus-host-disease (GVHD) remains a significant clinical complication after allogeneic hematopoietic stem cell transplantation. Impaired visual function, pain, and other symptoms severely affect affected individuals' quality of life. However, the diagnosis of and therapy for ocular GVHD involve a multidisciplinary approach and remain challenging for both hematologists and ophthalmologists, as there are no unified international criteria. Through an exploration of the complex pathogenesis of ocular GVHD, this review comprehensively summarizes the pathogenic mechanism, related tear biomarkers, and clinical characteristics of this disease. Novel therapies based on the mechanisms are also discussed to provide insights into the ocular GVHD treatment.
Collapse
Affiliation(s)
- Xianjing Cheng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,School of Medicine, Chongqing University, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Shiqin Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,School of Medicine, Chongqing University, Chongqing, China.,Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
23
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
24
|
Meng J, Xu K, Qin Y, Liu Y, Xu L, Qiao S, An J, Liu J, Zhang Z. Tumor Necrosis Factor-Alpha Disrupts Cx43-Mediated Corneal Endothelial Gap Junction Intercellular Communication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4824699. [PMID: 36193063 PMCID: PMC9526630 DOI: 10.1155/2022/4824699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Connexin43 (Cx43)-mediated gap junctions are vital in maintaining corneal endothelium homeostasis. Tumor necrosis factor-alpha (TNF-α) is among the most important inflammatory factors which cause corneal endothelial dysfunction in various eye diseases. However, the effect of TNF-α on Cx43-mediated gap junctions of the corneal endothelium remains undefined. In the current research, we determined the effect of TNF-α on gap junction intercellular communication (GJIC) in rabbit corneal endothelium. To evaluate alterations of GJIC, if any, we treated ex vivo cultured rabbit corneal endothelium with different concentrations of TNF-α (2-20 ng/ml). The localization of Cx43 was analyzed by immunostaining, while RT-qPCR and western blot were used to profile the expression of Cx43 and zonula occludens-1 (ZO-1). The association between ZO-1 and Cx43 was evaluated using immunoprecipitation and double staining. GJIC activity was determined by the scrap loading and dye transfer assay (SLDT). Our data demonstrated that a high concentration of TNF-α (10 ng/ml and 20 ng/ml) disrupts the Cx43 mediated gap junction distribution in rabbit corneal endothelium and suppresses the expression of Cx43 protein. Furthermore, rabbit corneal endothelial GJIC was inhibited due to the decreased association between the ZO-1 and Cx43 proteins. Current results demonstrate that TNF-α inhibits corneal endothelial GJIC via decreasing the association between ZO-1 and Cx43, disrupting the distribution of Cx43, and downregulating the expression of Cx43 protein. This study offers a new theoretical foundation for diagnosing and treating corneal endothelial cell decompensation induced by elevated TNF-α in various eye diseases.
Collapse
Affiliation(s)
- Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Yinyin Qin
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Ya Liu
- Department of Ophthalmology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Lin Xu
- Department of Ophthalmology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Jianjun Liu
- Department of Ophthalmology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Zhenhao Zhang
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| |
Collapse
|
25
|
Bonelli F, Lasagni Vitar RM, Merlo Pich FG, Fonteyne P, Rama P, Mondino A, Ferrari G. Corneal endothelial cell reduction and increased Neurokinin-1 receptor expression in a graft-versus-host disease preclinical model. Exp Eye Res 2022; 220:109128. [DOI: 10.1016/j.exer.2022.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
|
26
|
Tovar A, Gomez A, Serrano A, Blanco MP, Galor A, Swaminathan SS, de Rivero Vaccari JP, Sabater AL. Role of Caspase-1 as a Biomarker of Ocular Surface Damage. Am J Ophthalmol 2022; 239:74-83. [PMID: 35151638 DOI: 10.1016/j.ajo.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To examine the potential of caspase-1 as a biomarker for ocular surface damage. DESIGN Cross-sectional study. METHODS A total of 113 tear samples (64 subjects) were analyzed. Sixty-one samples were from individuals with dry eye disease (DED), defined as Ocular Surface Disease Index (OSDI) ≥13 and/or corneal staining (CS) ≥3; 32 were from individuals who used glaucoma medication, irrespective of DED metrics; and 20 were from controls (CS <3 and OSDI <13). All individuals completed a medical history form and underwent an ocular surface assessment. Protein levels of caspase-1 were determined by enzyme-linked immunosorbent assay off Schirmer's strips. The primary analysis compared caspase-1 levels in individuals with signs of ocular surface damage (CS ≥3) in both case groups and controls. Secondary correlational analyses were conducted to examine relationships between caspase-1 levels and ocular signs and symptoms. Finally, area under the curve (AUC) analyses were performed to examine relationships between inflammatory markers and CS. RESULTS The mean age of the population was 58±18 years; 70% were female. Tear samples from individuals with ocular surface damage presented higher caspase-1 levels than the control group. Caspase-1 levels showed a moderate positive correlation with CS (Spearman r = 0.31; P = .001) and eye redness (Spearman r = 0.39; P = .004), and a negative correlation with Schirmer's (Spearman r = -0.46; P < .001) and tear break-up time (Spearman r = -0.33; P = .0006). Caspase-1 showed higher sensitivity and AUC for detecting ocular surface damage than InflammaDry, and its expression was not affected by anti-inflammatory agents. CONCLUSION Caspase-1 levels were higher in the tears of individuals with ocular surface damage, suggesting its potential to be used as a biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Arianna Tovar
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Angela Gomez
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Andres Serrano
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Maricarmen Perez Blanco
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Anat Galor
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Swarup S Swaminathan
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA (J.P.R.V)
| | - Alfonso L Sabater
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S).
| |
Collapse
|
27
|
Roles and Mechanisms of Regulated Necrosis in Corneal Diseases: Progress and Perspectives. J Ophthalmol 2022; 2022:2695212. [PMID: 35655803 PMCID: PMC9152437 DOI: 10.1155/2022/2695212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Regulated necrosis is defined as cell death characterized by loss of the cell membrane integrity and release of the cytoplasmic content. It contributes to the development and progression of some diseases, including ischemic stroke injury, liver diseases, hypertension, and cancer. Various forms of regulated necrosis, particularly pyroptosis, necroptosis, and ferroptosis, have been implicated in the pathogenesis of corneal disease. Regulated necrosis of corneal cells enhances inflammatory reactions in the adjacent corneal tissues, leading to recurrence and aggravation of corneal disease. In this review, we summarize the molecular mechanisms of pyroptosis, necroptosis, and ferroptosis in corneal diseases and discuss the roles of regulated necrosis in inflammation regulation, tissue repair, and corneal disease outcomes.
Collapse
|
28
|
Shi P, Zhao T, Wang W, Peng F, Wang T, Jia Y, Zou L, Wang P, Yang S, Fan Y, Zong J, Qu X, Wang S. Protective effect of homogeneous polysaccharides of Wuguchong (HPW) on intestinal mucositis induced by 5-fluorouracil in mice. Nutr Metab (Lond) 2022; 19:36. [PMID: 35585561 PMCID: PMC9118848 DOI: 10.1186/s12986-022-00669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hospitalized patients, drug side effects usually trigger intestinal mucositis (IM), which in turn damages intestinal absorption and reduces the efficacy of treatment. It has been discovered that natural polysaccharides can relieve IM. In this study, we extracted and purified homogenous polysaccharides of Wuguchong (HPW), a traditional Chinese medicine, and explored the protective effect of HPW on 5-fluorouracil (5-FU)-induced IM. METHODS AND RESULTS First, we identified the physical and chemical properties of the extracted homogeneous polysaccharides. The molecular weight of HPW was 616 kDa, and it was composed of 14 monosaccharides. Then, a model of small IM induced by 5-FU (50 mg/kg) was established in mice to explore the effect and mechanism of HPW. The results showed that HPW effectively increased histological indicators such as villus height, crypt depth and goblet cell count. Moreover, HPW relieved intestinal barrier indicators such as D-Lac and diamine oxidase (DAO). Subsequently, western blotting was used to measure the expression of Claudin-1, Occludin, proliferating cell nuclear antigen, and inflammatory proteins such as NF-κB (P65), tumour necrosis factor-α (TNF-α), and COX-2. The results also indicated that HPW could reduce inflammation and protect the barrier at the molecular level. Finally, we investigated the influence of HPW on the levels of short-chain fatty acids, a metabolite of intestinal flora, in the faeces of mice. CONCLUSIONS HPW, which is a bioactive polysaccharide derived from insects, has protective effects on the intestinal mucosa, can relieve intestinal inflammation caused by drug side effects, and deserves further development and research.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Tianqi Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Wendong Wang
- Department of Orthopaedics, The Second People's Hospital of Dalian, 29 Hongji Street, Dalian, China
| | - Fangli Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Yong Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,Dalian Runxi Technology Development Co., Ltd, 3 Jinxia Street, Dalian, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Simengge Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Yue Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| | - Xueling Qu
- Pelvic Floor Repair Centre, The Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China. .,Pelvic Floor Repair Centre, Dalian Women and Children Medical Centre (Group), No. 1 Road of Sports New Town, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| |
Collapse
|
29
|
Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15040447. [PMID: 35455444 PMCID: PMC9025871 DOI: 10.3390/ph15040447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Polydeoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 μM) alone or in combination with PDRN (100 μg/mL), PDRN plus ZM241385 (1 μM) as an A2Ar antagonist, and CGS21680 (1 μM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy.
Collapse
|
30
|
The neuroprotective mechanism of lithium after ischaemic stroke. Commun Biol 2022; 5:105. [PMID: 35115638 PMCID: PMC8814028 DOI: 10.1038/s42003-022-03051-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stroke causes degeneration and death of neurones leading to the loss of motor function and frequent occurrence of cognitive impairment and depression. Lithium (Li+), the archetypal mood stabiliser, is neuroprotective in animal models of stroke, albeit underlying mechanisms remain unknown. We discover that Li+ inhibits activation of nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in the middle cerebral artery occlusion (MCAO) stroke model in mice. This action of Li+ is mediated by two signalling pathways of AKT/GSK3β/β-catenin and AKT/FoxO3a/β-catenin which converge in suppressing the production of reactive oxygen species (ROS). Using immunocytochemstry, MRI imaging, and cell sorting with subsequent mRNA and protein quantification, we demonstrate that Li+ decreases the infarct volume, improves motor function, and alleviates associated cognitive and depressive impairments. In conclusion, this study reveals molecular mechanisms of Li+ neuroprotection during brain ischaemia, thus providing the theoretical background to extend clinical applications of Li+ for treatment of ischemic stroke.
Collapse
|
31
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|